請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76924完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴喜美(Hsi-Mei Lai) | |
| dc.contributor.author | Yi-Man Lyu | en |
| dc.contributor.author | 呂依蔓 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:40:37Z | - |
| dc.date.available | 2021-07-10T21:40:37Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-12 | |
| dc.identifier.citation | 中華民國國家標準。2015。CNS 2425 N 1059 Retrieved from: https://www.cnsonline.com.tw/?node=result typeof=common locale=zh_TW Accessed: 2020/07/18 行政院環境保護署。2001。健康風險評估技術規範。Retrieved from: https://www.epa.gov.tw/cpDownloadCtl.asp?id=6146. Accessed: 2020/07/11 行政院內政部統計處。2018。簡易生命表。Retrieved from: https://www.moi.gov.tw/stat/node.aspx?cate_sn= belong_sn=5992 sn=8603 Accessed: 2020/07/15 吳焜裕、吳怡玲:食品安全風險評估與管理。Retrieved from: https://www.fda.gov.tw/upload/137/2015123000006.pdf Accessed: 2020/07/18 國家食品藥品監督管理總局。2017。食品安全國家標準食品中汙染物限量。Retrieved from: https://www.google.com/url?sa=t rct=j q= esrc=s source=web cd=3 cad=rja uact=8 ved=2ahUKEwislvq2vd_cAhXDdN4KHc95DdMQFjACegQIBxAC url=http%3A%2F%2Fwww.jlfsstd.net%2Fdb%2Ffiles%2FStd1_6735986214439267.pdf usg=AOvVaw2uFtOu9IRZvuMux9qKorMv. Accessed: 2020/07/11 鄭鑫源。2011。水稻ATP-Binding Cassette (ABC) 轉運蛋白OsABCG36的功能性分析。國立臺灣大學碩士論文。 衛生福利部食品藥物管理署。2013。食品化學檢驗方法之確效規範。Retrieved from: https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f636694480620467879 Accessed: 2020/07/11 衛生福利部食品藥物管理署。2020。108年度食品細項攝食量計算結果。Retrieved from: http://tnfcds.cmu.edu.tw/index.php?action=download_detail id=53 Accessed: 2020/07/15 衛生福利部食品藥物管理署。2020。食品中污染物質及毒素衛生標準。Retrieved from: https://www.fda.gov.tw/upload/137/2015123000006.pdf Accessed: 2020/07/18 AACC. (1999). Approved Methods of the American Association of Cereal Chemists 10th edn., St. Paul, MN:AACC Inc. Abernathy, C. O., Liu, Y.-P., Longfellow, D., Aposhian, H. V., Beck, B., Fowler, B., Goyer, R., Menzer, R., Rossman, T., Thompson, C. (1999). Arsenic: health effects, mechanisms of actions, and research issues. Environmental health perspectives, 107(7), 593-597. Agency for Toxic Substances and Disease Registry (ATSDR). (2004). Toxicological profile for Strontium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Agency for Toxic Substances and Disease Registry (ATSDR). (2004). Toxicological profile for Cesium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Ahlberg, G., Gustafsson, O., Wedel, P. (2006). Leaching of metals from sewage sludge during one year and their relationship to particle size. Environmental Pollution, 144(2), 545-553. Aihemaiti, A., Gao, Y., Meng, Y., Chen, X., Liu, J., Xiang, H., Xu, Y., Jiang, J. (2020). Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. Science of The Total Environment, 712, 135637. Al-Hakkani, M. F. (2019). Guideline of inductively coupled plasma mass spectrometry “ICP–MS”: Fundamentals, practices, determination of the limits, quality control, and method validation parameters. SN Applied Sciences, 1(7), 791. Antoine, J. M. R., Hoo Fung, L. A., Grant, C. N., Dennis, H. T., Lalor, G. C. (2012). Dietary intake of minerals and trace elements in rice on the Jamaican market. Journal of Food Composition and Analysis, 26(1), 111-121. Ashmore, E., Molyneux, S., Watson, S., Miles, G., Pearson, A. (2019). Inorganic arsenic in rice and rice products in New Zealand and Australia. Food Addit Contam Part B Surveill, 12(4), 275-279. Ashraf, M. A., Akib, S., Maah, M. J., Yusoff, I., Balkhair, K. S. (2014). Cesium-137: Radio-chemistry, fate, and transport, remediation, and future concerns. Critical Reviews in Environmental Science and Technology, 44(15), 1740-1793. Assem, F. L., Oskarsson, A. (2015). Vanadium. In G. F. Nordberg, B. A. Fowler, M. Nordberg (Eds.), Handbook on the Toxicology of Metals (Fourth Edition), Chapter 60 (pp. 1347-1367). San Diego: Academic Press. Batista, B. L., De Oliveira Souza, V. C., Da Silva, F. G., Barbosa, J. F. (2010). Survey of 13 trace elements of toxic and nutritional significance in rice from Brazil and exposure assessment. Food Additives Contaminants: Part B, 3(4), 253-262. Batista, B. L., Souza, J. M. O., De Souza, S. S., Barbosa, F. (2011). Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. Journal of Hazardous Materials, 191(1), 342-348. Bárány, E., Bergdahl, I. A., Bratteby, L. E., Lundh, T., Samuelson, G., Skerfving, S., Oskarsson, A. (2005). Iron status influences trace element levels in human blood and serum. Environmental Research, 98(2), 215-223. Boonhong, C., Naramol, V. and Yaowapha, J. (2007). Effects of vanadium on rice growth and vanadium accumulation in rice tissues. Nat. Sci., 41, 28-33. Bonjour, J. P., Guéguen, L., Palacios, C., Shearer, M. J., Weaver, C. M. (2009). Minerals and vitamins in bone health: the potential value of dietary enhancement. British Journal of Nutrition, 101(11), 1581-1596. Briat, J.-F. (2010). Arsenic tolerance in plants: “Pas de deux” between phytochelatin synthesis and ABCC vacuolar transporters. Proceedings of the National Academy of Sciences, 107(49), 20853. Burger, A., Lichtscheidl, I. (2018). Stable and radioactive cesium: A review about distribution in the environment, uptake and translocation in plants, plant reactions and plants' potential for bioremediation. Science of The Total Environment, 618, 1459-1485. Burger, A., Lichtscheidl, I. (2019). Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes. Science of The Total Environment, 653, 1458-1512. Byrne, A. R., Kosta, L. (1978). Vanadium in foods and in human body fluids and tissues. Science of The Total Environment, 10(1), 17-30. Cancer, I. A. f. R. o. (1985). IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans: Supplement (Vol. 5): International Agency for Research on Cancer. Cantley, L. C., Jr., Cantley, L. G., Josephson, L. (1978). A characterization of vanadate interactions with the (Na, K)-ATPase. Mechanistic and regulatory implications. Journal of Biological Chemistry, 253(20), 7361-7368. Chang, H.-F., Wang, S.-L., Yeh, K.-C. (2017). Effect of gallium exposure in Arabidopsis thaliana is similar to aluminum stress. Environmental science technology, 51(3), 1241-1248. Chatzistathis, T. (2018). Physiological importance of manganese, cobalt and nickel and the improvement of their uptake and utilization by plants. In M. A. Hossain, T. Kamiya, D. J. Burritt, L.-S. Phan Tran, T. Fujiwara (Eds.), Plant Micronutrient Use Efficiency, Chapter 7 (pp. 123-135): Academic Press. Chen, H. L., Lee, C. C., Huang, W. J., Huang, H. T., Wu, Y. C., Hsu, Y. C., Kao, Y. T. (2016). Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population. Environmental Science and Pollution Research International, 23(5), 4481-4488. Chen, H. W. (2006). Gallium, indium, and arsenic pollution of groundwater from a semiconductor manufacturing area of Taiwan. Bulletin of Environmental Contamination and Toxicology, 77(2), 289-296. Chen, S.-L., Dzeng, S. R., Yang, M.-H., Chiu, K.-H., Shieh, G.-M., Wai, C. M. (1994). Arsenic species in groundwaters of the blackfoot disease area, Taiwan. Environmental science technology, 28(5), 877-881. Chitambar, C. R. (2010). Medical applications and toxicities of gallium compounds. International journal of environmental research and public health, 7(5), 2337-2361. Counce, P. A., Keisling, T. C., Mitchell, A. J. (2000). A uniform, objective, and adaptive system for expressing rice development. Crop Science, 40(2), 436-443. Domingo, J. L., Gómez, M. (2016). Vanadium compounds for the treatment of human diabetes mellitus: A scientific curiosity? A review of thirty years of research. Food and Chemical Toxicology, 95, 137-141. Domingo, J. L., Llobet, J. M., Tomas, J. M., Corbella, J. (1985). Short-term toxicity studies of vanadium in rats. Journal of Applied Toxicology, 5(6), 418-421. Drobna, Z., Styblo, M., Thomas, D. J. (2009). An overview of arsenic metabolism and toxicity. Current protocols in toxicology, 42(431), 4.31.31-34.31.36. Du, F., Yang, Z., Liu, P., Wang, L. (2019). Bioaccessibility and variation of arsenic species in polished rice grains by an in vitro physiologically based extraction test method. Food Chemistry, 293, 1-7. Dursun, N., Özcan, M. M., Kaşık, G., Öztürk, C. (2006). Mineral contents of 34 species of edible mushrooms growing wild in Turkey. Journal of the Science of Food and Agriculture, 86(7), 1087-1094. European Food Safety, A. (2014). Dietary exposure to inorganic arsenic in the European population. EFSA Journal, 12(3), 3597. Fakhri, Y., Bjørklund, G., Bandpei, A. M., Chirumbolo, S., Keramati, H., Hosseini Pouya, R., Asadi, A., Amanidaz, N., Sarafraz, M., Sheikhmohammad, A., Alipour, M., Baninameh, Z., Mohseni, S. M., Sarkhosh, M., Ghasemi, S. M. (2018). Concentrations of arsenic and lead in rice (Oryza sativa L.) in Iran: A systematic review and carcinogenic risk assessment. Food and Chemical Toxicology, 113, 267-277. Fowler, B. A., Selene, C. H., Chou, R. J., Jones, D. L., Sullivan Jr, W., Chen, C. J. (2015). Arsenic. In G. F. Nordberg, B. A. Fowler, M. Nordberg (Eds.), Handbook on the Toxicology of Metals (Fourth Edition), Chapter 28 (pp. 581-624). San Diego: Academic Press. Fowler, B. A., Sexton, M. J. (2015). Gallium and gallium semiconductor compounds. In G. F. Nordberg, B. A. Fowler, M. Nordberg (Eds.), Handbook on the Toxicology of Metals (Fourth Edition), Chapter 3 (pp. 787-797). San Diego: Academic Press. Gharibzahedi, S. M. T., Jafari, S. M. (2017). The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends in Food Science Technology, 62, 119-132. Gilstrap, R., Allen, R. (2009). A colloidal nanoparticle form of indium tin oxide: System development and characterization. Goldfine, A. B., Patti, M.-E., Zuberi, L., Goldstein, B. J., LeBlanc, R., Landaker, E. J., Jiang, Z. Y., Willsky, G. R., Kahn, C. R. (2000). Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: In vivo and in vitro studies. Metabolism, 49(3), 400-410. Gustafsson, J. P. (2019). Vanadium geochemistry in the biogeosphere –speciation, solid-solution interactions, and ecotoxicity. Applied Geochemistry, 102, 1-25. Hantson, P. (2019). Mechanisms of toxic cardiomyopathy. Clinical Toxicology, 57(1), 1-9. Heinemann, G., Fichtl, B., Vogt, W. (2003). Pharmacokinetics of vanadium in humans after intravenous administration of a vanadium containing albumin solution. British Journal of Clinical Pharmacology, 55(3), 241-245. Hensawang, S., Chanpiwat, P. (2018). Analysis and probabilistic risk assessment of bioaccessible arsenic in polished and husked jasmine rice sold in Bangkok. Chemosphere, 207, 637-648. Hornung, R. W., Reed, L. D. (1990). Estimation of average concentration in the presence of nondetectable values. Applied Occupational and Environmental Hygiene, 5(1), 46-51. Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., Thomas, D. J. (2011). Arsenic exposure and toxicology: a historical perspective. Toxicological sciences : an official journal of the Society of Toxicology, 123(2), 305-332. Ivanoff, C. S., Ivanoff, A. E., Hottel, T. L. (2012). Gallium poisoning: A rare case report. Food and Chemical Toxicology, 50(2), 212-215. Jensen, H., Gaw, S., Lehto, N. J., Hassall, L., Robinson, B. H. (2018). The mobility and plant uptake of gallium and indium, two emerging contaminants associated with electronic waste and other sources. Chemosphere, 209, 675-684. Joint, F. A. O. W. H. O. E. C. o. F. A. M., World Health, O., Food, Agriculture Organization of the United, N. (2011). Safety evaluation of certain contaminants in food: prepared by the Seventy-second meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). In. Geneva: World Health Organization. Juliano, B., Bechtel, D. B. (1985). The grain and its gross composition. in. Rice: Chemistry and Technology, 17-57. Khairul, I., Wang, Q. Q., Jiang, Y. H., Wang, C., Naranmandura, H. (2017). Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget, 8(14), 23905-23926. Kondo, M., Makino, T., Eguchi, T., Goto, A., Nakano, H., Takai, T., Arai-Sanoh, Y., Kimura, T. (2015). Comparative analysis of the relationship between Cs and K in soil and plant parts toward control of Cs accumulation in rice. Soil Science and Plant Nutrition, 61(1), 144-151. Kukusamude, C., Sricharoen, P., Limchoowong, N., Kongsri, S. (2020). Heavy metals and probabilistic risk assessment via rice consumption in Thailand. Food Chemistry, 127402. López-Moreno, M. L., Avilés, L. L., Pérez, N. G., Irizarry, B., Perales, O., Cedeno-Mattei, Y., Román, F. (2016). Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Science of the Total Environment, 550, 45-52. Lee, S. G., Kim, D. H., Lee, Y. S., Cho, S.-Y., Chung, M.-S., Cho, M., Kang, Y., Kim, H., Kim, D., Lee, K.-W. (2018). Monitoring of arsenic contents in domestic rice and human risk assessment for daily intake of inorganic arsenic in Korea. Journal of Food Composition and Analysis, 69, 25-32. Lison, D. (2015). Cobalt. In G. F. Nordberg, B. A. Fowler, M. Nordberg (Eds.), Handbook on the Toxicology of Metals (Fourth Edition), Chapter 34 (pp. 743-763). San Diego: Academic Press. Ma, J. F., Yamaji, N., Mitani, N., Xu, X.-Y., Su, Y.-H., McGrath, S. P., Zhao, F.-J. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences, 105(29), 9931. Mansaray, K. G., Ghaly, A. E. (1997). Physical and Thermochemical Properties of Rice Husk. Energy Sources, 19(9), 989-1004. Meharg, A. A., Lombi, E., Williams, P. N., Scheckel, K. G., Feldmann, J., Raab, A., Zhu, Y., Islam, R. (2008). Speciation and localization of arsenic in white and brown rice grains. Environmental science technology, 42(4), 1051-1057. Meharg, A. A., Williams, P. N., Adomako, E., Lawgali, Y. Y., Deacon, C., Villada, A., Cambell, R. C. J., Sun, G., Zhu, Y.-G., Feldmann, J., Raab, A., Zhao, F.-J., Zhao, F.-J., Islam, R., Hossain, S., Yanai, J. (2009). Geographical variation in total and inorganic arsenic content of polished (white) rice. Environmental science technology, 43(5), 1612-1617. Millour, S., Noël, L., Chekri, R., Vastel, C., Kadar, A., Sirot, V., Leblanc, J.-C., Guérin, T. (2012). Strontium, silver, tin, iron, tellurium, gallium, germanium, barium and vanadium levels in foodstuffs from the Second French Total Diet Study. Journal of Food Composition and Analysis, 25(2), 108-129. Nakano, T. (2016). Potential uses of stable isotope ratios of Sr, Nd, and Pb in geological materials for environmental studies. Proceedings of the Japan Academy. Series B, Physical and biological sciences, 92(6), 167-184. Narukawa, T., Hioki, A., Chiba, K. (2012). Speciation and Monitoring Test for Inorganic Arsenic in White Rice Flour. Journal of Agricultural and Food Chemistry, 60(4), 1122-1127. Patel, K. S., Shrivas, K., Brandt, R., Jakubowski, N., Corns, W., Hoffmann, P. (2005). Arsenic contamination in water, soil, sediment and rice of central India. Environmental Geochemistry and Health, 27(2), 131-145. Paternain, J. L., Domingo, J. L., Corbella, J. (1988). Developmental toxicity of cobalt in the rat. Journal of Toxicology and Environmental Health, 24(2), 193-200. Paustenbach, D. J., Tvermoes, B. E., Unice, K. M., Finley, B. L., Kerger, B. D. (2013). A review of the health hazards posed by cobalt. Critical Reviews in Toxicology, 43(4), 316-362. Pedron, T., Segura, F. R., Paniz, F. P., de Moura Souza, F., dos Santos, M. C., de Magalhães Júnior, A. M., Batista, B. L. (2019). Mitigation of arsenic in rice grains by polishing and washing: Evidencing the benefit and the cost. Journal of Cereal Science, 87, 52-58. Pilon-Smits, E. A. H., Quinn, C. F., Tapken, W., Malagoli, M., Schiavon, M. (2009). Physiological functions of beneficial elements. Current Opinion in Plant Biology, 12(3), 267-274. Pinto, E., Almeida, A., Ferreira, I. M. P. L. V. O. (2016). Essential and non-essential/toxic elements in rice available in the Portuguese and Spanish markets. Journal of Food Composition and Analysis, 48, 81-87. Pors Nielsen, S. (2004). The biological role of strontium. Bone, 35(3), 583-588. Punshon, T., Jackson, B. P. (2018). Essential micronutrient and toxic trace element concentrations in gluten containing and gluten-free foods. Food Chemistry, 252, 258-264. Rahman, M. A., Hasegawa, H., Rahman, M. M., Rahman, M. A., Miah, M. A. (2007). Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere, 69(6), 942-948. Ratnaike, R. N. (2003). Acute and chronic arsenic toxicity. Postgraduate medical journal, 79(933), 391-396. Ruangwises, S., Saipan, P., Ruangwises, N. (2014). Inorganic arsenic in rice and rice bran: Health implications. In R. R. Watson, V. R. Preedy, S. Zibadi (Eds.), Wheat and Rice in Disease Prevention and Health, Chapter 30 (pp. 393-399). San Diego: Academic Press. Saunders, R. (1985). Rice bran: composition and potential food uses. Food Reviews International, 1(3), 465-495. Shaw, G. (1993). Blockade by fertilisers of caesium and stronium uptake into crops: effects on the root uptake process. Science of The Total Environment, 137(1), 119-133. Singh, A. P., Goel, R. K., Kaur, T. (2011). Mechanisms pertaining to arsenic toxicity. Toxicology international, 18(2), 87-93. Song, W.-Y., Park, J., Mendoza-Cózatl, D. G., Suter-Grotemeyer, M., Shim, D., Hörtensteiner, S., Geisler, M., Weder, B., Rea, P. A., Rentsch, D., Schroeder, J. I., Lee, Y., Martinoia, E. (2010). Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proceedings of the National Academy of Sciences, 107(49), 21187. Su, J.-Y., Syu, C.-H., Lee, D.-Y. (2018). Growth inhibition of rice (Oryza sativa L.) seedlings in Ga- and In-contaminated acidic soils is respectively caused by Al and Al+In toxicity. Journal of Hazardous Materials, 344, 274-282. Sun, G.-X., Williams, P. N., Carey, A.-M., Zhu, Y.-G., Deacon, C., Raab, A., Feldmann, J., Islam, R. M., Meharg, A. A. (2008). Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environmental science technology, 42(19), 7542-7546. Sun, H., Cox, M. C., Li, H., Mason, A. B., Woodworth, R. C., Sadler, P. J. (1998). [1H, 13C] NMR determination of the order of lobe loading of human transferrin with iron: comparison with other metal ions. FEBS Letters, 422(3), 315-320. Syu, C.-H., Chen, P.-W., Huang, C.-C., Lee, D.-Y. (2020). Accumulation of gallium (Ga) and indium (In) in rice grains in Ga- and In-contaminated paddy soils. Environmental Pollution, 261, 114189. Syu, C.-H., Chien, P.-H., Huang, C.-C., Jiang, P.-Y., Juang, K.-W., Lee, D.-Y. (2017). The growth and uptake of Ga and In of rice (Oryza sative L.) seedlings as affected by Ga and In concentrations in hydroponic cultures. Ecotoxicology and Environmental Safety, 135, 32-39. Syu, C. H., Huang, C. C., Jiang, P. Y., Lee, C. H., Lee, D. Y. (2015). Arsenic accumulation and speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils. Journal of Hazardous Materials, 286, 179-186. Takahashi, Y., Minamikawa, R., Hattori, K. H., Kurishima, K., Kihou, N., Yuita, K. (2004). Arsenic behavior in paddy fields during the cycle of flooded and non-flooded Periods. Environmental science technology, 38(4), 1038-1044. Tanaka, A. (2004). Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide. Toxicology and Applied Pharmacology, 198(3), 405-411. Thompson, M., Walsh, J. N. (1989). Inductively coupled plasma mass spectrometry. In M. Thompson J. N. Walsh (Eds.), Handbook of Inductively Coupled Plasma Spectrometry (pp. 238-269). Boston, MA: Springer US. Tsukada, H., Hasegawa, H., Hisamatsu, S., Yamasaki, S. (2002). Rice uptake and distributions of radioactive 137Cs, stable 133Cs and K from soil. Environmental Pollution, 117(3), 403-409. Tsukada, H., Hasegawa, H., Takeda, A., Hisamatsu, S. (2007). Concentrations of major and trace elements in polished rice and paddy soils collected in Aomori, Japan. Journal of Radioanalytical and Nuclear Chemistry, 273(1), 199-203. US Environmental Protection Agency (US EPA). (1988). Integrated Risk Information (IRIS). Arsenic, inorganic; CASRN 7440-38-2. US Environmental Protection Agency (US EPA). (1989). Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A) Interim Final (EPA/540/1-89/002). van Geen, A., Zheng, Y., Cheng, Z., He, Y., Dhar, R. K., Garnier, J. M., Rose, J., Seddique, A., Hoque, M. A., Ahmed, K. M. (2006). Impact of irrigating rice paddies with groundwater containing arsenic in Bangladesh. Science of The Total Environment, 367(2), 769-777. Watanabe, T., Okada, K. (2005). Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH. Annals of botany, 95(2), 379-385. WHO (2010). Strontium and strontium compounds. In. Geneva: World Health Organization. Williams, P. N., Villada, A., Deacon, C., Raab, A., Figuerola, J., Green, A. J., Feldmann, J., Meharg, A. A. (2007). Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environmental Science Technology, 41(19), 6854-6859. Wilschefski, S. C., Baxter, M. R. (2019). Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. The Clinical biochemist. Reviews, 40(3), 115-133. Xiang, L., Liu, P.-h., Jiang, X.-f., Chen, P.-j. (2019). Health risk assessment and spatial distribution characteristics of heavy metal pollution in rice samples from a surrounding hydrometallurgy plant area in No. 721 uranium mining, East China. Journal of Geochemical Exploration, 207, 106360. Xuan Tham, L., Nagasawa, N., Matsuhashi, S., Ishioka, N. S., Ito, T., Kume, T. (2001). Effect of radiation-degraded chitosan on plants stressed with vanadium. Radiation Physics and Chemistry, 61(2), 171-175. Ye, X. X., Sun, B., Yin, Y. L. (2012). Variation of As concentration between soil types and rice genotypes and the selection of cultivars for reducing As in the diet. Chemosphere, 87(4), 384-389. Yu, X.-Z., Zhang, X.-H. (2015). DNA-protein cross-links involved in growth inhibition of rice seedlings exposed to Ga. Environmental Science and Pollution Research, 22(14), 10830-10838. Yu, X. Z., Feng, X. H., Feng, Y. X. (2015). Phytotoxicity and transport of gallium (Ga) in rice seedlings for 2-day of exposure. Bulletin of Environmental Contamination and Toxicology, 95(1), 122-125. ATSDR. (2019). The ATSDR 2019 Substance Priority List. Retrieved from: https://www.atsdr.cdc.gov/spl/index.html#2019spl Accessed: 2020/07/15 Codex. (1995). General standard for contaminants and toxins in food and feed. CXS 193-1995. Retrieved from: proxy/en/?lnk=1 url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B228-2001%252FCXS_228e.pdf Accessed: 2020/07/15 EU, Commission Regulation (EU) 2015/1006 of 25 June 2015 amending Regulation(EC) No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs. Retrieved from: https://op.europa.eu/en/publication-detail/-/publication/4ea62ae9-1bc8-11e5-a342-01aa75ed71a1/language-en Accessed: 2020/07/15 FAOSTAT. (2018). FAO Statistical Databases. Retrieved from: http://faostat.fao.org Accessed: 2020/07/15 Juliano, B. (1972). The Rice Caryopsis and its Composition. Retrieved from: https://www.researchgate.net/publication/275922614_The_Rice_Caryopsis_and_its_Composition Accessed: 2020/07/16 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76924 | - |
| dc.description.abstract | 本研究第一部分主要在了解鎵及現行食米中限量規範之重金屬—砷在稻米中累積與分布情形。首先,收集確知產地之稻穀共29種,包含稉稻15種、秈稻3種以及有色稻11種,將稻穀劃分為稻殼、糙米、麩皮及精白米,除測定其水分、灰分含量外,再以感應耦合電漿質譜儀(Inductive coupled plasma-mass spectrometry, ICP-MS)測定其鎵與砷的含量。第二部分則蒐集69種市售稻米,除鎵及砷外,另測定其微量元素(鍶、銫、鈷及釩)含量,並以砷之含量進行食米之風險評估。第三部分為水耕栽培試驗,探討在不同鎵濃度下(1、8及15 mg/L)對稉稻(台稉九號)、秈稻(台中在來一號及台中秈糯二號)之鎵累積情形。第一部分結果顯示,稻穀各部位之平均水分含量(11.02-13.67%)大致接近,灰分含量則稻殼(14.35%) > 麩皮(9.12%) > 稻穀(4.76%) > 糙米(1.49%) > 白米(0.70%);鎵之累積趨勢為稻殼(1.431 mg/kg) > 麩皮(1.079 mg/kg) > 糙米(0.144 mg/kg) > 精白米(0.074 mg/kg),而砷的分布情形則是以麩皮含量(1.00 mg/kg)最高。在第二部分樣品中,砷含量在所有樣品中皆測得,且糙米及精白米間具顯著差異,鈷及銫在1/3的樣品中測得含量,砷、鈷及銫之含量範圍分別為0.048-0.773、<LOQ-0.267及<LOQ-0.162 mg/kg,鍶及鎵則分別在四種及兩種有色米中測得,釩含量皆低於定量極限。另以市售樣品砷之含量及國家攝食資料庫之資料,做為台灣各年齡層間攝取食米之非致癌性與致癌性風險評估。結果顯示,非致癌性風險存在於各年齡族群,累積性之致癌性風險則高於1 10−4,為須關注之議題,顯示未來應持續追蹤砷在食米中之含量及可能造成之健康風險。水耕栽培試驗之結果顯示,稻穀籽粒充實程度與品種可能有關,其隨鎵濃度的提高,稻穀收穫量小幅上升,但未達無顯著差異,而收成之稻穀中,並未測得鎵累積於糙米中。 | zh_TW |
| dc.description.abstract | The first part of this study was to evaluate the distributions of gallium and arsenic in rice grains and to quantify the other trace elements in the rice grains. Collected 29 paddy rice samples from selected origins, including 15 japonica, 3 indica and 11 colored rice. Each rice grain was fractionated into rice, husk, brown rice, bran and polished rice. Moisture and ash contents were determined and inductive coupled plasma-mass spectrometry (ICP-MS) was used to determine gallium and arsenic contents. The second part of this study, 69 commercial rice samples were purchased from local markets and the contents of gallium, arsenic and trace elements (strontium, cesium, cobalt and vanadium) in the samples were determined. The third part of this study was the hydroponic culture. Three varieties of rice (TCN1, TK9, TCSW2) were planted in different concentrations of gallium (1, 8 and 15 mg/L) to investigate the accumulation of gallium during grain filling stage. The results showed that the average moisture contents (11.02-13.67%) of rice grains were similar in each fraction. The trend of ash contents was husk (14.35%) > bran (9.12%) > paddy rice (4.76%) > brown rice (1.49%) > polished rice (0.70%). The trend of gallium contents was husk (1.431 mg/kg) > bran (1.079 mg/kg) > brown rice (0.144 mg/kg) > polished rice (0.074 mg/kg) while the bran (1.00 mg/kg) had the highest content of arsenic. In the 69 commercial rice samples, arsenic was detected in all of the samples and the contents in brown rice were significantly higher than polished rice. Cobalt and cesium were detected in one-third samples. The range of contents of arsenic, cobalt and cesium were 0.048-0.773, <LOQ-0.267 and <LOQ-0.162 mg/kg. Strontium and gallium were only detected in four and two colored rice, respectively. The contents of vanadium in rice samples were all below LOQ. The non-cancer and cancer risk assessments of each age group were based on the arsenic contents of commercial rice samples and the data of National Food Consumption Database in Taiwan. Results showed that the non-cancer risk was in all age groups. Cumulative cancer risk was higher than 1 10−4. The contents of arsenic in rice and the healthy risk should be continuously considered in the future. In the hydroponic culture, the harvest of the filled grains may be various depending on rice variety. The grain yields slightly increased with increasing in the gallium concentration. There was no accumulation of gallium in the hydroponic cultured brown rice. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:40:37Z (GMT). No. of bitstreams: 1 U0001-0808202015193400.pdf: 18048730 bytes, checksum: ab477c3a35a0284c834bc78fe9f02e64 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 中文摘要 I Abstract II 圖目錄 IX 表目錄 XI 第一章、前言 1 第二章、文獻探討 2 2.1稻米 2 2.1.1稻米簡介 2 2.1.2水稻生長週期 3 2.2 金屬元素簡介 4 2.2.1鎵(Gallium, Ga) 4 2.2.1.1簡介 4 2.2.1.2代謝與毒性 4 2.2.1.3植物生理代謝 4 2.2.2砷(Arsenic, As) 5 2.2.2.1簡介 5 2.2.2.2代謝與毒性 6 2.2.2.3植物生理代謝 6 2.2.3鍶(Strontium, Sr) 7 2.2.3.1簡介 7 2.2.3.2代謝與毒性 7 2.2.3.3植物生理代謝 8 2.2.4銫(Cesium, Cs) 8 2.2.4.1簡介 8 2.2.4.2代謝與毒性 8 2.2.4.3植物生理代謝 9 2.2.5鈷(Cobalt, Co) 9 2.2.5.1簡介 9 2.2.5.2代謝與毒性 9 2.2.5.3植物生理代謝 10 2.2.6釩(Vanadium, V) 10 2.2.6.1簡介 10 2.2.6.2代謝與毒性 10 2.2.6.3植物生理代謝 11 2.3 食米中砷之限量標準 11 2.4 感應耦合電漿質譜儀應用 12 2.4.1儀器原理 12 2.5風險評估之架構 14 第三章、材料與方法 16 3.1 實驗架構 16 3.2 化學試劑與試驗材料 17 3.2.1化學試劑 17 3.2.2稻穀 17 3.2.3市售樣品 18 3.2.4水耕試驗 20 3.2.4.1稻米品種 20 3.2.4.2種植試驗設計 20 3.2.4.3試驗環境與時程 22 3.2.4.4採收後處理 22 3.2.5試驗材料代號 22 3.3樣品處理 23 3.3.1稻穀 23 3.3.2磨粉保存 24 3.4分析方法 24 3.4.1水分與灰分含量測定 24 3.4.1.1水分 24 3.4.1.2灰分 24 3.4.2感應耦合電漿質譜儀分析 24 3.4.2.1樣品消化前處理 25 3.4.2.2檢量線製作 25 3.4.2.3準確度(Accuracy)及精密度(Precision)確認 26 3.4.2.4儀器定量極限(instrumental quantification limit, IQL)及樣品定量極限(Limit of Quantification, LOQ)試驗 26 3.4.2.5定量及半定量分析 26 3.4.2.6元素分析濃度換算 26 3.5統計分析 27 3.6風險評估方式 27 第四章、結果與討論 29 4.1 ICP-MS分析方法確效結果 29 4.1.1檢量線線性關係與定量極限 29 4.1.2準確度(Accuracy)及精密度(Precision) 29 4.2稻穀樣品分析 30 4.2.1稻穀水分與灰分含量 30 4.2.2稻穀中鎵及砷之含量與分布 31 4.3市售樣品分析 38 4.3.1市售稻米樣品之水分及灰分含量 38 4.3.2元素含量分析 38 4.4食米之砷攝食風險評估 43 4.4.1暴露參數設定之探討 43 4.4.2非致癌性風險評估 46 4.4.2.1食米每日平均暴露劑量 46 4.4.2.2攝食食米之危害商數評估 49 4.4.3致癌性風險評估 57 4.4.3.1食米終身每日暴露劑量 57 4.4.3.2攝食食米之致癌風險評估 60 4.4.4風險評估結果之探討 69 4.5水耕試驗樣品分析 72 4.5.1水分與灰分含量分析 72 4.5.2稻穀收量與穀粒中鎵含量 73 4.6研究限制與建議 74 第五章、結論 76 第六章、參考文獻 77 附錄 86 | |
| dc.language.iso | zh-TW | |
| dc.subject | 砷 | zh_TW |
| dc.subject | 稻米 | zh_TW |
| dc.subject | 鎵 | zh_TW |
| dc.subject | 風險評估 | zh_TW |
| dc.subject | risk assessment | en |
| dc.subject | arsenic | en |
| dc.subject | gallium | en |
| dc.subject | paddy rice | en |
| dc.title | 稻米穀粒中鎵及砷元素分布與微量元素(鍶、銫、鈷及釩)含量之探討 | zh_TW |
| dc.title | Distribution of gallium and arsenic and the contents of trace elements (Sr, Cs, Co and V) in rice grains | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳鑫昌(Hsin-Chang Chen) | |
| dc.contributor.oralexamcommittee | 張永和(Yung-Ho Chang),魏嘉徵(Chia-Cheng Wei) | |
| dc.subject.keyword | 稻米,鎵,砷,風險評估, | zh_TW |
| dc.subject.keyword | paddy rice,arsenic,gallium,risk assessment, | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU202002681 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-13 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 食品安全與健康研究所 | zh_TW |
| 顯示於系所單位: | 食品安全與健康研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0808202015193400.pdf 未授權公開取用 | 17.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
