Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76916
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇南維(Nan-Wei Su)
dc.contributor.authorI-Shu Wangen
dc.contributor.author王奕舒zh_TW
dc.date.accessioned2021-07-10T21:40:22Z-
dc.date.available2021-07-10T21:40:22Z-
dc.date.copyright2020-09-14
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citation方廷方 (2014) 利用Caco-2細胞體外試驗評估Genistein磷酸酯衍生物之吸收。國立臺灣大學農業化學系碩士論文。
許宸 (2015) 枯草桿菌BCRC 80517對大豆異黃酮生物轉換之研究。國立臺灣大學農業化學系碩士論文。
張又權 (2017) 苯並吡喃酮類化合物磷酸化酵素基質特異性之研究。國立臺灣大學農業化學系碩士論文。
謝淨淳 (2019) 枯草桿菌BCRC 80517 qdoI基因對黃酮醇化合物微生物轉換之影響。國立臺灣大學農業化學系碩士論文。
Akal, Z. Ü., Alpsoy, L., Baykal, A. (2016). Superparamagnetic iron oxide conjugated with folic acid and carboxylated quercetin for chemotherapy applications. Ceramics International, 42(7), 9065-9072.
Alarcón, J., Alderete, J., Escobar, C., Araya, R., Cespedes, C. L. (2013). Aspergillus niger catalyzes the synthesis of flavonoids from chalcones. Biocatalysis and Biotransformation, 31(4), 160-167.
Almeida, A. F., Borge, G. I. A., Piskula, M., Tudose, A., Tudoreanu, L., Valentová, K., . . . Santos, C. N. (2018). Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation. Comprehensive Reviews in Food Science and Food Safety, 17(3), 714-731.
Boersma, M. G., van der Woude, H., Bogaards, J., Boeren, S., Vervoort, J., Cnubben, N. H. P., . . . Rietjens, I. M. C. M. (2002). Regioselectivity of Phase II Metabolism of Luteolin and Quercetin by UDP-Glucuronosyl Transferases. Chemical Research in Toxicology, 15(5), 662-670.
Booth, A. N., Murray, C. W., Jones, F. T., Deeds, F. (1956). The metabolic fate of rutin and quercetin in the animal body. The Journal of Biological Chemistry, 223(1), 251-257.
Camerini-Otero, R. D., Hsieh, P. (1995). Homologous Recombination Proteins in Prokaryotes and Eukaryotes. Annual Review of Genetics, 29, 509-552.
Cao, H., Chen, X., Jassbi, A. R., Xiao, J. (2015). Microbial biotransformation of bioactive flavonoids. Biotechnology Advances, 33(1), 214-223.
Cho, K. M., Lee, J. H., Yun, H. D., Ahn, B. Y., Kim, H., Seo, W. T. (2011). Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90. Journal of Food Composition and Analysis, 24(3), 402-410.
Cui, Y., Xu, J., Cheng, M., Liao, X., Peng, S. (2018). Review of CRISPR/Cas9 sgRNA design tools. Interdisciplinary Sciences: Computational Life Sciences, 10(2), 455-465.
Erlejman, A. G., Verstraeten, S. V., Fraga, C. G., Oteiza, P. I. (2004). The interaction of flavonoids with membranes: potential determinant of flavonoid antioxidant effects. Free Radical Research, 38(12), 1311-1320.
Erlund, I. (2004). Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutrition Research, 24(10), 851-874.
Gopal, B., Madan, L. L., Betz, S. F., Kossiakoff, A. A. (2005). The Crystal Structure of a Quercetin 2,3-Dioxygenase from Bacillus subtilis Suggests Modulation of Enzyme Activity by a Change in the Metal Ion at the Active Site(s). Biochemistry, 44, 193-201.
Heidorn, T., Camsund, D., Huang, H.-H., Lindberg, P., Lindblad, P. (2011). Integrative Plasmid. Methods in Enzymology, 497, 539-579.
Hirooka, K. (2014). Transcriptional response machineries of Bacillus subtilis conducive to plant growth promotion. Bioscience, Biotechnology, and Biochemistry, 78(9), 1471-1484.
Hirooka, K., Kunikane, S., Matsuoka, H., Yoshida, K., Kumamoto, K., Tojo, S., Fujita, Y. (2007). Dual regulation of the Bacillus subtilis regulon comprising the lmrAB and yxaGH operons and yxaF gene by two transcriptional repressors, LmrA and YxaF, in response to flavonoids. Journal of bacteriology, 189(14), 5170-5182.
Hirookay, K., Fujita, Y. (2010). Excess production of Bacillus subtilis quercetin 2,3-dioxygenase affects cell viability in the presence of quercetin. Bioscience, Biotechnology, and Biochemistry, 74(5), 1030-1038.
Hsu, C., Ho, H.-W., Chang, C.-F., Wang, S.-T., Fang, T.-F., Lee, M.-H., Su, N.-W. (2013). Soy isoflavone-phosphate conjugates derived by cultivating Bacillus subtilis var. natto BCRC 80517 with isoflavone. Food Research International, 53(1), 487-495.
Hu, Y., Ge, C., Yuan, W., Zhu, R., Zhang, W., Du, L., Xue, J. (2010). Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. Journal of the Science of Food and Agriculture, 90(7), 1194-1202.
Hurles, M. (2005). How homologous recombination generates a mutable genome. Human genomics, 2(3), 179.
Ibrahim, A.-R. S. (2005). Biotransformation of Chrysin and Apigenin by Cunninghamella elegans. Chem. Pharm. Bull. , 53, 671—673.
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of bacteriology, 169(12), 5429-5433.
Jiang, W., Bikard, D., Cox, D., Zhang, F., Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology, 31(3), 233-239.
Jone, S. (2000). Phosphorylation (Vol. 8).
Jones, S. (2008). Phosphorylation. In Biotechnology Set (pp. 221-241): Wiley-VCH Verlag GmbH.
Khan, N., Syed, D. N., Ahmad, N., Mukhtar, H. (2013). Fisetin: a dietary antioxidant for health promotion. Antioxidants Redox Signaling, 19(2), 151-162.
Kostrzewa-Susłow, E., Dmochowska-Gładysz, J., Białońska, A., Ciunik, Z., Rymowicz, W. (2006). Microbial transformations of flavanone and 6-hydroxyflavanone by Aspergillus niger strains. Journal of Molecular Catalysis B: Enzymatic, 39(1-4), 18-23.
Kostrzewa-Susłowa, E., Dmochowska-Gładysza, J., Janeczkoa, T., Środab, K., Michalakb, K., Palko, A. (2012). Microbial Transformations of 6- and 7-Methoxyflavones in Aspergillus niger and Penicillium chermesinum Cultures. Zeitschrift für Naturforschung, 67(C), 411 – 417.
Krishnamurty, H. G., Simpson, F. J. (1970). Degradation of Rutin by Aspergihs flavus The Journal of Biological Chemistry 245, 1467-1471.
Kumar, K. M., Anil, B. (2012). Biopharmaceutics Drug Disposition Classification System: An Extension of Biopharmaceutics Classification System. International Research Journal of Pharmacy, 3(3), 5-10.
Kuo, A., Cappelluti, S., Cervantes-Cervantes, M., Rodriguez, M., Bush, D. S. (1996). Okadaic Acid, a Protein Phosphatase Inhibitor, Blocks Calcium Changes, Gene Expression, and Cell Death lnduced by Gibberellin in Wheat Aleurone Cells. The Plant Cell, 8, 259-269.
Kuo, L. C., Wu, R. Y., Lee, K. T. (2012). A process for high-efficiency isoflavone deglycosylation using Bacillus subtilis natto NTU-18. Applied Microbiology and Biotechnology, 94(5), 1181-1188.
Maher, P., Akaishi, T., Abe, K. (2006). Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proceedings of the National Academy of Sciences, 103(44), 16568-16573.
Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J., Charpentier, E., Horvath, P., . . . Yakunin, A. F. (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 9(6), 467-477.
Malesev, D., Kuntic, V. (2007). Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. Journal of the Serbian Chemical Society, 72(10), 921-939.
Moona, Y. J., Wanga, L., DiCenzob, R., Morris, M. E. (2008). Quercetin pharmacokinetics in humans. Biopharmaceutics Drug Disposition, 29(4), 205-217.
Murota, K., Terao, J. (2003). Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Archives of Biochemistry and Biophysics, 417, 12-17.
Narmandakh, A., Gad'on, N., Drepper, F., Knapp, B., Haehnel, W., Fuchs, G. (2006). Phosphorylation of phenol by phenylphosphate synthase: role of histidine phosphate in catalysis. Journal of bacteriology, 188(22), 7815-7822.
Oka, T., Simpsom, F. J. (1971). Quercetinase, a Dioxygenase Containing Copper. Biochemical and Biophysical Research Communication, 43(1), 1-5.
Omori, T., Shiozawa, K., Sekiya, M., Minoda, Y. (1986). Formation of 2,4,6-Trihydroxy-carboxylic Acid and 2-Proto- catechuoylphloroglucinol-carboxylic Acid from Rutin by Bacteria. Agricultural and Biological Chemistry, 50, 779-780.
Rautio, J., Kumpulainen, H., Heimbach, T., Oliyai, R., Oh, D., Jarvinen, T., Savolainen, J. (2008). Prodrugs: design and clinical applications. Nature Reviews Drug Discovery, 7(3), 255-270.
Rodriguez-Mateos, A., Vauzour, D., Krueger, C. G., Shanmuganayagam, D., Reed, J., Calani, L., . . . Crozier, A. (2014). Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Archives of Toxicology, 88(10), 1803.
Romano, B., Pagano, E., Montanaro, V., Fortunato, A. L., Milic, N., Borrelli, F. (2013). Novel Insights into the Pharmacology of Flavonoids. Phytotherapy Research, 27(11), 1588-1596.
Ross, J. A., Kasum, C. M. (2002). Dietary Flavonoids: Bioavailability, Metabolic Effects, and Safety. Annual Review of Nutrition 22, 19–34.
Sakanashi, Y., Oyama, K., Matsui, H., Oyama, T. B., Oyama, T. M., Nishimura, Y., . . . Oyama, Y. (2008). Possible use of quercetin, an antioxidant, for protection of cells suffering from overload of intracellular Ca2+: A model experiment. Life Sciences, 83(5-6), 164-169.
Schmeling, S., Narmandakh, A., Schmitt, O., Gad’on, N., ̈hle, K. S., Fuchs, G. (2004). Phenylphosphate synthase: a new phosphotransferase catalyzing the first step in anaerobic phenol metabolism in Thauera aromatica. Journal Bacteriology, 186(23), 8044-8057.
Sesso, H. D., Liu, S., Gaziano, J. M., Buring, J. E. (2003). Dietary Lycopene, Tomato-Based Food Products and Cardiovascular Disease in Women. The Journal of Biological Chemistry, 133(7), 2336-2341.
Simpson, F. J., Talbot, G., Westlake, D. W. S., (1960). Production of carbon monoxide in the enzymatic degradation of rutin. Biochemical and Biophysical Research Communications, 2(1), 15-18.
Sugihara, N., Arakawa, T., Ohnishi, M., Furuno, K. (1999). Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid. Free Radical Biology Medicine, 27, 1313-1323.
Terao, J., Murota, K., Kawai, Y. (2011). Conjugated quercetin glucuronides as bioactive metabolites and precursors of aglycone in vivo. Food Function, 2(1), 11-17.
Thilakarathna, S. H., Rupasinghe, H. P. (2013). Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 5(9), 3367-3387.
Touil, Y. S., Seguin, J., Scherman, D., Chabot, G. G. (2011). Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice. Cancer chemotherapy and pharmacology, 68(2), 445-455.
Tripathi, R., Samadder, T., Gupta, S., Surolia, A., Shaha, C. (2011). Anticancer activity of a combination of cisplatin and fisetin in embryonal carcinoma cells and xenograft tumors. Molecular cancer therapeutics, 10(2), 255-268.
Waldmann, S., Almukainzi, M., Bou-Chacra, N. A., Amidon, G. L., Lee, B. J., Feng, J., . . . Lobenberg, R. (2012). Provisional biopharmaceutical classification of some common herbs used in Western medicine. Molecular Pharmaceutics, 9(4), 815-822.
Wang, S.-T., Fang, T.-F., Hsu, C., Chen, C.-H., Lin, C.-J., Su, N.-W. (2015). Biotransformed product, genistein 7-O-phosphate, enhances the oral bioavailability of genistein. Journal of Functional Foods, 13, 323-335.
Wei, Q.-K., Chen, T.-R., Chen, J.-T. (2008). Use of Bacillus subtilis to enrich isoflavone aglycones in fermented natto. Journal of the Science of Food and Agriculture, 88(6), 1007-1011.
Westbrook, A. W., Moo-Young, M., Chou, C. P. (2016). Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis. Applied and environmental microbiology, 82(16), 4876-4895.
Westbrook, A. W., Ren, X., Moo‐Young, M., Chou, C. P. (2018). Metabolic engineering of Bacillus subtilis for L‐valine overproduction. Biotechnology and Bioengineering, 115(11), 2778-2792.
Westbrook, A. W., Ren, X., Oh, J., Moo-Young, M., Chou, C. P. (2018). Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metabolic engineering, 47, 401-413.
Xue, G.-P., Johnson, J. S., Dalrymple, B. P. (1999). High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. Journal of Microbiological Methods, 34(3), 183-191.
Zhang, K., Duan, X., Wu, J. (2016). Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Scientific reports, 6(1), 1-11.
Zhang, K., Duan, X., Wu, J. (2016). Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Scientific reports, 6(1), 1-11.
Zhang, X., Yin, J., Liang, C., Sun, Y., Zhang, L. (2017). UHPLC-Q-TOF-MS/MS method based on four-step strategy for metabolism study of Fisetin in vitro and in vivo. Journal of agricultural and food chemistry, 65(50), 10959-10972.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76916-
dc.description.abstract本研究室先前已知利用源自於Bacillus subtilis BCRC80517的類黃酮磷酸酯合成酶可將quercetin、kaempferol及fisetin轉化生成相對應的磷酸酯衍生物。然而,利用微生物本身直接對上述三種化合物進行生物轉化時,卻僅有fisetin可得到與in vitro酵素轉化時相同的磷酸酯衍生物。由化學結構及轉化產物分析轉化基質的結果,推測原因為quercetin、kaempferol在結構上共同具有5號碳之羥基,相較於類黃酮磷酸酯合成酶,與B. subtilis中的quercetin 2,3-dioxygenase親和性較高,而quercetin 2,3-dioxygenase會在化合物的2號及3號碳進行氧化反應,導致其開環,無法轉化生成磷酸酯衍生物,fisetin無5號碳之羥基,則能以磷酸化途徑進行代謝。
本研究利用磷酸酯合成酶轉化fisetin,產物純化後再經由NMR及LC-MS/MS鑑定,確認其為磷酸酯衍生物,磷酸酯鍵分別位於3’及4’號碳上。由於fisetin在B. subtilis BCRC80517中能以磷酸化途徑進行轉化,推測將quercetin 2,3-dioxygenase活性抑制,則5號碳上具羥基之黃酮醇類同樣能以此途徑進行代謝。本研究第二部分建立同源重組及CRISPR-Cas9系統,以基因剔除方式去除quercetin 2,3-dioxygenase。B. subtilis 168為模式菌株,以其作為基因編輯之對象。首先,確認B. subtilis 168具有類黃酮磷酸酯合成酶及quercetin 2,3-dioxygenase後,再建構同源重組及CRISPR-Cas9系統之載體,並配合電穿孔進行突變,最後分別建立篩選模式挑選突變菌株。同源重組以抗生素進行篩選,CRISPR-Cas9系統則以quercetin作為指標,未經過基因編輯之菌株於含quercetin的固態培養基上會產生透明圈,且突變後主要的代謝途徑被剔除,推測會導致菌株生長速度較慢,因此挑選生長慢且未產生透明圈之菌株,再進行定序。
zh_TW
dc.description.abstractFlavonols are a group of secondary metabolites in plants and possess versatile physiological activities for human health. However, most of them are water insoluble, resulting in the limitation of oral administration applications. Our previous studies revealed Bacillus subtilis BCRC80517 was capable of converting several types of flavonoids into highly water-soluble phosphate conjugates. Nevertheless, flavonols with C-5-hydroxyl group in structure, such as quercetin and kaempferol, could not be transformed into the corresponding phosphate conjugates by the bacterium, but ring-opened in the C-ring of structure by bacterial constitutive quercetin 2,3-dioxygenase (qdoI) instead. Interestingly, when B. subtilis BCRC80517 cultivated with flavonols without C-5-hydroxyl group in structure, such as fisetin, the main transformation products would be the phosphate conjugates rather than the ring-opened products. In this work, we isolated the bioconversion products and identified two novel derivatives, fisetin 4’-O-phosphate and fisetin 3’-O-phosphate, by LC-MS/MS and 1H, 13C and 31P NMR spectral data. For flavonols with C-5-hydroxyl group, knocking out the qdoI gene might be a crucial approach to produce phosphorylated conjugates. B. subtilis 168-type strain was used as the host for eliminating the qdoI gene through homologous recombination and CRISPR-Cas9. For homologous recombination, neomycin resistance was used to positively select transformed colonies. For CRISPR-Cas9 system, the clear zone formed by quercetin degradation was used as negative selection criteria to screen the mutant strains.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:40:22Z (GMT). No. of bitstreams: 1
U0001-1008202010212200.pdf: 6918477 bytes, checksum: d9f004ec67fb8e4758f3ea803163b14c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
中文摘要 IV
Abstract V
縮寫對照表 VI
目錄 VIII
圖目錄 XIII
表目錄 XVI
第一章 前言 1
第二章 文獻回顧 2
第一節 類黃酮 2
1. 類黃酮簡介 2
2. 類黃酮之生理活性 2
3. 類黃酮之生物可利用率 4
3-1. BCS分類系統 4
3-2. 黃酮醇於人體之代謝與吸收 4
3-3. 黃酮醇類於人體之口服生物可利用率 6
第二節 類黃酮之微生物轉換 13
第三節 磷酸化酵素 14
1. 磷酸化酵素簡介 14
2. 磷酸苯酯合成酶(phenylphosphate synthase, PPS) 15
第四節 槲皮素雙氧化酶 19
1. 槲皮素雙氧化酶 19
2. LmrA/YxaF regulon 20
第五節 基因剔除法 22
1. 同源重組 22
2. CRISPR-Cas9系統 24
第三章 材料與方法 26
第一節 實驗架構 26
第二節 實驗材料 27
1. 菌株 27
1-1 微生物轉換菌株 27
1-2 磷酸化酵素表現菌株 27
1-3 建構質體保存菌株 27
2. 培養基 28
2-1 Bacillus subtilis 168及Bacillus subtilis BCRC80517之培養基 28
2-2 Escherichia coli BPE∷pET47b(+)/BL21(DE3)之培養基 28
2-3 Escherichia coli DH5α∷pUC57-qdoI-NEO、Escherichia coli DH5α∷pGEMT-sgRNA184及Escherichia coli DH5α∷pEMT-sgRNA700之培養基 29
2-4勝任細胞之培養基 30
2-5同源重組篩菌之培養基 31
2-6 CRISPR-Cas9系統篩菌之培養基 32
3. 緩衝液 32
3-1 Enzyme buffer 32
3-2 Cell lysis buffer 32
4. 試藥與溶劑 33
5. 儀器設備 35
第三節 實驗方法 37
1. FPS酵素轉換黃酮醇類 37
1-1菌株活化與種菌培養 37
1-2 以IPTG誘導重組蛋白基因大量表現 37
1-3 BPE粗酵素液之製備 37
1-4 蛋白質定量方法 37
1-5 Fisetin酵素轉換 38
1-6分析級高效液相層析儀分析條件 38
2. 酵素轉換fisetin 產物之結構分析 39
2-1 以半製備級高效液相層析儀純化類黃酮磷酸酯衍生物 39
2-2 半製備級高效液相層析儀分離類黃酮磷酸酯衍生物之條件 39
2-3 高效液相層析串聯式質譜儀分析類黃酮衍生物之條件 39
2-4 核磁共振光譜分析類黃酮衍生物之條件 40
3. B. subtilis 168轉換genistein 40
3-1 種菌之培養 40
3-2 微生物轉換genistein 40
3-3 分析級高效液相層析儀分析條件 40
4. B. subtilis 168轉換quercetin 41
4-1 種菌之培養 41
4-2 微生物轉換quercetin 41
4-3 分析級高效液相層析儀分析條件 41
5. 同源重組之載體及CRISPR-Cas9系統建構 42
5-1 B. subtilis 168基因體DNA抽取 42
5-2 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 42
5-3 PCR產物純化及定序 43
5-4 B. subtilis 168對neomycin濃度抗性之測試 43
5-5 建立進行同源重組突變之載體pUC57-qdoI-NEO 43
5-6 選殖菌株之轉型作用(Transformation) 44
5-7 篩選轉型成功之菌株 44
5-8 qdoI序列之pam site分析 44
5-9 建立體外轉錄之質體pGEMT-sgRNA184及pGEMT-sgRNA700 44
5-10 選殖菌株之轉型作用 (Transformation) 47
5-11 篩選pGEMT-sgRNA184及pGEMT-sgRNA700組合成功之載體 47
5-12限制酶剪切pGEMT-sgRNA184及pGEMT-sgRNA700載體 48
5-13 sgRNA之DNA序列轉錄至RNA序列 49
5-14組裝Cas9/sgRNA複合物 49
6. B.subtilis 168之勝任細胞的建構及電轉型之作用 50
6-1 B.subtilis 168之勝任細胞的建構 50
6-2 B.subtilis 168電轉型之條件 50
6-3 同源重組之選殖菌株篩選 50
6-4 CRISPR-Cas9系統之選殖菌株篩選 51
第四章 結果與討論 52
第一節 BsFPS蛋白質對黃酮醇類化合物之轉換 52
1. FPS之製備 53
2. FPS對fisetin之轉換 53
3. 結構鑑定酵素轉換fisetin之產物 54
3-1 半製備級高效液相層析儀純化漆黃素fisetin轉換之產物 54
3-2 質譜及NMR結構鑒定結果 56
第二節 微生物B. subtilis 168轉換quercetin及genistein 60
1. B. subtilis 168之微生物轉換 60
1-1 微生物轉換quercetin 60
1-2 微生物轉換genistein 62
第三節 建構同源重組載體及CRISPR-Cas9 系統 64
1. 建構同源重組之載體 65
1-1 B. subtilis 168 qdoI定序 65
1-2 B. subtilis 168抗生素抗性測試 65
1-3 建構同源重組質體之載體 66
1-4. 篩選成功組合之質體 68
2. 建構CRISPR-Cas9之系統 69
2-1 B. subtilis 168 qdoI基因之pam site分析 69
2-2 sgRNA載體設計 69
2-3 篩選成功組合之質體 69
2-4利用限制酶剪切載體 72
2-5 sgRNA之轉錄及Cas9/sgRNA複合物建構 72
3. 同源重組及CRISPR-Cas9系統之篩菌方法建立 74
3-1 同源重組之篩菌方法建立 74
3-1 CRISPR-Cas9系統之篩菌方法建立 74
第五章 結論 76
第六章 參考文獻 77
dc.language.isozh-TW
dc.subjectCRISPR-Cas9zh_TW
dc.subject枯草菌zh_TW
dc.subject槲皮素雙氧化酶zh_TW
dc.subject磷酸化zh_TW
dc.subject黃酮醇zh_TW
dc.subject同源重組zh_TW
dc.subjectquercetin 2en
dc.subjectCRISPR-Cas9en
dc.subjecthomologous recombinationen
dc.subject3-dioxygenaseen
dc.subjectBacillus subtilisen
dc.subjectflavonolen
dc.subjectphosphorylationen
dc.titleqdoI基因對枯草菌BCRC80517進行黃酮醇化合物磷酸化之影響zh_TW
dc.titleThe effect of qdoI on the flavon-3-ol phosphorylation by Bacillus subtilis BCRC80517en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李敏雄(Min-Hsiung Lee),陳錦樹(Chin-Shuh Chen),賴進此(Jinn-Tsyy Lai),胡紹揚(Shao-Yang Hu)
dc.subject.keyword枯草菌,黃酮醇,磷酸化,槲皮素雙氧化酶,同源重組,CRISPR-Cas9,zh_TW
dc.subject.keywordBacillus subtilis,flavonol,phosphorylation,quercetin 2,3-dioxygenase,homologous recombination,CRISPR-Cas9,en
dc.relation.page83
dc.identifier.doi10.6342/NTU202002767
dc.rights.note未授權
dc.date.accepted2020-08-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
U0001-1008202010212200.pdf
  未授權公開取用
6.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved