請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7693完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張恆華 | |
| dc.contributor.author | Ching-Yu Chang | en |
| dc.contributor.author | 張境畬 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:50:23Z | - |
| dc.date.available | 2027-12-31 | |
| dc.date.available | 2021-05-19T17:50:23Z | - |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-16 | |
| dc.identifier.citation | 1. Hashemi, R.H., W.G. Bradley, and C.J. Lisanti, MRI : the basics. 2010, Philadelphia, PA: Lippincott Williams & Wilkins.
2. Westbrook, C., C.K. Roth, and J. Talbot, MRI in practice. 2011, Malden, MA: Wiley-Blackwell. 3. 磁振造影MAGNETOM Prisma 3.0T. 2016. 4. 洪維恩, Matlab7 程式設計. 2010, 台北: 旗標出版股份有限公司. 5. Gonzalez, R.C. and R.E. Woods, Digital image processing. 2002, Upper Saddle River, N.J.: Prentice Hall. 6. Roger P. Woods, M.D. AIR - Automated Image Registration. 1995; Available from: http://bishopw.loni.ucla.edu/air5/. 7. Maintz, J.B.A. and M.A. Viergever, A survey of medical image registration. 1998. 2: p. 36. 8. Zitova, B. and J. Flusser, Image registration methods: a survey. ELSEVIER, 2003. 9. Yi, Z., Nonrigid Image Registration Using Physically Based Models. 2006: University of Wateloo. 10. Holden, M., A review of geometric transformations for nonrigid body registration. IEEE Transactions on Medical Imaging, 2008. 27(1): p. 111 - 128. 11. Xie, Z. and G.E. Farin, Image Registration Using Hierarchical B-Splines. IEEE Transactions on Visualization and Computer Graphics, 2004. 12. Jian, Z., L. Limin, and C. Guogang, Fast Non-Rigid Image Registration Using Viscous Fluid Model and B-Spline. IEEE, 2008. 13. Martinec, Z., CONTINUUM MECHANICS, ed. Z. Martinec. 2003, Faculty of Mathematics and Physics Charles University in Prague: Department of Geophysics. 14. Modersitzki, J., Numerical Methods For Image Registration. 2004. 15. Wikipedia contributors. Linear interpolation. 2003; Available from: https://zh.wikipedia.org/w/index.php?title=%E7%BA%BF%E6%80%A7%E6%8F%92%E5%80%BC&oldid=42676334. 16. Kheng, L.W., Image Registration. Department of Computer Science School of Computing National University of Singapore. 17. Nvidia, C., NVIDIA Tesla K80 Accelerator Performance. 18. Owens, J.D., et al. A survey of general‐purpose computation on graphics hardware. in Computer graphics forum. 2007. Wiley Online Library. 19. What is gpu computing. Available from: http://www.nvidia.com.tw/object/what-is-gpu-computing-tw.html. 20. Nvidia, C. CUDA Zone. Available from: https://developer.nvidia.com/cuda-zone. 21. Kirk, D. NVIDIA CUDA software and GPU parallel computing architecture. in ISMM. 2007. 22. Christense, G.E., Deformable shape models for anatomy. 1994: Washington University. 23. Morten Bro-nielsen , C.G., Fast Fluid Registration of Medical Images. 1996. 24. Christensen, G.E., R.D. Rabbitt, and M.I. Miller, Deformable templates using large deformation kinematics. IEEE TRANSANS ON IMAGE PROCESSING, 1996. 25. Chris Taylor, T.C., Carole Twining. Image Registration by Fluid Flow. 2007. 26. Christense, G.E., 3D brain mapping using a deformable neuroanatomy 1993. 27. Xu, X., Fast fluid registration using inverse filtering for non-rigid image registration. IEEE, 2006. 28. Seibold, B., A compact and fast Matlab code solving the incompressible Navier-Stokes equations on rectangular domains, in Massachusetts Institute of Technology. 2008. 29. 林瑞國, 不可壓縮黏性熱磁流之科學計算方法. 2005, 國立台灣大學工程科學與海洋工程學研究所. 30. Emiliano D’Agostino , F.M., Dirk Vandermeulen, Paul Suetens, A viscous fluid model for multimodal non-rigid image registration using mutual information. ELSEVIER, 2003. 31. Pluim, J.P.W., J.B.A. Maintz, and M.A. Viergever, Mutual information based registration of medical images: a survey. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003. 32. D'Agostino, E., et al., A Viscous Fluid Modelfor Multimodal Non-rigid Image RegistrationUsing Mutual Information. MICCAI, 2002. 33. Wikipedia contributors. Entropy (information theory). 2009. 34. Datta, B.N., Numerical linear algebra and applications. 2010, Philadelphia: Society for Industrial and Applied Mathematics. 35. Saad, Y., Iterative methods for sparse linear systems. The PWS series in computer science. 1996, Boston: PWS Pub. Co. 36. Zhang, Z., Q. Miao, and Y. Wang, CUDA-Based Jacobi's Iterative Method. Computer Science-Technology and Applications, 2009. 37. Chang, H.-H. and C.-Y. Tsai, Adaptive registration of magnetic resonance images based on a viscous fluid model. Computer Methods and Programs in Biomedicine, 2014. 117(2): p. 80-91. 38. Nvidia, C., Tesla K40 GPU Accelerator Overview. 2014. 39. Nvidia, C., NVIDIAs next generation CUDA compute architecture: Kepler GK110. 2012. 40. BrainWeb: Simulated Brain Database. Available from: http://www.bic.mni.mcgill.ca/brainweb/. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7693 | - |
| dc.description.abstract | 影像套合運用在醫學研究或醫療診斷上是相當重要的技術,其目的為針對一系列相關影像,透過尋找兩影像間空間變換,將一張影像映射到另一張影像,並將個別的資訊顯示在套合後的影像。本論文使用物理模型類中的黏性流體方法,前人開發的演算法在求解納維-史托克方程式及對形變場雜訊做濾波時相當耗時,並且無法進行多重模式醫學影像套合,故本研究針對這些問題進行改良。在本論文中,我們以雅可比(Jacobi)方法疊代求解統御方程式中的隱性黏滯項,並利用GPU強大的平行處理能力,搭配NVIDIA開發的CUDA架構來平行加速前人演算法中數個步驟。另外我們利用互資訊改良物體力方程式,完成多重模式醫學影像套合。最後我們使用了多組不同類型的磁振影像來評估此方法,實驗結果顯示,本研究提出的方法可有效處理多種類型的影像套合,包含:去頭殼影像、雜訊影像、大規模變形影像及多重模式影像,本方法不僅成功降低一半處理時間,達到2.2~2.6倍的加速,套合後影像在相關係數、差方和上亦有良好表現。 | zh_TW |
| dc.description.abstract | Image registration is an important technique for medical research and medical diagnosis. It is a process of looking for a spatial transformation between two images and mapping one to the other one based on the transformation function. There are many image registration methods and one algorithm is based on a non-rigid fluid flow model. However, the computation of the governing equation and Gaussian smoothing of this method is quite time-consuming and it is unable to perform multimodal registration. To address these problems, we adopt the Jacobi method iteratively to solve the implicit viscosity terms and parallelize the program with GPU. Compute Unified Device Architecture (CUDA), an application programming interface for GPU by NVIDIA, is used to accelerate the algorithm. Besides, we modify the body force term via the mutual information to achieve multimodal image registration. A variety of different types of magnetic resonance images were used to evaluate this new method. Experimental results indicated that the proposed method efficiently registered many kinds of images, including skull-stripping images, noisy images, large scale deformation images and multimodal images. Comparing to the previous fluid-flow model, our method approximately reduced the processing time by half and successfully achieved multimodal image registration. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:50:23Z (GMT). No. of bitstreams: 1 ntu-106-R04525062-1.pdf: 4421063 bytes, checksum: 61d8ece8d6d3343157bc9ba28ad5e0f8 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 viii 表目錄 xi 符號表 xiii 第 1 章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 論文架構 3 第 2 章 相關理論 4 2.1 磁振造影 4 2.2 影像資料格式 5 2.3 影像套合 6 2.3.1 影像轉換分類 7 2.3.2 連體力學 10 2.3.3 彈性介質影像套合轉換 11 2.3.4 黏性流體介質影像轉換 12 2.3.5 彈性介質與黏性流體介質之差別 14 2.3.6 雙線性內插法(Bilinear interpolation) 14 2.4 GPU加速運算與CUDA 16 2.4.1 圖形運算單元 16 2.4.2 CUDA平行運算架構 17 2.5 套合效果評估標準 18 2.5.1 差方和 18 2.5.2 相關係數 19 2.6 文獻回顧 19 2.6.1 物體力方程式 19 2.6.2 統御方程式 20 第 3 章 研究設計與方法 22 3.1 黏性流體影像套合數值化 22 3.1.1 統御方程式數值化 22 3.1.2 數值求解 24 3.1.3 空間離散 25 3.2 物體力修正 28 3.2.1 互資訊與權重函數 28 3.2.2 多重模式物體力 31 3.3 高斯平滑(Gaussian smoothing) 32 3.4 雅可比(Jacobi)演算法 33 3.5 平行加速運算 35 3.5.1 CUDA程式設計 35 3.5.2 基於GPU加速之高斯濾波器 36 3.6 流程圖 39 第 4 章 實驗與結果 41 4.1 實驗說明 41 4.2 速度場影響因子分析 42 4.3 GPU加速效能分析 46 4.4 模擬影像 49 4.4.1 橢圓形影像 49 4.4.2 棋盤影像 53 4.4.3 C字型影像 54 4.5 單一模式醫學影像套合 55 4.5.1 腦部影像 55 4.5.2 去頭殼腦部影像 57 4.5.3 雜訊影像 59 4.5.4 大規模形變腦部影像 61 4.6 多重模式影像套合 65 4.6.1 腦部T1權重模板影像 65 4.6.2 腦部T2權重模板影像 69 4.6.3 腦部PD權重模板影像 73 4.7 多組影像套合結果統計 77 第 5 章 結論與未來展望 79 5.1 結論 79 5.2 未來展望 80 附錄A 81 參考文獻 89 | |
| dc.language.iso | zh-TW | |
| dc.title | 以封閉不可壓縮黏性流體模型為基礎的加速多重模式醫學影像套合 | zh_TW |
| dc.title | Accelerated Multimodal Medical Image Registration Based on a Closed Incompressible Viscous Fluid Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張瑞益,丁肇隆,江明彰 | |
| dc.subject.keyword | 多重模式影像套合,磁振影像,黏性流體模型,雅可比法,GPU平行運算,CUDA,互資訊, | zh_TW |
| dc.subject.keyword | multimodal image registration,MRI,non-rigid model,fluid flow,Jacobi method,GPU parallel computing,CUDA,mutual information, | en |
| dc.relation.page | 91 | |
| dc.identifier.doi | 10.6342/NTU201703182 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2027-12-31 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 此日期後於網路公開 2027-12-31 | 4.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
