請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76913完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇剛毅(Kang-Yi Su) | |
| dc.contributor.author | Chih-Jung Chen | en |
| dc.contributor.author | 陳祉蓉 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:40:18Z | - |
| dc.date.available | 2021-07-10T21:40:18Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-10 | |
| dc.identifier.citation | 1. Pfanner, N., B. Warscheid, and N. Wiedemann, Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol, 2019. 20(5): p. 267-284. 2. McBride, H.M., M. Neuspiel, and S. Wasiak, Mitochondria: more than just a powerhouse. Curr Biol, 2006. 16(14): p. R551-60. 3. Jones, R.G., et al., AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell, 2005. 18(3): p. 283-93. 4. Suen, D.F., K.L. Norris, and R.J. Youle, Mitochondrial dynamics and apoptosis. Genes Dev, 2008. 22(12): p. 1577-90. 5. Collins, Y., et al., Mitochondrial redox signalling at a glance. J Cell Sci, 2012. 125(Pt 4): p. 801-6. 6. Santel, A., et al., Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci, 2003. 116(Pt 13): p. 2763-74. 7. Balaban, R.S., S. Nemoto, and T. Finkel, Mitochondria, oxidants, and aging. Cell, 2005. 120(4): p. 483-95. 8. Skulachev, V.P., Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci, 2001. 26(1): p. 23-9. 9. Tanaka, A., et al., Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol, 2010. 191(7): p. 1367-80. 10. Lennon, F.E. and R. Salgia, Mitochondrial dynamics: biology and therapy in lung cancer. Expert Opin Investig Drugs, 2014. 23(5): p. 675-92. 11. Westermann, B., Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol, 2010. 11(12): p. 872-84. 12. Haun, F., T. Nakamura, and S.A. Lipton, Dysfunctional Mitochondrial Dynamics in the Pathophysiology of Neurodegenerative Diseases. J Cell Death, 2013. 6: p. 27-35. 13. Chan, D.C., Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet, 2012. 46: p. 265-87. 14. Niyazov, D.M., S.G. Kahler, and R.E. Frye, Primary Mitochondrial Disease and Secondary Mitochondrial Dysfunction: Importance of Distinction for Diagnosis and Treatment. Mol Syndromol, 2016. 7(3): p. 122-37. 15. Khan, N.A., et al., Mitochondrial disorders: challenges in diagnosis treatment. Indian J Med Res, 2015. 141(1): p. 13-26. 16. Zolkipli, Z., et al., Abnormal fatty acid metabolism in spinal muscular atrophy may predispose to perioperative risks. Eur J Paediatr Neurol, 2012. 16(5): p. 549-53. 17. Keogh, M.J. and P.F. Chinnery, Mitochondrial DNA mutations in neurodegeneration. Biochim Biophys Acta, 2015. 1847(11): p. 1401-11. 18. Suarez-Rivero, J.M., et al., Mitochondrial Dynamics in Mitochondrial Diseases. Diseases, 2016. 5(1). 19. Zuchner, S., et al., Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet, 2004. 36(5): p. 449-51. 20. Archer, S.L., Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med, 2013. 369(23): p. 2236-51. 21. Wang, H., et al., Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem, 2011. 286(13): p. 11649-58. 22. Cho, D.H., et al., S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science, 2009. 324(5923): p. 102-5. 23. Zorzano, A., M. Liesa, and M. Palacin, Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes. Int J Biochem Cell Biol, 2009. 41(10): p. 1846-54. 24. Marsboom, G., et al., Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res, 2012. 110(11): p. 1484-97. 25. Calcinotto, A., et al., Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev, 2019. 99(2): p. 1047-1078. 26. Hayflick, L. and P.S. Moorhead, The serial cultivation of human diploid cell strains. Exp Cell Res, 1961. 25: p. 585-621. 27. Gorgoulis, V., et al., Cellular Senescence: Defining a Path Forward. Cell, 2019. 179(4): p. 813-827. 28. Gonzalez-Meljem, J.M., et al., Paracrine roles of cellular senescence in promoting tumourigenesis. Br J Cancer, 2018. 118(10): p. 1283-1288. 29. Campisi, J. and F. d'Adda di Fagagna, Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol, 2007. 8(9): p. 729-40. 30. Saleh, T., L. Tyutyunyk-Massey, and D.A. Gewirtz, Tumor Cell Escape from Therapy-Induced Senescence as a Model of Disease Recurrence after Dormancy. Cancer Res, 2019. 79(6): p. 1044-1046. 31. Michaloglou, C., et al., BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 2005. 436(7051): p. 720-4. 32. Zhang, Y., et al., A new role for oxidative stress in aging: The accelerated aging phenotype in Sod1(-/)(-) mice is correlated to increased cellular senescence. Redox Biol, 2017. 11: p. 30-37. 33. Wiley, C.D., et al., Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab, 2016. 23(2): p. 303-14. 34. Neurohr, G.E., et al., Excessive Cell Growth Causes Cytoplasm Dilution And Contributes to Senescence. Cell, 2019. 176(5): p. 1083-1097.e18. 35. Krishnamurthy, J., et al., Ink4a/Arf expression is a biomarker of aging. J Clin Invest, 2004. 114(9): p. 1299-307. 36. Yosef, R., et al., Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun, 2016. 7: p. 11190. 37. Acosta, J.C., et al., A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol, 2013. 15(8): p. 978-90. 38. Dimri, G.P., et al., A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A, 1995. 92(20): p. 9363-7. 39. Georgakopoulou, E.A., et al., Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY), 2013. 5(1): p. 37-50. 40. Shimi, T., et al., The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev, 2011. 25(24): p. 2579-93. 41. Chinta, S.J., et al., Cellular Senescence Is Induced by the Environmental Neurotoxin Paraquat and Contributes to Neuropathology Linked to Parkinson's Disease. Cell Rep, 2018. 22(4): p. 930-940. 42. Martin, J.A. and J.A. Buckwalter, The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. J Bone Joint Surg Am, 2003. 85-A Suppl 2: p. 106-10. 43. Tyrrell, D.J., et al., Age-Associated Mitochondrial Dysfunction Accelerates Atherogenesis. Circ Res, 2020. 126(3): p. 298-314. 44. Palmer, A.K., et al., Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity. Diabetes, 2015. 64(7): p. 2289-98. 45. Rango, M. and N. Bresolin, Brain Mitochondria, Aging, and Parkinson’s Disease. Genes, 2018. 9(5). 46. Martin, J.A. and J.A. Buckwalter, Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology, 2002. 3(5): p. 257-64. 47. Liu, Y.J., et al., Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease. Mech Ageing Dev, 2020. 186: p. 111212. 48. Birch, J. and J.F. Passos, Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? Bioessays, 2017. 39(5). 49. Chapman, J., E. Fielder, and J.F. Passos, Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett, 2019. 593(13): p. 1566-1579. 50. Seo, A.Y., et al., New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci, 2010. 123(Pt 15): p. 2533-42. 51. Hoshino, A., et al., Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun, 2013. 4: p. 2308. 52. Correia-Melo, C., et al., Mitochondria are required for pro-ageing features of the senescent phenotype. Embo j, 2016. 35(7): p. 724-42. 53. Murphy, M.P. and R.C. Hartley, Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov, 2018. 17(12): p. 865-886. 54. Toogood, P.L., Mitochondrial drugs. Curr Opin Chem Biol, 2008. 12(4): p. 457-63. 55. Rena, G., D.G. Hardie, and E.R. Pearson, The mechanisms of action of metformin. Diabetologia, 2017. 60(9): p. 1577-1585. 56. Redman, L.M., et al., Metabolic Slowing and Reduced Oxidative Damage with Sustained Caloric Restriction Support the Rate of Living and Oxidative Damage Theories of Aging. Cell Metab, 2018. 27(4): p. 805-815 e4. 57. Salvador, L., et al., A Natural Product Telomerase Activator Lengthens Telomeres in Humans: A Randomized, Double Blind, and Placebo Controlled Study. Rejuvenation Res, 2016. 19(6): p. 478-484. 58. Martin-Montalvo, A., et al., Metformin improves healthspan and lifespan in mice. Nat Commun, 2013. 4: p. 2192. 59. Rossman, M.J., et al., Chronic Supplementation With a Mitochondrial Antioxidant (MitoQ) Improves Vascular Function in Healthy Older Adults. Hypertension, 2018. 71(6): p. 1056-1063. 60. Zanella, F., J.B. Lorens, and W. Link, High content screening: seeing is believing. Trends Biotechnol, 2010. 28(5): p. 237-45. 61. Fraietta, I. and F. Gasparri, The development of high-content screening (HCS) technology and its importance to drug discovery. Expert Opin Drug Discov, 2016. 11(5): p. 501-14. 62. Liesa, M. and O.S. Shirihai, Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab, 2013. 17(4): p. 491-506. 63. Hou, W.L., et al., Inhibition of mitochondrial complex I improves glucose metabolism independently of AMPK activation. J Cell Mol Med, 2018. 22(2): p. 1316-1328. 64. Yang, D., et al., Impairment of mitochondrial respiration in mouse fibroblasts by oncogenic H-RAS(Q61L). Cancer Biol Ther, 2010. 9(2): p. 122-33. 65. Wang, A.L., et al., Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One, 2009. 4(1): p. e4160. 66. Chernivec, E., J. Cooper, and K. Naylor, Exploring the Effect of Rotenone-A Known Inducer of Parkinson's Disease-On Mitochondrial Dynamics in Dictyostelium discoideum. Cells, 2018. 7(11). 67. Tai, H., et al., Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy, 2017. 13(1): p. 99-113. 68. Volonte, D., et al., Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol Biol Cell, 2002. 13(7): p. 2502-17. 69. Chen, J.H., S.E. Ozanne, and C.N. Hales, Methods of cellular senescence induction using oxidative stress. Methods Mol Biol, 2007. 371: p. 179-89. 70. Iannetti, E.F., et al., Live-Imaging Readouts and Cell Models for Phenotypic Profiling of Mitochondrial Function. Front Genet, 2019. 10: p. 131. 71. Chandrasekharan, A., et al., A high-throughput real-time in vitro assay using mitochondrial targeted roGFP for screening of drugs targeting mitochondria. Redox Biol, 2019. 20: p. 379-389. 72. Kepiro, M., B.H. Varkuti, and R.L. Davis, High Content, Phenotypic Assays and Screens for Compounds Modulating Cellular Processes in Primary Neurons. Methods Enzymol, 2018. 610: p. 219-250. 73. Little, A.C., et al., Integration of high-content fluorescence imaging into the metabolic flux assay reveals insights into mitochondrial properties and functions. 2019. 74. Harwig, M.C., et al., Methods for imaging mammalian mitochondrial morphology: A prospective on MitoGraph. Anal Biochem, 2018. 552: p. 81-99. 75. Leonard, A.P., et al., Quantitative analysis of mitochondrial morphology and membrane potential in living cells using high-content imaging, machine learning, and morphological binning. Biochim Biophys Acta, 2015. 1853(2): p. 348-60. 76. Wang, D., et al., A small molecule promotes mitochondrial fusion in mammalian cells. Angew Chem Int Ed Engl, 2012. 51(37): p. 9302-5. 77. Park, S.J., et al., Mitochondrial fragmentation caused by phenanthroline promotes mitophagy. FEBS Lett, 2012. 586(24): p. 4303-10. 78. Kimberg, D.V., A.V. Loud, and J. Wiener, Cortisone-induced alterations in mitochondrial function and structure. J Cell Biol, 1968. 37(1): p. 63-79. 79. Kerppola, W., Uncoupling of the oxidative phosphorylation with cortisone in liver mitochondria. Endocrinology, 1960. 67: p. 252-63. 80. Birchmeier, P.J., Quantitative changes in mouse liver ultrastructure following cortisone and insulin administration. Aust J Biol Sci, 1969. 22(4): p. 965-78. 81. Raff, H. and J.W. Findling, A physiologic approach to diagnosis of the Cushing syndrome. Ann Intern Med, 2003. 138(12): p. 980-91. 82. Carvalho, C., et al., Glucocorticoids delay RAF-induced senescence promoted by EGR1. J Cell Sci, 2019. 132(16). 83. Laberge, R.M., et al., Glucocorticoids suppress selected components of the senescence-associated secretory phenotype. Aging Cell, 2012. 11(4): p. 569-78. 84. Grove, G.L. and V.J. Cristofalo, Characterization of the cell cycle of cultured human diploid cells: effects of aging and hydrocortisone. J Cell Physiol, 1977. 90(3): p. 415-22. 85. Yiallouris, A., et al., Adrenal Aging and Its Implications on Stress Responsiveness in Humans. Front Endocrinol (Lausanne), 2019. 10: p. 54. 86. Rabalski, A.J., L. Gyenis, and D.W. Litchfield, Molecular Pathways: Emergence of Protein Kinase CK2 (CSNK2) as a Potential Target to Inhibit Survival and DNA Damage Response and Repair Pathways in Cancer Cells. Clin Cancer Res, 2016. 22(12): p. 2840-7. 87. Qaiser, F., et al., Protein kinase CK2 inhibition induces cell death via early impact on mitochondrial function. J Cell Biochem, 2014. 115(12): p. 2103-15. 88. Hanif, I.M. and S. Pervaiz, Repressing the activity of protein kinase CK2 releases the brakes on mitochondria-mediated apoptosis in cancer cells. Curr Drug Targets, 2011. 12(6): p. 902-8. 89. Kim, G.S., et al., Release of mitochondrial apoptogenic factors and cell death are mediated by CK2 and NADPH oxidase. J Cereb Blood Flow Metab, 2012. 32(4): p. 720-30. 90. Afzal, M., et al., Protein kinase CK2 impact on intracellular calcium homeostasis in prostate cancer. Mol Cell Biochem, 2020. 470(1-2): p. 131-143. 91. Wang, J., et al., Phosphorylation of apoptosis repressor with caspase recruitment domain by protein kinase CK2 contributes to chemotherapy resistance by inhibiting doxorubicin induced apoptosis. Oncotarget, 2015. 6(29): p. 27700-13. 92. Kravic, B., et al., In mammalian skeletal muscle, phosphorylation of TOMM22 by protein kinase CSNK2/CK2 controls mitophagy. Autophagy, 2018. 14(2): p. 311-335. 93. Lucero, M., A.E. Suarez, and J.W. Chambers, Phosphoregulation on mitochondria: Integration of cell and organelle responses. CNS Neurosci Ther, 2019. 25(7): p. 837-858. 94. Onorato, T.M., S. Chakraborty, and D. Haldar, Phosphorylation of rat liver mitochondrial glycerol-3-phosphate acyltransferase by casein kinase 2. J Biol Chem, 2005. 280(20): p. 19527-34. 95. Ryu, S.W., et al., Downregulation of protein kinase CKII is associated with cellular senescence. FEBS Lett, 2006. 580(3): p. 988-94. 96. Ham, H.J., J.W. Park, and Y.S. Bae, Defect of SIRT1-FoxO3a axis is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated cellular senescence and nematode aging. BMB Rep, 2019. 52(4): p. 265-270. 97. Kim, K.M., et al., Inhibition of protein kinase CK2 facilitates cellular senescence by inhibiting the expression of HO-1 in articular chondrocytes. Int J Mol Med, 2019. 43(2): p. 1033-1040. 98. Park, J.W. and Y.S. Bae, Dephosphorylation of p53 Ser 392 Enhances Trimethylation of Histone H3 Lys 9 via SUV39h1 Stabilization in CK2 Downregulation-Mediated Senescence. Mol Cells, 2019. 42(11): p. 773-782. 99. Wang, D. and D.J. Jang, Protein kinase CK2 regulates cytoskeletal reorganization during ionizing radiation-induced senescence of human mesenchymal stem cells. Cancer Res, 2009. 69(20): p. 8200-7. 100. Kalathur, M., et al., A chemogenomic screening identifies CK2 as a target for pro-senescence therapy in PTEN-deficient tumours. Nat Commun, 2015. 6: p. 7227. 101. Li, N., et al., DPI induces mitochondrial superoxide-mediated apoptosis. Free Radical Biology and Medicine, 2003. 34(4): p. 465-477. 102. Kim, S.H., et al., Silibinin induces mitochondrial NOX4-mediated endoplasmic reticulum stress response and its subsequent apoptosis. BMC Cancer, 2016. 16: p. 452. 103. Lambert, A.J., et al., Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport. Biochim Biophys Acta, 2008. 1777(5): p. 397-403. 104. Sakellariou, G.K., et al., Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxid Redox Signal, 2013. 18(6): p. 603-21. 105. Ozsvari, B., et al., Targeting flavin-containing enzymes eliminates cancer stem cells (CSCs), by inhibiting mitochondrial respiration: Vitamin B2 (Riboflavin) in cancer therapy. Aging (Albany NY), 2017. 9(12): p. 2610-2628. 106. Bulua, A.C., et al., Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med, 2011. 208(3): p. 519-33. 107. Zieliński, Ł.P., et al., Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling. Mitochondrion, 2016. 31: p. 45-55. 108. Shi, L., et al., Cellular senescence induced by S100A9 in mesenchymal stromal cells through NLRP3 inflammasome activation. Aging (Albany NY), 2019. 11(21): p. 9626-9642. 109. Chang, T.C., M.F. Hsu, and K.K. Wu, High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy. PLoS One, 2015. 10(5): p. e0126537. 110. Park, H., et al., GDF15 contributes to radiation-induced senescence through the ROS-mediated p16 pathway in human endothelial cells. Oncotarget, 2016. 7(9): p. 9634-44. 111. Citrin, D.E., et al., Role of type II pneumocyte senescence in radiation-induced lung fibrosis. J Natl Cancer Inst, 2013. 105(19): p. 1474-84. 112. Kornienko, J.S., et al., High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells. Sci Rep, 2019. 9(1): p. 1296. 113. Przybylska, D., et al., NOX4 downregulation leads to senescence of human vascular smooth muscle cells. Oncotarget, 2016. 7(41): p. 66429-66443. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76913 | - |
| dc.description.abstract | 粒線體是一種動態的胞器,它會進行分裂或融合進而調控粒線體的功能以適應細胞環境的改變。然而,粒線體動力學的失衡會導致多種疾病的臨床進展,包括神經退化性疾病,代謝性疾病和癌症。近年許多研究指出,粒線體的功能會隨著年齡增加而逐漸下降,衰老的細胞常伴隨著粒線體動力學的失衡、ATP製造減少、ROS製造增加等等的粒線體功能缺失,而此與老化相關疾病的進展有相當大的關聯。然而,目前有效的抗老化粒線體藥物並不多。因此,為了找出能夠調節粒線體型態的潛力藥物,我們利用高通量螢光影像分析系統(High Content Screening system)以篩選Library of Pharmacologically Active Compounds (LOPAC)中可明顯調控粒線體型態的藥物。我們初步地利用肉眼判讀結果並以未加藥的控制組作為標準後,根據藥物改變粒線體型態的程度打分數。經由初步篩選1280個藥物後,先挑選出14個會明顯改變粒線體型態的藥物進行進一步驗證。而後,從14個藥物中挑選出以劑量依賴性的方式調節粒線體型態的3個藥物(Cortisone, TBBz, Diphenyleneiodonium chloride(DPI))進行後續的機制探討、粒線體功能測試以及探討其對老化的影響。在機制探討的方面,3個藥物皆不會影響粒線體動力學相關基因的表現量,亦不是藉由改變粒線體分裂蛋白Drp1 Ser616位點的磷酸化以及粒線體融合蛋白Opa1切割、Mfn2的表現量來調控粒線體型態。在粒線體功能測試方面,Cortisone和TBBz皆不會對糖解作用及氧化磷酸化造成影響,而DPI則是會抑制氧化磷酸化、促進糖解作用及ATP的產生,且其亦會導致氧化磷酸化相關的基因下調。此外,推測DPI可能是藉由促進粒線體分裂而減緩氧化壓力所誘導的細胞衰老。為了了解DPI是否可以成為預防老化的藥物,我們也積極測試用於長期治療的適當濃度,並且將利用小鼠胚胎成纖維細胞(MEF)作為細胞模型觀察藥物對於延緩複製性衰老的作用。 | zh_TW |
| dc.description.abstract | Mitochondria are a highly dynamic organelle that constantly undergoes fission and fusion, and this plays an important role in regulating mitochondrial functions. Imbalance of mitochondrial dynamics contributes to the clinical progression of a variety of diseases, including neurodegenerative diseases, metabolic diseases, and cancers. According to the previous studies, imbalance of mitochondrial dynamics and mitochondrial dysfunction are observed in senescent models, and this is extremely associated with the progression of age-related disorders. However, there are few effective anti-aging drugs targeting mitochondria nowadays. Therefore, we combined the LOPAC®1280 compound library with the High Content Screening system to screen potential drugs that can significantly modulate mitochondrial morphology. Mitochondrial morphology is observed and scored according to comparison with the untreated control group to select drugs. There are fourteen drugs selected for further validation after the preliminary screening of 1280 compounds. Among them, three drugs (Cortisone, TBBz, Diphenyleneiodonium chloride(DPI)) modulating mitochondrial dynamics in a dosage-dependent manner are selected for the subsequent experiments. Cortisone can induce fusion while TBBz and DPI can induce fission. There is no difference in the expression of mitochondrial dynamics-associated mRNA after treatment with these three drugs. They seem to regulate mitochondrial dynamics via neither phosphorylating DRP1 at Ser616, OPA1 cleavage, nor MFN2 expression. Cortisone and TBBz do not influence mitochondrial respiration, while DPI can inhibit oxidative phosphorylation (OXPHOS), promote glycolysis and ATP production, and it causes downregulation of OXPHOS-associated genes. In addition, we speculate that DPI may be able to inhibit oxidative stress-induced senescence through mitochondrial fission. Finally, in order to investigate whether DPI can act as an aging-preventing drug, the optimal concentration for long-term treatment is necessary to be determined first. In the future, we will assess the effect of DPI on ameliorating replicative senescence in MEFs. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:40:18Z (GMT). No. of bitstreams: 1 U0001-1008202012175600.pdf: 4988129 bytes, checksum: 07e46939b787ef83cde2009dbb0dbc73 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 論文審定書...................................................................... i 致謝........................................................................... ii 中文摘要........................................................................ iii ABSTRACT....................................................................... iv Chapter 1 Introduction........................................................ 1 1.1 Mitochondria and Mitochondrial dynamics.................................... 2 1.2 Mitochondrial diseases..................................................... 4 1.3 Cellular senescence........................................................ 5 1.4 Mitochondria and Cellular senescence....................................... 7 1.5 Mitochondrial therapy and Anti-aging therapy............................... 8 1.6 High Content Screening..................................................... 9 Chapter 2 Specific aims....................................................... 11 Chapter 3 Materials and Methods............................................... 13 3.1 Cell culture............................................................... 14 3.2 FCCP and H2O2 treatment.................................................... 15 3.3 Trypan blue viability test................................................. 16 3.4 LOPAC drug library......................................................... 17 3.5 Protein extraction and Western blotting analysis........................... 17 3.6 MitoTracker staining....................................................... 19 3.7 Fluorescent imaging........................................................ 19 3.8 MTT assay.................................................................. 20 3.9 RNA extraction and Quantitative PCR........................................ 21 3.10 Lactate assay............................................................. 22 3.11 NAD/NADH assay............................................................ 23 3.12 ATP assay................................................................. 24 3.13 SA-β-gal staining......................................................... 25 3.14 Statistical analysis...................................................... 25 Chapter 4 Results............................................................. 26 4.1 The experimental design.................................................... 27 4.2 Establishmentof mitochondrial morphology Analysis with NIH3T3 cell lines and high content screening.............................................................. 28 4.3 Result of LOPAC®1280 compound library screening............................ 29 4.4 Three potential drugs modulate mitochondrial dynamics in a dosage-dependent manner and are no cytotoxicity................................................. 30 4.5 Investigation of potential drugs regulating the mechanism of mitochondrial dynamics....................................................................... 31 4.6 The effects of the potential drugs on mitochondrial respiratory capacity... 32 4.7 The effect of DPI on oxidative stress-induced senescence................... 33 4.8 Determination of the appropriate DPI concentration for long-term treatment in MEFs........................................................................... 35 Chapter 5 Discussions......................................................... 36 5.1 Application of High Content Screening system............................... 37 5.2 Analysis of mitochondrial morphology....................................... 37 5.3 Discussion on preliminarily selected drugs................................. 38 5.4 Discussion on three potential drugs........................................ 39 Chapter 6 Conclusion.......................................................... 45 Chapter 7 Figures............................................................. 47 Figure 1. Drug screening flowchart............................................. 48 Figure 2. Dosage-dependent of FCCP for mitochondrial fission................... 52 Figure 3. Result of LOPAC®1280 compound library screening...................... 56 Figure 4. Potential drugs for the modulation of mitochondrial dynamics in a dosage-dependent manner............................................................... 58 Figure 5. Cytotoxicity test of potential compounds............................. 59 Figure 6. Mitochondrial dynamics in cells treated with potential compounds..... 61 Figure 7. Mitochondrial respiration in cells treated with potential compounds.. 63 Figure 8. The effect of DPI on H2O2-induced senescence......................... 66 Figure 9. Determination of the optimal DPI concentration for treating replicative senescence in MEFs............................................................. 69 Chapter 8 Table............................................................... 70 Table 1. Antibodies used in Western blotting................................... 71 Table 2. Primer sequences used in quantitative RT-PCR.......................... 72 Table 3. Information of selected drugs......................................... 74 Table 4. The effect of the multiple dosages of selected drugs on mitochondrial morphology..................................................................... 75 References..................................................................... 76 | |
| dc.language.iso | en | |
| dc.subject | LOPAC 1280 | zh_TW |
| dc.subject | 粒線體動力學 | zh_TW |
| dc.subject | 抗老化 | zh_TW |
| dc.subject | 高通量螢光影像分析系統 | zh_TW |
| dc.subject | Mitochondrial dynamics | en |
| dc.subject | LOPAC 1280 | en |
| dc.subject | High Content Screening system | en |
| dc.subject | Anti-senescence | en |
| dc.title | 篩選調控粒線體型態之潛力藥物及其於抗衰老之應用 | zh_TW |
| dc.title | Drugs Identification for Mitochondrial Dynamics Modulation for Anti-Senescence | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林亮音(Liang-In Lin),楊雅倩(Ya-Chien Yang),郭靜穎(Ching-Ying Kuo) | |
| dc.subject.keyword | 粒線體動力學,抗老化,高通量螢光影像分析系統,LOPAC 1280, | zh_TW |
| dc.subject.keyword | Mitochondrial dynamics,Anti-senescence,High Content Screening system,LOPAC 1280, | en |
| dc.relation.page | 87 | |
| dc.identifier.doi | 10.6342/NTU202002781 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202012175600.pdf 未授權公開取用 | 4.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
