請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7692
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張雅君 | |
dc.contributor.author | Sheng-Hsuan Lee | en |
dc.contributor.author | 李勝軒 | zh_TW |
dc.date.accessioned | 2021-05-19T17:50:21Z | - |
dc.date.available | 2022-09-04 | |
dc.date.available | 2021-05-19T17:50:21Z | - |
dc.date.copyright | 2017-09-04 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-16 | |
dc.identifier.citation | 毛青樺。2008。蟹爪蘭X病毒與紅龍果X病毒之分子特性與偵測。國立臺灣大學植物病理與微生物學研究所碩士論文。
余建美。2016。臺灣紅龍果產業發展現況。臺中區農業改良場特刊:1-12。 呂有其。2007。仙人掌病毒X新分離株之特性分析與感染性選殖株之構築。國立臺灣大學植物病理與微生物學研究所碩士論文。 李勇賜。2010。紅龍果X病毒之特性分析、感染性選殖株構築與抗血清製備。國立臺灣大學植物病理與微生物學研究所碩士論文。 林瑞松。1984。仙人掌之繁殖與栽培技術。臺灣花卉之生產改進:109-16。 倪蕙芳、楊宏仁、黃巧雯、林靜宜、林筑蘋、安寶貞、蔡志濃。2015。紅龍果莖潰瘍病病原特性及防治研究。台灣紅龍果生產技術改進研討會專刊: 81-91。 張佑瑋。2017。仙人掌X病毒(CVX)感染性選植株之分析。國立臺灣大學植物病理與微生物學研究所碩士論文。 郭庭禕。2015。紅龍果potexviruses病毒快速檢測方法與磁性奈米粒子療法之開發及應用。國立臺灣大學植物醫學碩士學位學程碩士論文。 廖吉彥、張清安、顏昌瑞、陳昱初、鄧汀欽,。2003。感染紅龍果之仙人掌病毒 X 之鑑定與分佈調查。植物病理學會刊 12 (4): 225-34。 劉命如。2000。紅龍果嵌紋病毒生物特性及全長度核酸序列之硏究。國立台灣大學植物病理學研究所碩士論文 劉命如、洪建龍、劉瑞芬。2004。引起紅龍果斑駁病徵之 Cactus virus X 的鑑定與免疫檢測。植物病理學會刊13: 27-34。 劉碧鵑。2010。台灣紅龍果的栽培。農業試驗所特刊144:1-32。 劉碧鵑、留欽培。2015。台灣紅龍果品種選育現況與未來展望。台灣紅龍果生產技術改進研討會專刊:29-44。 蔡志濃、林筑蘋、安寶貞、鄧汀欽、廖吉彥、倪蕙芳、楊宏仁。2013。紅龍果的重要病害及其防治。技術服務24:1-7。 Aasim M, Özcan SF, Mahmood Khawar K, Özcan S, 2012. Comparative studies on the competence of axillary shoot regeneration on unsliced and longitudinally sliced cotyledon nodes of Vigna unguiculata. Turkish Journal of Botany 36, 281-7. Bagnioll S, Engelmann F, Mi-Haux-Ferriere N, 1992. Histo-cytological study of apical from in vitro plantlets of date palm durin a cryopreservation process. Cryo-letters 13, 405-12. Bai J, Chen X, Lu X, Guo H, Xin X, Zhang Z, 2012. Can cryopreservation eliminate the Potato virus X (PVX) and Potato Spindle Tuber Viroid (PSTVd)? Bioscience Methods 3. Bajaj Y, 1990. Cryopreservation of germplasm of vegetatively propagated crops. Bulletin de la Société Botanique de France. Actualités Botaniques 137, 99-114. Brison M, De Boucaud M-T, Pierronnet A, Dosba F, 1997. Effect of cryopreservation on the sanitary state of a cv Prunus rootstock experimentally contaminated with Plum pox potyvirus. Plant Science 123, 189-96. Clavero-Ramirez I, Galvez-Farfan, J Lopez-Aranda J, Gonzalez-Benito M, 2005. Apex cryopreservation of several strawberry genotypes by two encapsulation-dehydration methods. Cryoletters 26, 17-24. Córdoba-Sellés MDC, García-Rández A, Alfaro-Fernández A, Jordá-Gutiérrez C, 2007. Seed transmission of Pepino mosaic virus and efficacy of tomato seed disinfection treatments. Plant Disease 91, 1250-4. Ding F, Jin S, Hong N, 2008. Vitrification–cryopreservation, an efficient method for eliminating Candidatus Liberobacter asiaticus, the citrus Huanglongbing pathogen, from in vitro adult shoot tips. Plant Cell Reports 27, 241-50. El Far MM, Ashoub A, 2009. Utility of thermotherapy and meristem tip for freeing sweet potato from viral infection. Australian Journal of Basic and Applied Sciences 3, 153-9. Faccioli G, 2001. Control of potato viruses using meristem and stem-cutting cultures, thermotherapy and chemotherapy. In. Virus and Virus-like Diseases of Potatoes and Production of Seed-potatoes. Springer, 365-90. Fiserova H, Sebanek J, Hradilík J, Dolezel P, Vítková H, 2006. Role of cytokinins in growth correlations between roots and stems in pea (Pisum sativum L.) seedlings. Plant Soil and Environment 52, 157. Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA, 1996. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cellular & Developmental Biology-Plant 32, 272-89. Giri L, Chessin M, 1975. Zygocactus virus X. Journal of Phytopathology 83, 40-8. Gogoi K, Kumaria S, Tandon P, 2012. A comparative study of vitrification and encapsulation-vitrification for cryopreservation of protocorms of Cymbidium eburneum L., a threatened and vulnerable orchid of India. Cryoletters 33, 443-52. Hee Shin J, Kyoon Kang D, Keun Sohn J, 2013. Production of Yam mosaic virus (ymv)-free Dioscorea opposita plants by cryotherapy of shoot-tips. Cryoletters 34, 149-57. Helliot B, Panis B, Poumay Y, Swennen R, Lepoivre P, Frison E, 2002. Cryopreservation for the elimination of cucumber mosaic and banana streak viruses from banana (Musa spp.). Plant Cell Reports 20, 1117-22. Hua Q, Chen P, Liu W, 2015. A protocol for rapid in vitro propagation of genetically diverse pitaya. Plant Cell, Tissue and Organ Culture (PCTOC) 120, 741-5. Infante R, 1992. In vitro axillary shoot proliferation and somatic embryogenesis of yellow pitaya Mediocactus coccineus (Salm-Dyck). Plant cell, Tissue and Organ Culture 31, 155-9. King AM, Lefkowitz E, Adams MJ, Carstens EB, 2011. Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Elsevier. Klein RE, Livingston CH, 1982. Eradication of Potato virus X from potato by ribavirin treatment of cultured potato shoot tips. American Potato Journal 59, 359. Koenig R, Pleij CWA, Loss S, Burgermeister W, Aust H, Schiemann J, 2004. Molecular characterisation of potexviruses isolated from three different genera in the family Cactaceae. Archives of Virology 149, 903-14. Lambardi M, Fabbri A, Caccavale A, 2000. Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro-grown shoot tips. Plant Cell Reports 19, 213-8. Le Bellec F, Vaillant F, Imbert E, 2006. Pitahaya (Hylocereus spp.): a new fruit crop, a market with a future. Fruits 61, 237-50. Ling K-S, 2008. Pepino mosaic virus on tomato seed: virus location and mechanical transmission. Plant Disease 92, 1701-5. Moreira-Dias J, Molina R, Bordón Y, Guardiola J, Garcia-Luis A, 2000. Direct and indirect shoot organogenic pathways in epicotyl cuttings of Troyer citrange differ in hormone requirements and in their response to light. Annals of Botany 85, 103-10. Murashige T, Skoog F, 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15, 473-97. Niino T, Sakai A, Yakuwa H, Nojiri K, 1992. Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell, Tissue and Organ Culture 28, 261-6. Nunez DGC, Escobar R, Caetano CM, Vaca JCV, 2014. Estandarización de un protocolo de regeneración en pitahaya amarilla (Selenicereus megalanthus (K. Schum. ex Vaupel) Moran). Acta Agronómica 63, 31-41. Nyland G, Goheen A, 1969. Heat therapy of virus diseases of perennial plants. Annual Review of Phytopathology 7, 331-54. Panattoni A, Luvisi A, Triolo E, 2013. Review. Elimination of viruses in plants: twenty years of progress. Spanish Journal of Agricultural Research 11, 173-88. Pati PK, Rath SP, Sharma M, Sood A, Ahuja PS, 2006. In vitro propagation of rose—a review. Biotechnology Advances 24, 94-114. Plessis P, Steponkus P, 1996. Cryopreservation of sweet potato shoot-tips by vitrification. Cryobiology 33, 655-6. Sakai A, 1960. Survival of the twig of woody plants at -196° C. Nature 185, 393-4. Sakai A, Engelmann F, 2007. Vitrification, encapsulation-vitrification and droplet-vitrification: a review. Cryoletters 28, 151-72. Sakai A, Kobayashi S, Oiyama I, 1990. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports 9, 30-3. Sastry KS, 2013. Seed-borne plant virus diseases. Springer Science & Business Media. Shen X, Kane ME, Chen J, Philips GC, 2008. Effects of genotype, explant source, and plant growth regulators on indirect shoot organogenesis in Dieffenbachia cultivars. In Vitro Cellular and Developmental Biology-Plant 44, 282-8. Siddique I, Anis M, 2008. An improved plant regeneration system and ex vitro acclimatization of Ocimum basilicum L. Acta Physiologiae Plantarum 30, 493-9. Smith RH, 2013. Plant tissue culture: techniques and experiments. Academic Press. Vidal N, Sánchez C, Jorquera L, Ballester A, Vieitez AM, 2005. Cryopreservation of chestnut by vitrification of in vitro-grown shoot tips. In Vitro Cellular and Developmental Biology-Plant 41, 63-8. Vieira RL, Da Silva AL, Zaffari GR, Steinmacher DA, De Freitas Fraga HP, Guerra MP, 2015. Efficient elimination of virus complex from garlic (Allium sativum L.) by cryotherapy of shoot tips. Acta Physiologiae Plantarum 37, 1-11. Viñas M, Fernández-Brenes M, Azofeifa A, Jiménez VM, 2012. In vitro propagation of purple pitahaya (Hylocereus costaricensis [FAC Weber] Britton & Rose) cv. Cebra. In Vitro Cellular & Developmental Biology-Plant 48, 469-77. Wang B, Wang R-R, Cui Z-H, et al., 2014. Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotechnology Advances 32, 583-95. Wang Q, Mawassi M, Li P, Gafny R, Sela I, Tanne E, 2003. Elimination of grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Science 165, 321-7. Wang Q, Valkonen JP, 2009. Cryotherapy of shoot tips: novel pathogen eradication method. Trends Plant Sci 14, 119-22. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7692 | - |
dc.description.abstract | 紅龍果(pitaya, dragon fruit)為近十年在臺灣興起的熱帶果樹之一,其具有高經濟價值,也不斷有新的品種推陳出新。但在前幾年的田間調查研究中,發現田間幾乎所有的紅龍果植株皆受到病毒的感染。推斷是由於現今紅龍果多以扦插的方式進行大量繁殖,若扦插母本植株帶有病毒,則易使病毒於田間迅速的擴展。為了保留罹病母本植株優良的園藝性狀,本研究嘗試建立紅龍果的植株脫毒技術,以獲得無病毒的健康苗。在進行脫毒處理之前須先建立紅龍果組織培養條件,測試出適合白肉紅龍果莖頂組織與大量繁殖之培養條件。實驗中發現由於田間紅龍果材料肉質莖的刺座絨毛與表皮角質層附著許多真菌污染源,以一般消毒方式不易去除,但由於需要大量試驗材料,後續實驗以實生苗取代。在大量繁殖的部分,將白肉紅龍果實生苗之莖段培養在含有1.5 mg/L zeatin之全量MS培養基中,誘導刺座芽體生長率為57.8%,每個刺座平均可長出1.2個芽體,且新芽平均長度為1.33公分,相較6-benzylaminupurin (BAP)有較佳的生長情形;且同濃度之zeatin也具有誘導發根的效果,因此認為白肉紅龍果莖段的培養不需經根系誘導之處理。而在莖頂組織培養部分,則是將莖頂組織培養於含1~1.5 mg/L BAP之全量MS培養基,皆有良好的芽體再生誘導效果。確認了適合紅龍果生長之培養條件後,進行植株脫毒的方法建立,本研究嘗試以玻璃化(vitrification)冷凍處理法(cryotherapy) 對紅龍果罹病株進行脫毒處理。將紅龍果實生苗莖頂組織預培養在含0.3 M蔗糖之全量MS培養基一天;以LS於室溫處理60分鐘後;接著以預冷之PVS2於冰上處理90分鐘;置換新的PVS2後,迅速丟入液態氮中處理至少60分鐘,回溫回復生長於含有1.5 mg/L BAP之全量MS培養基,可獲得大約60%之存活率與40%的再生率,確定玻璃化冷凍治療法在紅龍果上可行,但脫毒效率則需更進一步的測試。此外,本研究結果顯示感染紅龍果之病毒不會經由種子傳播;因此將種子清洗乾淨,避免發芽過程有傷口造成,即可獲得健康實生苗。為了研究紅龍果病毒造成之影響,本研究也進行了蟹爪蘭X病毒(Zygocactus virus X, ZyVX)之感染性選殖株之構築,從罹病紅龍果中選殖出p35S-ZyVX-6選殖株,經過全長序列的解序及分析,發現和前人所發現ZyVX-P39與國外發表之ZyVX-B1的RdRp與CP的胺基酸序列皆有90%以上的相同度;經接種於白藜植株,證實p35S-ZyVX-6有系統性的感染能力。以上研究對紅龍果健康種苗系統進行了初步的建立,期望未來確定其脫毒效率後,可得到健康植株,並以大量繁殖方式得到帶有優良性狀紅龍果的幼苗,改善現存於臺灣紅龍果之病毒性病害的現況,有助於紅龍果的生產與外銷。 | zh_TW |
dc.description.abstract | Pitaya, also called dragon fruit, a kind of tropical fruits, has become important fruit crop in Taiwan within a decade. In our recent study, almost all of pitaya plants in the field are found infected by viruses, including Cactus virus X, Pitaya virus X and Zygocactus virus X. Pitaya is mainly propagated by cutting in Taiwan. If mother plants are infected with virus, the viral disease would spread very quickly in the field. In order to preserve the good horticultural traits of virus-infected mother plants, we planned to develop the virus elimination techniques to produce virus-free pitaya seedlings. Before executing virus eradication, the tissue culture process for pitaya needs to be set up. Because the villi near the areoles and the epidermal cuticle of pitaya stem frequently contain fungi that are difficult to remove by general disinfection methods, we decided to use white flesh pitaya seedlings in this study. When the pitaya stems with areoles were cultured on MS medium containing 1.5 mg/L zeatin, the shooting rate of 57.8%, average 1.2 shoots per areole and the mean shoot length of 1.33 cm were observed after 8 weeks. According to our results, zeatin could induce shoot more efficiently than 6-benzylaminopurine (BAP). Since new roots grew under the same concentration of zeatin, the root induction for pitaya stem culture by auxin seems unnecessary. In shoot tip tissue culture experiments, those tissues kept in MS medium containing 1~1.5 mg/L BAP all produced new shoots with good quality. Next step in this study was to eradicate virus from pitaya by vitrification cryotherapy and shoot tip tissue culture. The process of vitrification cryotherapy are as following: the shoot tips of pitaya seedlings were precultured on 0.3 M sucrose-preculture MS medium for 1 day, treated by LS for 60 min, replaced by pre-cooled PVS2 for 90 minutes on ice, refreshed by pre-cooled PVS2, put into liquid nitrogen for 60 min, then thawing and recovery culturing on MS medium containing 1.5 mg/L BAP. There were about 60% survival rate and 40% regrowth rate of the treated pitaya shoot tips and this result confirmed that vitrification cryotherapy can be applied to pitaya. Moreover, our experimental results indicated that the potexviruses which infect pitaya were not transmitted by seeds. Therefore, virus-free seedlings can be obtained by cleaning up the seeds and avoiding injury during seed germination. Finally, in order to study the effect of viruses on pitaya, we constructed the infectious clone of Zygocactus virus X (ZyVX) from the infected pitaya. After the full-length sequence of p35S-ZyVX-6 was determined and compared with the published sequences of ZyVX-P39 and ZyVX-B1, it is shown the identity of amino acid sequence in RdRp and CP genes are both above 90%. The inoculation of p35S-ZyVX-6 on Chenopodium quinoa confirmed its ability to cause systemic infection. In this study, we set up the tissue culture and vitrification cryotherapy process of pitaya, and these methods will soon be tried to eradicate the viruses from infected pitaya. Furthermore, we hope to get virus-free seedlings with good horticultural traits by mass production. Hopefully, the results of our study can reduce the pitaya virus infection and benefit the production and export of pitaya in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:50:21Z (GMT). No. of bitstreams: 1 ntu-106-R03633019-1.pdf: 154771237 bytes, checksum: b8b092934554afb4be8514a735a80680 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv 目錄 vi 表目錄 viii 圖目錄 ix 壹、 前言 1 一、 紅龍果與紅龍果病害 1 二、 紅龍果病毒病害之研究 2 三、 Potexvirus屬病毒之特性與感染仙人掌科病毒之研究 3 四、 組織培養與大量繁殖技術 4 五、 植物脫毒技術 6 六、 研究目的 10 貳、 材料與方法 11 一、 試驗材料 11 二、 紅龍果之增殖系統與莖頂培養 12 三、 玻璃化法(vitrification)之冷凍治療(cryotherapy)處理流程 14 四、 蟹爪蘭X病毒感染性選殖株之構築 16 五、 紅龍果病毒檢測方式 19 六、 紅龍果病毒種子傳播試驗 21 參、 結果 22 一、 紅龍果組織培養與增殖系統之建立 22 二、 建立以玻璃化冷凍治療法去除紅龍果病毒之流程 25 三、 市售紅龍果受病毒感染情形與病毒種子傳播試驗 28 四、 蟹爪蘭X病毒感染性選殖株之構築與分析 30 肆、 討論 33 一、 紅龍果增殖系統之建立與莖頂組織培養 33 二、 紅龍果玻璃化冷凍處理條件測試 37 三、 紅龍果病毒性病害種子傳播之試驗 40 四、 蟹爪蘭X病毒感染性選殖株之構築與序列分析 41 伍、 參考文獻 43 陸、 附表 49 柒、 附圖 67 附錄 84 | |
dc.language.iso | zh-TW | |
dc.title | 紅龍果病毒性病害之研究與健康種苗生產系統之研發 | zh_TW |
dc.title | Study of pitaya viral disease and development of healthy pitaya seedling production system | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 廖松淵,洪挺軒,胡仲祺 | |
dc.subject.keyword | 紅龍果,病毒性病害,去病毒,組織培養,玻璃化冷凍處理法,感染性選殖株, | zh_TW |
dc.subject.keyword | pitaya,virus disease,virus eradication,tissue culture,vitrification cryotherapy,infectious clone, | en |
dc.relation.page | 85 | |
dc.identifier.doi | 10.6342/NTU201703268 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-08-16 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 151.14 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。