請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76945完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于明暉(Ming-Whei Yu) | |
| dc.contributor.author | Cou-Wei Shao | en |
| dc.contributor.author | 邵國維 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:41:14Z | - |
| dc.date.available | 2021-07-10T21:41:14Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-06 | |
| dc.identifier.citation | 1. Seto WK, Lo YR, Pawlotsky JM, Yuen MF. Chronic hepatitis B virus infection. Lancet.(London, England). 2018;392(10161):2313-2324. 2. Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma. Nature reviews Disease primers. 2016;2:16018. 3. Yuen MF, Chen DS, Dusheiko GM, et al. Hepatitis B virus infection. Nature reviews Disease primers. 2018;4:18035. 4. Venook AP, Papandreou C, Furuse J, de Guevara LL. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. The oncologist. 2010;15 Suppl 4:5-13. 5. Wu CF, Yu MW, Lin CL, et al. Long-term tracking of hepatitis B viral load and the relationship with risk for hepatocellular carcinoma in men. Carcinogenesis. 2008;29(1):106-112. 6. Yang HI, Lu SN, Liaw YF, et al. Hepatitis B e antigen and the risk of hepatocellular carcinoma. The New England journal of medicine. 2002;347(3):168-174. 7. Terrault NA, Lok ASF, McMahon BJ, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology (Baltimore, Md). 2018;67(4):1560-1599. 8. Hung CH, Wang JH, Lu SN, Hu TH, Lee CM, Chen CH. Hepatitis B surface antigen loss and clinical outcomes between HBeAg-negative cirrhosis patients who discontinued or continued nucleoside analogue therapy. Journal of viral hepatitis. 2017;24(7):599-607. 9. Liu J, Yang HI, Lee MH, et al. Spontaneous seroclearance of hepatitis B seromarkers and subsequent risk of hepatocellular carcinoma. Gut. 2014;63(10):1648-1657. 10. Kim GA, Lee HC, Kim MJ, et al. Incidence of hepatocellular carcinoma after HBsAg seroclearance in chronic hepatitis B patients: a need for surveillance. Journal of hepatology. 2015;62(5):1092-1099. 11. Liu J, Lee MH, Batrla-Utermann R, et al. A predictive scoring system for the seroclearance of HBsAg in HBeAg-seronegative chronic hepatitis B patients with genotype B or C infection. Journal of hepatology. 2013;58(5):853-860. 12. Yeo YH, Ho HJ, Yang HI, et al. Factors Associated With Rates of HBsAg Seroclearance in Adults With Chronic HBV Infection: A Systematic Review and Meta-analysis. Gastroenterology. 2019;156(3):635-646.e639. 13. Fung J, Lai CL, Seto WK, Yuen MF. Emerging drugs for the treatment of hepatitis B. Expert opinion on emerging drugs. 2016;21(2):183-193. 14. Wong DK, Seto WK, Fung J, et al. Reduction of hepatitis B surface antigen and covalently closed circular DNA by nucleos(t)ide analogues of different potency. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2013;11(8):1004-1010.e1001. 15. Marcellin P, Gane E, Buti M, et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet (London, England). 2013;381(9865):468-475. 16. Lang J, Neumann-Haefelin C, Thimme R. Immunological cure of HBV infection. Hepatology international. 2019;13(2):113-124. 17. Boni C, Barili V, Acerbi G, et al. HBV Immune-Therapy: From Molecular Mechanisms to Clinical Applications. International journal of molecular sciences. 2019;20(11). 18. Yang N, Bertoletti A. Advances in therapeutics for chronic hepatitis B. Hepatology international. 2016;10(2):277-285. 19. Lok AS, Zoulim F, Dusheiko G, Ghany MG. Hepatitis B cure: From discovery to regulatory approval. Hepatology (Baltimore, Md). 2017;66(4):1296-1313. 20. Bertoletti A, Ferrari C. Adaptive immunity in HBV infection. Journal of hepatology. 2016;64(1 Suppl):S71-s83. 21. Thimme R, Wieland S, Steiger C, et al. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. Journal of virology. 2003;77(1):68-76. 22. Maini MK, Boni C, Ogg GS, et al. Direct ex vivo analysis of hepatitis B virus-specific CD8(+) T cells associated with the control of infection. Gastroenterology. 1999;117(6):1386-1396. 23. Sobao Y, Tomiyama H, Sugi K, et al. The role of hepatitis B virus-specific memory CD8 T cells in the control of viral replication. Journal of hepatology. 2002;36(1):105-115. 24. Boni C, Fisicaro P, Valdatta C, et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. Journal of virology. 2007;81(8):4215-4225. 25. Sung PS, Park DJ, Kim JH, et al. Ex vivo Detection and Characterization of Hepatitis B Virus-Specific CD8(+) T Cells in Patients Considered Immune Tolerant. Frontiers in immunology. 2019;10:1319. 26. Park JJ, Wong DK, Wahed AS, et al. Hepatitis B Virus--Specific and Global T-Cell Dysfunction in Chronic Hepatitis B. Gastroenterology. 2016;150(3):684-695.e685. 27. Li H, Zhai N, Wang Z, et al. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection. Gut. 2018;67(11):2035-2044. 28. Ju Y, Hou N, Meng J, et al. T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B. Journal of hepatology. 2010;52(3):322-329. 29. Li TY, Yang Y, Zhou G, Tu ZK. Immune suppression in chronic hepatitis B infection associated liver disease: A review. World journal of gastroenterology. 2019;25(27):3527-3537. 30. Rinker F, Zimmer CL, Honer Zu Siederdissen C, et al. Hepatitis B virus-specific T cell responses after stopping nucleos(t)ide analogue therapy in HBeAg-negative chronic hepatitis B. Journal of hepatology. 2018;69(3):584-593. 31. Kim JH, Ghosh A, Ayithan N, et al. Circulating serum HBsAg level is a biomarker for HBV-specific T and B cell responses in chronic hepatitis B patients. Scientific reports. 2020;10(1):1835. 32. Lim CJ, Lee YH, Pan L, et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut. 2019;68(5):916-927. 33. Chen Y, Tian Z. HBV-Induced Immune Imbalance in the Development of HCC. Frontiers in immunology. 2019;10:2048. 34. Zong L, Peng H, Sun C, et al. Breakdown of adaptive immunotolerance induces hepatocellular carcinoma in HBsAg-tg mice. Nature communications. 2019;10(1):221. 35. Sampedro-Nunez M, Serrano-Somavilla A, Adrados M, et al. Analysis of expression of the PD-1/PD-L1 immune checkpoint system and its prognostic impact in gastroenteropancreatic neuroendocrine tumors. Scientific reports. 2018;8(1):17812. 36. Hung YC, Lin CL, Liu CJ, et al. Development of risk scoring system for stratifying population for hepatocellular carcinoma screening. Hepatology (Baltimore, Md). 2015;61(6):1934-1944. 37. Sung FY, Jung CM, Wu CF, et al. Hepatitis B virus core variants modify natural course of viral infection and hepatocellular carcinoma progression. Gastroenterology. 2009;137(5):1687-1697. 38. 溫巧尼. 白血球端粒長度與慢性B型肝炎病毒血症和肝細胞癌風險之前瞻性研究: 流行病學與預防醫學研究所, 國立臺灣大學; 2011. 39. Wang YH, Chuang YH, Wu CF, et al. Smoking and Hepatitis B Virus-Related Hepatocellular Carcinoma Risk: The Mediating Roles of Viral Load and Alanine Aminotransferase. Hepatology (Baltimore, Md). 2019;69(4):1412-1425. 40. Chao LT, Wu CF, Sung FY, et al. Insulin, glucose and hepatocellular carcinoma risk in male hepatitis B carriers: results from 17-year follow-up of a population-based cohort. Carcinogenesis. 2011;32(6):876-881. 41. Cheng HY, Kang PJ, Chuang YH, et al. Circulating programmed death-1 as a marker for sustained high hepatitis B viral load and risk of hepatocellular carcinoma. PloS one. 2014;9(11):e95870. 42. Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint JP, Labalette M. Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mechanisms of ageing and development. 2006;127(3):274-281. 43. Koch S, Larbi A, Derhovanessian E, Ozcelik D, Naumova E, Pawelec G. Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immunity ageing : I A. 2008;5:6. 44. Park YM, Lee SG. Clinical features of HBsAg seroclearance in hepatitis B virus carriers in South Korea: A retrospective longitudinal study. World journal of gastroenterology. 2016;22(44):9836-9843. 45. Chu CM, Lin DY, Liaw YF. Does increased body mass index with hepatic steatosis contribute to seroclearance of hepatitis B virus (HBV) surface antigen in chronic HBV infection? International journal of obesity (2005). 2007;31(5):871-875. 46. Yuen MF, Wong DK, Sablon E, et al. HBsAg seroclearance in chronic hepatitis B in the Chinese: virological, histological, and clinical aspects. Hepatology (Baltimore, Md). 2004;39(6):1694-1701. 47. Simonetti J, Bulkow L, McMahon BJ, et al. Clearance of hepatitis B surface antigen and risk of hepatocellular carcinoma in a cohort chronically infected with hepatitis B virus. Hepatology (Baltimore, Md). 2010;51(5):1531-1537. 48. Hosaka T, Suzuki F, Kobayashi M, et al. Clearance of hepatitis B surface antigen during long-term nucleot(s)ide analog treatment in chronic hepatitis B: results from a nine-year longitudinal study. Journal of gastroenterology. 2013;48(8):930-941. 49. Han ZG, Qie ZH, Qiao WZ. HBsAg spontaneous seroclearance in a cohort of HBeAg-seronegative patients with chronic hepatitis B virus infection. Journal of medical virology. 2016;88(1):79-85. 50. Lee JG, Lee S, Kim YJ, et al. Association of chronic viral hepatitis B with insulin resistance. World journal of gastroenterology. 2012;18(42):6120-6126. 51. Cali AM, De Oliveira AM, Kim H, et al. Glucose dysregulation and hepatic steatosis in obese adolescents: is there a link? Hepatology (Baltimore, Md). 2009;49(6):1896-1903. 52. Garca-Estévez DA, Araújo-Vilar D, Saavedra-González A, Fiestras-Janeiro G, Cabezas-Cerrato J. Analysis of the relationship between body mass index, insulin resistance, and beta-cell function: a cross-sectional study using the minimal model. Metabolism: clinical and experimental. 2004;53(11):1462-1466. 53. Isabelle Guyon AE. An Introduction to Variable and Feature Selection. Journal of Machine Learning Research. 2003;3:1157-1182. 54. Tibshirani R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. 1996;58:267-288. 55. Au TC. Random Forests, Decision Trees, and Categorical Predictors: The “Absent Levels” Problem. Journal of Machine Learning Research 2018; 19. 56. Haibo He M, IEEE, and Edwardo A. Garcia. Learning from Imbalanced Data. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. 2009;21(9). 57. Yonas B. Dibike SV, Dimitri Solomatine and Michael B. Abbott. Model Induction with Support Vector Machines: Introduction and Applications. Journal of Computing in Civil Engineering. 2001;15. 58. Hartayuni Sain SWP. Combine Sampling Support Vector Machine for Imbalanced Data Classification. Procedia Computer Science. 2015;72:59-66. 59. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nature reviews Immunology. 2015;15(8):486-499. 60. Kennedy PTF, Sandalova E, Jo J, et al. Preserved T-cell function in children and young adults with immune-tolerant chronic hepatitis B. Gastroenterology. 2012;143(3):637-645. 61. Oh IS, Park SH. Immune-mediated Liver Injury in Hepatitis B Virus Infection. Immune network. 2015;15(4):191-198. 62. Kakimi K, Lane TE, Wieland S, et al. Blocking chemokine responsive to gamma-2/interferon (IFN)-gamma inducible protein and monokine induced by IFN-gamma activity in vivo reduces the pathogenetic but not the antiviral potential of hepatitis B virus-specific cytotoxic T lymphocytes. The Journal of experimental medicine. 2001;194(12):1755-1766. 63. Baran J, Kowalczyk D, Ozóg M, Zembala M. Three-color flow cytometry detection of intracellular cytokines in peripheral blood mononuclear cells: comparative analysis of phorbol myristate acetate-ionomycin and phytohemagglutinin stimulation. Clinical and diagnostic laboratory immunology. 2001;8(2):303-313. 64. Tan A, Koh S, Bertoletti A. Immune Response in Hepatitis B Virus Infection. Cold Spring Harb Perspect Med. 2015;5(8):a021428-a021428. 65. Zhang Z, Zhang S, Zou Z, et al. Hypercytolytic activity of hepatic natural killer cells correlates with liver injury in chronic hepatitis B patients. Hepatology (Baltimore, Md). 2011;53(1):73-85. 66. Nakanishi Y, Lu B, Gerard C, Iwasaki A. CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature. 2009;462(7272):510-513. 67. Hoffmann M, Pantazis N, Martin GE, et al. Exhaustion of Activated CD8 T Cells Predicts Disease Progression in Primary HIV-1 Infection. PLoS pathogens. 2016;12(7):e1005661. 68. Dong Y, Li X, Zhang L, et al. CD4(+) T cell exhaustion revealed by high PD-1 and LAG-3 expression and the loss of helper T cell function in chronic hepatitis B. BMC immunology. 2019;20(1):27. 69. Rinker F, Zimmer CL, Höner Zu Siederdissen C, et al. Hepatitis B virus-specific T cell responses after stopping nucleos(t)ide analogue therapy in HBeAg-negative chronic hepatitis B. Journal of hepatology. 2018;69(3):584-593. 70. Fisicaro P, Valdatta C, Massari M, et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology. 2010;138(2):682-693, 693.e681-684. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76945 | - |
| dc.description.abstract | 研究背景 慢性B肝的感染是造成肝硬化與肝癌的危險因子,之前的研究發現慢性B肝感染且HBs抗原未清除者罹患肝癌的風險比清除者高,而且未清除HBs抗原的感染者體內高劑量的HBs抗原可能會造成免疫耗損以及更嚴重的肝臟病變,但是目前抗病毒藥物僅能清除感染者體內的HBV DNA,鮮少能清除HBs抗原,因此尋找HBs抗原清除的機轉,以及觀察抗原清除後對於免疫系統的影響和後續肝功能是否會回復,變得至關重要。 目的 我們希望能利用機器學習的方式找出和HBs抗原清除有關的預測因子,進而找出HBs抗原清除的機轉,此外我們也希望觀察HBs抗原清除後免疫系統是否有變化,以及從免疫的變化程度建立免疫分數,觀察免疫的改變是否與後續肝功能有關。 方法 本次研究分成兩個階段,第一階段我們利用先前發表有包含宿主因子與病毒因子的縱貫性研究資料,以建立一個包含920名HBe陰性感染者的回溯性世代研究,並用機械學習的方式找出HBs抗原清除的預測因子。第二階段,我們利用222名來自前述世代研究下所建立的PBMC子世代建立前瞻性研究,以流式細胞儀分析12個免疫標記。我們用逐級線性判別分析區分清除與未清除者的免疫差異,並用羅吉斯迴歸係數建立免疫分數。 結果 第一階段我們發現病毒量、病毒基因型、ALT與空腹胰島素為穩定的HBs抗原清除預測因子,並用不同演算法預測10年~20年的HBs清除機率,所得AUC介於0.71~0.83;第二階段我們利用線性判別分析發現清除與非清除者有9個標記在HBs抗原清除後會發生改變,包含NK bright cells、NK dim cells、CD4 T cells, 細胞激素製造(IFN-γ+ NK cells、IFN-γ+ CD8 T cells)、免疫耗損標記(PD1+ CD8 T cells、PD1+ CD4 T cells)、以及早期活化標記(CD69+ CD4 T cells、CD69+ CD8 T cells). 並觀察到除了NK bright cells外(p=0.01),其他細胞皆不受抗原預測因子的影響。最後我們建立抗原清除相關的細胞建立免疫分數,觀察到ALT下降會受到抗原清除相關的細胞影響(p=0.04)。 結論 我們的資料指出HBs抗原清除後,免疫圖譜也會隨之改變,而且此改變也會影響後續肝臟發炎的程度。 | zh_TW |
| dc.description.abstract | Background Chronic Hepatitis B (CHB) is strong risk factor for both liver cirrhosis and hepatocellular carcinoma. Patients with CHB rarely achieve a functional cure after successful anti-HBV therapy. It remains uncertain whether there is a further HCC reduction in patients who achieve functional cure, indicated by hepatitis B surface antigen (HBsAg) seroclearance, after viral suppression. More-over, immune exhaustion is related to high titter of HBsAg, which may lead to severe clinical outcome. Little is known about how immune functions are restored after functional cure in CHB patients. Specific Aims First, we wanted to find out predictors for HBs seroclearance with machine learning approached, then we wanted to understand whether loss of HBsAg may result in change in immune cellular profiles after taking account the identified predictors of HBsAg seroclearance. Finally, we wanted to construct an immune cell score as a prognostic factor and to investigate its’ impact on subsequent liver function. Methods This is a two-stage study. In the first stage, we searched HBsAg seroclearance predictors using a retrospective cohort study by machine learning algorithms with data from a published longitudinal viral load study, which included various host factors and viral factors. Nine hundred and twenty HBeAg negative CHB individuals were included. In the second stage, we did a prospective analysis 222 of the 920 CHB, who were recruited from a PBMC cohort to examine their immune cell phenotypes with 12 markers by multidimensional flow cytometry. Stepwise linear discriminant analysis was used for feature extraction, and logistic regression coefficients for risk scoring. Result The most predictive variables for HBsAg seroclearance from different machine learning approaches were HBV DNA, HBV genotype, ALT and fasting plasma levels of insulin, and the area under the receiver operating characteristic curve varied between 0.71 and 0.83 for 10~20 years prediction of HBsAg seroclearance, The phase 2 study revealed that subjects with HBsAg seroclearance and those without displayed differences in nine lymphocyte subsets, based on linear discriminate analysis. Among these, there are lymphocytes pertaining to innate and adaptive immunity, including NK bright cells, NK dim cells, CD4 T cells, cytokine production function (IFN-γ+ NK cells, IFN-γ+ CD8 T cells), immune exhaustion (PD1+ CD8 T cells, PD1+ CD4 T cells), and early activation markers (CD69+ CD4 T cells, CD69+ CD8 T cells). No association were found between cellular markers and determinants of HBsAg except for NK bright cells (p=0.01). We also established a prognosis immune risk score that was found to be inversely associated subsequent ALT levels (p=0.04). Conclusion The data suggest seroclearance of HBs antigen maybe associated with distinct changes in peripheral immune cell subsets, resulting in improvement of liver dysfunction. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:41:14Z (GMT). No. of bitstreams: 1 U0001-0508202013221100.pdf: 2150890 bytes, checksum: 252ef8a9f02836a65a340b7dd8e40846 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 中文摘要 i 英文摘要 iii 第一章 前言 1 第二章 材料與方法 8 資料庫 8 研究設計與個案 9 實驗分析 10 統計方法 12 第三章 結果 13 HBs抗原決定因子的篩選與預測 13 抗原清除和免疫細胞組成 14 抗原清除相關免疫細胞與抗原清除決定因子之相關性 15 抗原清除相關免疫細胞與後續肝炎指數的關聯 15 第四章 討論 17 參考文獻 24 | |
| dc.language.iso | zh-TW | |
| dc.subject | 慢性B肝感染 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 周邊血單核球細胞 | zh_TW |
| dc.subject | 免疫細胞圖譜 | zh_TW |
| dc.subject | HBs抗原清除 | zh_TW |
| dc.subject | immune cellular profile | en |
| dc.subject | chronic hepatitis B | en |
| dc.subject | HBsAg seroclearance | en |
| dc.subject | machine learning | en |
| dc.subject | PBMC | en |
| dc.title | 利用機器學習方式以臨床特徵和免疫細胞為基礎預測HBe抗原陰性B肝帶原者的HBs抗原清除與後續臨床表現 | zh_TW |
| dc.title | Predicting HBsAg Seroclearance and Its Sequelae by Machine Learning with Clinical Factors and Immune Cells for HBeAg Negative HBV Infection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 莊雅惠(Ya-Hui Chuang) | |
| dc.contributor.oralexamcommittee | 李文宗(Wen-Chung Lee),黃奕文(Yi-Wen Huang),林志陵(Chih-Lin Lin) | |
| dc.subject.keyword | HBs抗原清除,慢性B肝感染,機器學習,周邊血單核球細胞,免疫細胞圖譜, | zh_TW |
| dc.subject.keyword | chronic hepatitis B,HBsAg seroclearance,machine learning,PBMC,immune cellular profile, | en |
| dc.relation.page | 45 | |
| dc.identifier.doi | 10.6342/NTU202002453 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-06 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0508202013221100.pdf 未授權公開取用 | 2.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
