Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76944
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張豐丞(Feng-Cheng Chang)
dc.contributor.authorHsin-Chen Chenen
dc.contributor.author陳欣辰zh_TW
dc.date.accessioned2021-07-10T21:41:12Z-
dc.date.available2021-07-10T21:41:12Z-
dc.date.copyright2020-09-24
dc.date.issued2020
dc.date.submitted2020-08-11
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76944-
dc.description.abstract隨著全球對環保以及環境友善意識的提高,水性聚氨酯(waterborne polyurethanes, WPUs)在現今受到越來越多的重視。相較於傳統溶劑型聚氨酯,水性聚氨酯在低揮發性有機物含量與不易燃的特性佔有優勢,然而,水性聚氨酯在機械性質、熱性質與耐水性方面表現不如溶劑型聚氨酯。因此,為提升水性聚氨酯的性質,並同時考量材料間的相容性,本研究選用纖維素奈米微晶(cellulose nanocrystals, CNCs)與纖維素奈米纖維(cellulose nanofibers, CNFs)作為加固材,加入合成所得之陰離子水性聚氨酯與陽離子水性聚氨酯中,其中奈米纖維素的親水性促使纖維材料可以藉由超音波分散至水性聚氨酯的水相之中,以形成性質優越的環保複合材料。本研究進行數項物理性、機械性和化學性的分析與鑑定,得以了解奈米纖維素對於複合後之水性聚氨酯複合材料的各項性質加固效果。由於CNCs與CNFs具有相異的型態與帶電性質,並陰離子水性聚氨酯與陽離子水性聚氨酯亦有不同之表面帶電特性,因此本研究也著重探討多種的纖維-基質交互作用。大致而言,添加奈米纖維素有助於提升水性聚氨酯基質材料之機械性質,且提高其熱穩定性與耐水性。本研究顯示出以CNCs或CNFs複合水性聚氨酯所形成的複合材料在未來工業領域中具有可發展之潛力。zh_TW
dc.description.abstractWith the increased global awareness about environmental issues and the trends of eco-friendliness, waterborne polyurethanes (WPUs) have received more and more attention nowadays. Compared with the conventional solvent-borne PUs, WPUs predominant at aspects of zero or low Volatile Organic Compound (VOC) content and noninflammability. However, WPUs are inferior to solvent-borne PUs in areas such as mechanical properties, thermal properties, and water resistance. Accordingly, to enhance the properties of WPUs, and also by considering the compatibility between the materials, cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) were added into the synthesized anionic WPUs and cationic WPUs to form outstanding green composites. The hydrophilic nature of nanocellulose allowed effortless filler dispersion in the water phase of WPUs by blending through sonication. A number of investigations were conducted including physical, mechanical, and chemical evaluations to reveal the nanocellulose reinforcing effects on the properties of the filled WPU composites. Due to the divergent morphologies and electric properties between CNCs and CNFs, as well as the different surface charges for anionic and cationic WPUs, the varied filler-matrix interactions were hence presented and discussed in this study. Generally, the nanocellulose addition resulted in WPU composites having enhanced mechanical properties, better thermal stability, and higher resistance to water absorption. Overall, the results of this study implied the great potentials for these CNC- or CNF-filled WPU composites to be applied in future industrial fields.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:41:12Z (GMT). No. of bitstreams: 1
U0001-0508202013312800.pdf: 7415209 bytes, checksum: 9a275e4097dff68126d683c9e995ce22 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsAcknowledgement i
摘要 ii
Abstract iii
Table of contents iv
List of figures vi
List of tables x
Chapter 1: Introduction 1
Chapter 2: Literature Review 4
2.1 Introduction of waterborne polyurethanes (WPUs) 4
2.1.1 Anionic WPUs 4
2.1.2 Cationic WPUs 6
2.1.3 Zwitterionic WPUs 8
2.2 Synthetic process and dispersion formation of WPUs 10
2.2.1 Emulsification 10
2.2.2 Acetone Process 12
2.2.3 Hot-Melt Process 14
2.3 Introduction of nanocellulose 17
2.3.1 Cellulose and cellulose microfibrils 17
2.3.2 Cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) 18
2.4 Nanocellulose-reinforced WPU composites 21
Chapter 3: Materials and Methods 26
3.1 Materials 26
3.2 Synthesis of waterborne polyurethane 26
3.2.1 Synthesis of the anionic WPUs 27
3.2.2 Synthesis of the cationic WPUs 28
3.3 Composite formulations 29
3.4 Sample designation 30
3.5 Composite preparation 30
3.6 Methods 31
Chapter 4: Results and Discussion 36
4.1 Characterization of WPUs 36
4.1.1 Gel permeation chromatography (GPC) 36
4.2 Characterization of nanocellulose-WPU emulsions 36
4.2.1 Dynamic light scattering (DLS) 36
4.2.2 Zeta potential analysis 44
4.2.3 Emulsion stability observation 47
4.3 Characterization of nanocellulose-WPU films 50
4.3.1 Microstructure analysis 50
4.3.2 Fourier transform infrared (FTIR) spectroscopy analysis 58
4.3.3 Tensile tests 63
4.3.4 Dynamic mechanical analysis (DMA) 73
4.3.5 Thermogravimetry analysis (TGA) 77
4.3.6 Differential scanning calorimetry (DSC) analysis 83
4.3.7 Water absorption tests 87
4.3.8 UV-Vis spectroscopy analysis 95
Chapter 5: Conclusions 98
References 101
dc.language.isoen
dc.subject纖維素奈米纖維zh_TW
dc.subject奈米纖維素複合材料zh_TW
dc.subject纖維素奈米微晶zh_TW
dc.subject水性聚氨酯zh_TW
dc.subjectWaterborne polyurethaneen
dc.subjectCellulose nanocrystalen
dc.subjectCellulose nanofiberen
dc.subjectNanocellulose compositeen
dc.title奈米纖維素水性聚氨酯複合材料之研究zh_TW
dc.titleStudy on Nanocellulose-Waterborne Polyurethane Compositesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭如忠(Ru-Jong Jeng),童世煌(Shih-Huang Tung),廖英志(Ying-Chih Liao)
dc.subject.keyword纖維素奈米微晶,纖維素奈米纖維,奈米纖維素複合材料,水性聚氨酯,zh_TW
dc.subject.keywordCellulose nanocrystal,Cellulose nanofiber,Nanocellulose composite,Waterborne polyurethane,en
dc.relation.page120
dc.identifier.doi10.6342/NTU202002455
dc.rights.note未授權
dc.date.accepted2020-08-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
U0001-0508202013312800.pdf
  未授權公開取用
7.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved