Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76902
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊家榮(Chia-Ron Yang)
dc.contributor.authorChing-Hsuan Chouen
dc.contributor.author周敬軒zh_TW
dc.date.accessioned2021-07-10T21:39:59Z-
dc.date.available2021-07-10T21:39:59Z-
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-11
dc.identifier.citation1.World Health Organization. (updated April 2017). https://www.who.int/features/factfiles/dementia/en/ (2017).
2.Kurz, A. Perneczky, R. Novel insights for the treatment of Alzheimer's disease. Progress in Neuropsychopharmacology and Biological Psychiatry. 35, 373-379 (2011).
3.Anand, A., Patience, A.A., Sharma, N. Khurana, N. The present and future of pharmacotherapy of Alzheimer's disease: A comprehensive review. European Journal of Pharmacology. 815, 364-375 (2017).
4.Kumar, A., Singh, A. Ekavali. A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacological Reports. 67, 195-203 (2015).
5.Sun, Z.K., Yang, H.Q. Chen, S.D. Traditional Chinese medicine: a promising candidate for the treatment of Alzheimer's disease. Translational Neurodegeneration. 2, 6 (2013).
6.Howes, M.R., Fang, R. Houghton, P.J. Effect of Chinese Herbal Medicine on Alzheimer's Disease. International Review of Neurobiology. 135, 29-56 (2017).
7.Yuan, S.M., Gao, K., Wang, D.M., Quan, X.Z., Liu, J.N., Ma, C.M., Qin, C. Zhang, L.F. Evodiamine improves congnitive abilities in SAMP8 and APP(swe)/PS1(DeltaE9) transgenic mouse models of Alzheimer's disease. Acta Pharmacologica Sinica. 32, 295-302 (2011).
8.Wang, L., Hu, C.P., Deng, P.Y., Shen, S.S., Zhu, H.Q., Ding, J.S., Tan, G.S. Li, Y.J. The protective effects of rutaecarpine on gastric mucosa injury in rats. Planta Medica. 71, 416-419 (2005).
9.Lee, S.H., Son, J.K., Jeong, B.S., Jeong, T.C., Chang, H.W., Lee, E.S. Jahng, Y. Progress in the studies on rutaecarpine. Molecules. 13, 272-300 (2008).
10.Tan, Q. Zhang, J. Evodiamine and Its Role in Chronic Diseases. Advances in Experimental Medicine and Biology. 929, 315-328 (2016).
11.Patterson, C. World Alzheimer Report 2018. Alzheimer’s Disease International., 1-48 (2018).
12.Alzheimer’s Association. 2019 Alzheimer’s Disease Facts and Figures. Alzheimer's Dementia. 15, 321-387 (2019).
13.Lane, C.A., Hardy, J. Schott, J.M. Alzheimer's disease. European Journal of Neurology. 25, 59-70 (2018).
14.Sinha, R.N. Make dementia a public health priority in India. Indian Journal of Public Health. 55, 67-69 (2011).
15.Verghese, P.B., Castellano, J.M. Holtzman, D.M. Apolipoprotein E in Alzheimer's disease and other neurological disorders. The Lancet. Neurology. 10, 241-252 (2011).
16.Solomon, A., Mangialasche, F., Richard, E., Andrieu, S., Bennett, D.A., Breteler, M., Fratiglioni, L., Hooshmand, B., Khachaturian, A.S., Schneider, L.S., Skoog, I. Kivipelto, M. Advances in the prevention of Alzheimer's disease and dementia. Journal of Internal Medicine. 275, 229-250 (2014).
17.von Arnim, C.A., Gola, U. Biesalski, H.K. More than the sum of its parts? Nutrition in Alzheimer's disease. Nutrition. 26, 694-700 (2010).
18.Rusanen, M., Kivipelto, M., Quesenberry, C.P., Jr., Zhou, J. Whitmer, R.A. Heavy smoking in midlife and long-term risk of Alzheimer disease and vascular dementia. Archives of Internal Medicine. 171, 333-339 (2011).
19.Debette, S., Seshadri, S., Beiser, A., Au, R., Himali, J.J., Palumbo, C., Wolf, P.A. DeCarli, C. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology. 77, 461-468 (2011).
20.Stern, Y. Cognitive reserve in ageing and Alzheimer's disease. The Lancet. Neurology. 11, 1006-1012 (2012).
21.Masters, C.L., Bateman, R., Blennow, K., Rowe, C.C., Sperling, R.A. Cummings, J.L. Alzheimer's disease. Nature Review. Disease Primers. 1, 15056 (2015).
22.Kumar, K., Kumar, A., Keegan, R.M. Deshmukh, R. Recent advances in the neurobiology and neuropharmacology of Alzheimer's disease. Biomedicine Pharmacotherapy. 98, 297-307 (2018).
23.Chopra, K., Misra, S. Kuhad, A. Neurobiological aspects of Alzheimer's disease. Expert Opinion on Therapeutic Targets. 15, 535-555 (2011).
24.Yu, J.T., Chang, R.C. Tan, L. Calcium dysregulation in Alzheimer's disease: from mechanisms to therapeutic opportunities. Progress in Neurobiology. 89, 240-255 (2009).
25.Danysz, W. Parsons, C.G. Alzheimer's disease, beta-amyloid, glutamate, NMDA receptors and memantine--searching for the connections. British Journal of Pharmacology. 167, 324-352 (2012).
26.Golde, T.E., Petrucelli, L. Lewis, J. Targeting Abeta and tau in Alzheimer's disease, an early interim report. Experimental Neurology. 223, 252-266 (2010).
27.Murphy, M.P. LeVine, H., 3rd. Alzheimer's disease and the amyloid-beta peptide. Journal of Alzheimers Disease. 19, 311-323 (2010).
28.Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C. Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biology. 14, 450-464 (2018).
29.Roychaudhuri, R., Yang, M., Hoshi, M.M. Teplow, D.B. Amyloid beta-protein assembly and Alzheimer disease. The Journal of Biological Chemistry. 284, 4749-4753 (2009).
30.Salloway, S., Sperling, R., Fox, N.C., Blennow, K., Klunk, W., Raskind, M., Sabbagh, M., Honig, L.S., Porsteinsson, A.P., Ferris, S., Reichert, M., Ketter, N., Nejadnik. B., Guenzler, V., Miloslavsky, M., Wang, D., Lu, Y., Lull, J., Tudor, I.C., Liu, E., Grundman, M., Yuen, E., Black, R., Brashear, H.R. Bapineuzumab 301 and 302 Clinical Trial Investigators. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. The New England Journal of Medicine. 370, 322-333 (2014).
31.Doody, R.S., Thomas, R.G., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., Kieburtz, K., Raman, R., Sun, X., Aisen, P.S., Siemers, E., Liu-Seifert, H., Mohs, R.; Alzheimer's Disease Cooperative Study Steering Committee Solanezumab Study Group. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. The New England Journal of Medicine. 370, 311-321 (2014).
32.Iqbal, K., Alonso Adel, C., Chen, S., Chohan, M.O., El-Akkad, E., Gong, C.X., Khatoon, S., Li, B., Liu, F., Rahman, A., Tanimukai, H. Grundke-Iqbal, I. Tau pathology in Alzheimer disease and other tauopathies. Biochimica et Biophysica Acta. 1739, 198-210 (2005).
33.Gotz, J. Ittner, L.M. Animal models of Alzheimer's disease and frontotemporal dementia. Nature Reviews. Neuroscience. 9, 532-544 (2008).
34.Wang, Y. Mandelkow, E. Tau in physiology and pathology. Nature Reviews. Neuroscience. 17, 5-21 (2016).
35.Martin, L., Latypova, X., Wilson, C.M., Magnaudeix, A., Perrin, M.L., Yardin, C. Terro, F. Tau protein kinases: involvement in Alzheimer's disease. Ageing Research Review. 12, 289-309 (2013).
36.Augustinack, J.C., Schneider, A., Mandelkow, E.M. Hyman, B.T. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease. Acta Neuropathologica. 103, 26-35 (2002).
37.Martin, L., Page, G. Terro, F. Tau phosphorylation and neuronal apoptosis induced by the blockade of PP2A preferentially involve GSK3beta. Neurochemistry International. 59, 235-250 (2011).
38.Hernandez, F., Gomez de Barreda, E., Fuster-Matanzo, A., Lucas, J.J. Avila, J. GSK3: a possible link between beta amyloid peptide and tau protein. Experimental Neurology. 223, 322-325 (2010).
39.Llorens-Martin, M., Jurado, J., Hernandez, F. Avila, J. GSK-3beta, a pivotal kinase in Alzheimer disease. Frontiers in Molecular Neuroscience. 7, 46 (2014).
40.Noel, A., Barrier, L. Ingrand, S. The Tyr216 phosphorylated form of GSK3beta contributes to tau phosphorylation at PHF-1 epitope in response to Abeta in the nucleus of SH-SY5Y cells. Life Science. 158, 14-21 (2016).
41.Muyllaert, D., Terwel, D., Borghgraef, P., Devijver, H., Dewachter, I. Van Leuven, F. Transgenic mouse models for Alzheimer's disease: the role of GSK-3B in combined amyloid and tau-pathology. Review Neurological. (Paris) 162, 903-907 (2006).
42.Cho, J.H. Johnson, G.V. Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules. Journal of Neurochemistry. 88, 349-358 (2004).
43.Cho, J.H. Johnson, G.V. Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding. The Journal of Biological Chemistry. 278, 187-193 (2003).
44.Engmann, O. Giese, K.P. Crosstalk between Cdk5 and GSK3beta: Implications for Alzheimer's Disease. Frontiers in Molecular Neuroscience. 2, 2 (2009).
45.Cheung, Z.H. Ip, N.Y. Cdk5: a multifaceted kinase in neurodegenerative diseases. Trends in Cell Biology. 22, 169-175 (2012).
46.Noble, W., Olm, V., Takata, K., Casey, E., Mary, O., Meyerson, J., Gaynor, K., LaFrancois, J., Wang, L., Kondo, T., Davies, P., Burns, M., Veeranna, Nixon, R., Dickson, D., Matsuoka, Y., Ahlijanian, M., Lau, L.F. Duff, K. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron. 38, 555-565 (2003).
47.Castro-Alvarez, J.F., Uribe-Arias, S.A., Mejia-Raigosa, D. Cardona-Gomez, G.P. Cyclin-dependent kinase 5, a node protein in diminished tauopathy: a systems biology approach. Frontiers in Aging Neuroscience. 6, 232 (2014).
48.Lee, J.K. Kim, N.J. Recent Advances in the Inhibition of p38 MAPK as a Potential Strategy for the Treatment of Alzheimer's Disease. Molecules. 22, 1287 (2017).
49.Munoz, L. Ammit, A.J. Targeting p38 MAPK pathway for the treatment of Alzheimer's disease. Neuropharmacology. 58, 561-568 (2010).
50.Zhu, X., Lee, H.G., Raina, A.K., Perry, G. Smith, M.A. The role of mitogen-activated protein kinase pathways in Alzheimer's disease. Neurosignals. 11, 270-281 (2002).
51.Gong, C.X. Iqbal, K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Current Medicinal Chemistry. 15, 2321-2328 (2008).
52.Simic, G., Babic Leko, M., Wray, S., Harrington, C., Delalle, I., Jovanov-Milosevic, N., Bazadona, D., Buee, L., de Silva, R., Di Giovanni, G., Wischik, C. Hof, P.R. Tau Protein Hyperphosphorylation and Aggregation in Alzheimer's Disease and Other Tauopathies, and Possible Neuroprotective Strategies. Biomolecules. 6, 6 (2016).
53.Rapoport, M., Dawson, H.N., Binder, L.I., Vitek, M.P. Ferreira, A. Tau is essential to beta -amyloid-induced neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America. 99, 6364-6369 (2002).
54.Owen, R.T. Memantine and donepezil: a fixed drug combination for the treatment of moderate to severe Alzheimer's dementia. Drugs of Today (Barcelona, Spain : 1998). 52, 239-248 (2016).
55.Cummings, J., Lee, G., Ritter, A. Zhong, K. Alzheimer's disease drug development pipeline: 2018. Alzheimer's Dementia (New York, N.Y.). 4, 195-214 (2018).
56.Duncan, T. Valenzuela, M. Alzheimer's disease, dementia, and stem cell therapy. Stem Cell Research Therapy. 8, 111 (2017).
57.Hung, S.Y. Fu, W.M. Drug candidates in clinical trials for Alzheimer's disease. Journal of Biomedical Science. 24, 47 (2017).
58.Bachurin, S.O., Bovina, E.V. Ustyugov, A.A. Drugs in Clinical Trials for Alzheimer's Disease: The Major Trends. Medicinal Researsh Review. 37, 1186-1225 (2017).
59.Graham, W.V., Bonito-Oliva, A. Sakmar, T.P. Update on Alzheimer's Disease Therapy and Prevention Strategies. Annual Review of Medicine. 68, 413-430 (2017).
60.Kobayashi, Y., Nakano, Y., Kizaki, M., Hoshikuma, K., Yokoo, Y. Kamiya T. Capsaicin-like anti-obese activities of evodiamine from fruits of Evodia rutaecarpa, a vanilloid receptor agonist. Planta Medica. 67, 628-633 (2001).
61.Lv, Q., Xue, Y., Li, G., Zou, L., Zhang, X., Ying, M., Wang, S., Guo, L., Gao, Y., Li, G., Xu, H., Liu, S., Xie, J. Liang, S. Beneficial effects of evodiamine on P2X(4)-mediated inflammatory injury of human umbilical vein endothelial cells due to high glucose. International Immunopharmacology. 28, 1044-1049 (2015).
62.Liu, Y.N., Pan, S.L., Liao, C.H., Huang, D.Y., Guh, J.H., Peng, C.Y., Chang, Y.L. Teng, C.M. Evodiamine represses hypoxia-induced inflammatory proteins expression and hypoxia-inducible factor 1alpha accumulation in RAW264.7. Shock. 32, 263-269 (2009).
63.Iwaoka, E., Wang, S., Matsuyoshi, N., Kogure, Y., Aoki, S., Yamamoto, S., Noguchi, K. Dai, Y. Evodiamine suppresses capsaicin-induced thermal hyperalgesia through activation and subsequent desensitization of the transient receptor potential V1 channels. Journal of Natural Medicines. 70, 1-7 (2016).
64.Wu, J.Y., Chang, M.C., Chen, C.S., Lin, H.C., Tsai, H.P., Yang, C.C., Yang, C.H. Lin, C.M. Topoisomerase I inhibitor evodiamine acts as an antibacterial agent against drug-resistant Klebsiella pneumoniae. Planta Medica. 79, 27-29 (2013).
65.Yang, J., Cai, X., Lu, W., Hu, C., Xu, X., Yu, Q. Cao, P. Evodiamine inhibits STAT3 signaling by inducing phosphatase shatterproof 1 in hepatocellular carcinoma cells. Cancer Letters. 328, 243-251 (2013).
66.Jiang, M.L., Zhang, Z.X., Li, Y.Z., Wang, X.H., Yan, W. Gong, G.Q. Antidepressant-like effect of evodiamine on chronic unpredictable mild stress rats. Neuroscience Letters. 588, 154-158 (2015).
67.Zhao, T., Zhang, X., Zhao, Y., Zhang, L., Bai, X., Zhang, J., Zhao, X., Chen, L., Wang, L. Cui, L. Pretreatment by evodiamine is neuroprotective in cerebral ischemia: up-regulated pAkt, pGSK3beta, down-regulated NF-kappaB expression, and ameliorated BBB permeability. Neurochemical Research. 39, 1612-1620 (2014).
68.Wang, D., Wang, C., Liu, L. Li, S. Protective effects of evodiamine in experimental paradigm of Alzheimer's disease. Cognitive Neurodynamics. 12, 303-313 (2018).
69.Zhang, Y., Wang, J., Wang, C., Li, Z., Liu, X., Zhang, J., Lu, J. Wang, D. Pharmacological Basis for the Use of Evodiamine in Alzheimer's Disease: Antioxidation and Antiapoptosis. International Journal of Molecular Sciences. 19, 1527 (2018).
70.Kamat, P.K., Rai, S. Nath, C. Okadaic acid induced neurotoxicity: an emerging tool to study Alzheimer's disease pathology. Neurotoxicology. 37, 163-172 (2013).
71.Arias, C., Sharma, N., Davies, P. Shafit-Zagardo, B. Okadaic acid induces early changes in microtubule-associated protein 2 and tau phosphorylation prior to neurodegeneration in cultured cortical neurons. Journal of Neurochemistry. 61, 673-682 (1993).
72.Janke, C., Gartner, U., Holzer, M. Arendt, T. Reversible in vivo phosphorylation of tau induced by okadaic acid and by unspecific brain lesion in rat. Journal fur Hirnforschung. 39, 143-153 (1998).
73.Kamat, P.K., Rai, S., Swarnkar, S., Shukla, R. Nath, C. Molecular and cellular mechanism of okadaic acid (OKA)-induced neurotoxicity: a novel tool for Alzheimer's disease therapeutic application. Molecular Neurobiology. 50, 852-865 (2014).
74.Chen, Y., Wang, C., Hu, M., Pan, J., Chen, J., Duan, P., Zhai, T., Ding, J. Xu, C. Effects of ginkgolide A on okadaic acid-induced tau hyperphosphorylation and the PI3K-Akt signaling pathway in N2a cells. Planta Medica. 78, 1337-1341 (2012).
75.Zhou, X.W., Gustafsson, J.A., Tanila, H., Bjorkdahl, C., Liu, R., Winblad, B. Pei, J.J. Tau hyperphosphorylation correlates with reduced methylation of protein phosphatase 2A. Neurobiology of Disease. 31, 386-394 (2008).
76.Zhang, Z. Simpkins, J.W. Okadaic acid induces tau phosphorylation in SH-SY5Y cells in an estrogen-preventable manner. Brain Researsh. 1345, 176-181 (2010).
77.Yoon, S.Y., Choi, J.E., Huh, J.W., Hwang, O., Nam Hong, H. Kim, D. Inactivation of GSK-3beta in okadaic acid-induced neurodegeneration: relevance to Alzheimer's disease. Neuroreport. 16, 223-227 (2005).
78.Martin, L., Magnaudeix, A., Esclaire, F., Yardin, C. Terro, F. Inhibition of glycogen synthase kinase-3beta downregulates total tau proteins in cultured neurons and its reversal by the blockade of protein phosphatase-2A. Brain Research. 1252, 66-75 (2009).
79.Lim, Y.W., Yoon, S.Y., Choi, J.E., Kim, S.M., Lee, H.S., Choe, H., Lee, S.C. Kim, D.H. Maintained activity of glycogen synthase kinase-3beta despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model. Biochemical and Biophysical Research Communications. 395, 207-212 (2010).
80.Wu, X., Kosaraju, J. Tam, K.Y. SLM, a novel carbazole-based fluorophore attenuates okadaic acid-induced tau hyperphosphorylation via down-regulating GSK-3beta activity in SH-SY5Y cells. European Journal of Pharmaceutical Sciences. 110, 101-108 (2017).
81.Hu, J.P., Xie, J.W., Wang, C.Y., Wang, T., Wang, X., Wang, S.L., Teng, W.P. Wang, Z.Y. Valproate reduces tau phosphorylation via cyclin-dependent kinase 5 and glycogen synthase kinase 3 signaling pathways. Brain Research Bulletin. 85, 194-200 (2011).
82.Del Barrio, L., Martin-de-Saavedra, M.D., Romero, A., Parada, E., Egea, J., Avila, J., McIntosh, J.M., Wonnacott, S. Lopez, M.G. Neurotoxicity induced by okadaic acid in the human neuroblastoma SH-SY5Y line can be differentially prevented by alpha7 and beta2* nicotinic stimulation. Toxicological Sciences. 123, 193-205 (2011).
83.Yoon, S., Choi, J., Yoon, J., Huh, J.W. Kim, D. Okadaic acid induces JNK activation, bim overexpression and mitochondrial dysfunction in cultured rat cortical neurons. Neuroscience Letters. 394, 190-195 (2006).
84.Pei, J.J., Gong, C.X., An, W.L., Winblad, B., Cowburn, R.F., Grundke-Iqbal, I. Iqbal, K. Okadaic-acid-induced inhibition of protein phosphatase 2A produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in Alzheimer's disease. The American Journal of Pathology. 163, 845-858 (2003).
85.Jiang, W., Luo, T., Li, S., Zhou, Y., Shen, X.Y., He, F., Xu, J. Wang, H.Q. Quercetin Protects against Okadaic Acid-Induced Injury via MAPK and PI3K/Akt/GSK3beta Signaling Pathways in HT22 Hippocampal Neurons. PLoS One. 11, e0152371 (2016).
86.Ahn, J.H., So, S.P., Kim, N.Y., Kim, H.J., Yoon, S.Y. Kim, D.H. c-Jun N-terminal Kinase (JNK) induces phosphorylation of amyloid precursor protein (APP) at Thr668, in okadaic acid-induced neurodegeneration. BMB Reports. 49, 376-381 (2016).
87.Costa, A.P., Tramontina, A.C., Biasibetti, R., Batassini, C., Lopes, M.W., Wartchow, K.M., Bernardi, C., Tortorelli, L.S., Leal, R.B. Goncalves, C.A. Neuroglial alterations in rats submitted to the okadaic acid-induced model of dementia. Behavioural Brain Research. 226, 420-427 (2012).
88.Vogel, J., Anand, V.S., Ludwig, B., Nawoschik, S., Dunlop, J. Braithwaite, S.P. The JNK pathway amplifies and drives subcellular changes in tau phosphorylation. Neuropharmacology. 57, 539-550 (2009).
89.Zhao, W.Q., Feng, C. Alkon, D.L. Impairment of phosphatase 2A contributes to the prolonged MAP kinase phosphorylation in Alzheimer's disease fibroblasts. Neurobiology of Disease. 14, 458-469 (2003).
90.Arias, C., Becerra-Garcia, F., Arrieta, I. Tapia, R. The protein phosphatase inhibitor okadaic acid induces heat shock protein expression and neurodegeneration in rat hippocampus in vivo. Experimental Neurology. 153, 242-254 (1998).
91.Henkelman, R.M., Stanisz, G.J. Graham, S.J. Magnetization transfer in MRI: a review. NMR in Biomedicine. 14, 57-64 (2001).
92.Praet, J., Bigot, C., Orije, J., Naeyaert, M., Shah, D., Mai, Z., Guns, P.J., Linden, A.V. Verhoye, M. Magnetization transfer contrast imaging detects early white matter changes in the APP/PS1 amyloidosis mouse model. Neuroimage Clinical. 12, 85-92 (2016).
93.Esteras, N., Alquézar, C., Bartolomé, F., Antequera, D., Barrios, L., Carro, E., Cerdán, S. Martín-Requero, A. Systematic evaluation of magnetic resonance imaging and spectroscopy techniques for imaging a transgenic model of Alzheimer's disease (AbetaPP/PS1). Journal of Alzheimer's disease. 30, 337-353 (2012).
94.Chen, G.F., Xu, T.H., Yan, Y., Zhou, Y.R., Jiang, Y., Melcher, K. Xu, H.E. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica. 38, 1205-1235 (2017).
95.Johnson, G.V. Stoothoff, W.H. Tau phosphorylation in neuronal cell function and dysfunction. Journal of cell science. 117, 5721-5729 (2004).
96.Huang, J.M., Huang, F.I. Yang, C.R. Moscatilin Ameliorates Tau Phosphorylation and Cognitive Deficits in Alzheimer's Disease Models. Journal of Natural Products. 82, 1979-1988 (2019).
97.Dou, F., Netzer, W.J., Tanemura, K., Li, F., Hartl, F.U., Takashima, A., Gouras, G.K., Greengard, P. Xu, H. Chaperones increase association of tau protein with microtubules. Proceedings of the National Academy of Sciences of the United States of America. 100, 721-726 (2003).
98.Wang, Y., Xia, Y., Kuang, D., Duan, Y. Wang, G. PP2A regulates SCF-induced cardiac stem cell migration through interaction with p38 MAPK. Life Science. 191, 59-67 (2017).
99.Im, D.S., Shin, H.J., Yang, K.J., Jung, S.Y., Song, H.Y., Hwang, H.S. Gil, H.W. Cilastatin attenuates vancomycin-induced nephrotoxicity via P-glycoprotein. Toxicology Letters. 277, 9-17 (2017).
100.Zhang, J., Zhang, Z., Zhang, W., Li, X., Wu, T., Li, T., Cai, M., Yu, Z., Xiang, J. Cai, D. Jia-Jian-Di-Huang-Yin-Zi decoction exerts neuroprotective effects on dopaminergic neurons and their microenvironment. Scientific Reports. 8, 9886 (2018).
101.Reagan-Shaw, S., Nihal, M. Ahmad, N. Dose translation from animal to human studies revisited. FASEB Journal. 22, 659-661 (2008).
102.Rajasekar, N., Dwivedi, S., Tota, S.K., Kamat, P.K., Hanif, K., Nath, C. Shukla, R. Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. European Journal of Pharmacology. 715, 381-394 (2013).
103.Haley, T.J. McCormick, W.G. Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. British Journal of Pharmacology and Chemotherapy. 12, 12-15 (1957).
104.Song, X.Y., Hu, J.F., Chu, S.F., Zhang, Z., Xu, S., Yuan, Y.H., Han, N., Liu, Y., Niu, F., He, X. Chen, N.H. Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3beta/tau signaling pathway and the Abeta formation prevention in rats. European Journal of Pharmacology. 710, 29-38 (2013).
105.Bromley-Brits, K., Deng, Y. Song, W. Morris water maze test for learning and memory deficits in Alzheimer's disease model mice. Journal of Visualized Experiments. 53, 2920 (2011).
106.Pham, H.T.N., Phan, S.V., Tran, H.N., Phi, X.T., Le, X.T., Nguyen, K.M., Fujiwara, H., Yoneyama, M., Ogita, K., Yamaguchi, T. Matsumoto, K. Bacopa monnieri (L.) Ameliorates Cognitive Deficits Caused in a Trimethyltin-Induced Neurotoxicity Model Mice. Biological Pharmaceutical Bulletin. 42, 1384-1393 (2019).
107.Lee, J., Cho, E., Kwon, H., Jeon, J., Jung, C.J., Moon, M., Jun, M., Lee, Y.C., Kim, D.H. Jung, J.W. The fruit of Crataegus pinnatifida ameliorates memory deficits in beta-amyloid protein-induced Alzheimer's disease mouse model. Journal of Ethnopharmacology. 243, 112107 (2019).
108.Guo, X.D., Sun, G.L., Zhou, T.T., Wang, Y.Y., Xu, X., Shi, X.F., Zhu, Z.Y., Rukachaisirikul, V., Hu, L.H. Shen, X. LX2343 alleviates cognitive impairments in AD model rats by inhibiting oxidative stress-induced neuronal apoptosis and tauopathy. Acta Pharmacologica Sinica. 38, 1104-1119 (2017).
109.Ma, X.H., Duan, W.J., Mo, Y.S., Chen, J.L., Li, S., Zhao, W., Yang, L., Mi, S.Q., Mao, X.L., Wang, H. Wang, Q. Neuroprotective effect of paeoniflorin on okadaic acid-induced tau hyperphosphorylation via calpain/Akt/GSK-3beta pathway in SH-SY5Y cells. Brain Research. 1690, 1-11 (2018).
110.Basu, S., Ray, N.T., Atkinson, S.J. Broxmeyer, H.E. Protein phosphatase 2A plays an important role in stromal cell-derived factor-1/CXC chemokine ligand 12-mediated migration and adhesion of CD34+ cells. Journal of Immunology. 179, 3075-3085 (2007).
111.Jouanne, M., Rault, S. Voisin-Chiret, A.S. Tau protein aggregation in Alzheimer's disease: An attractive target for the development of novel therapeutic agents. European Journal of Medicinal Chemistry. 139, 153-167 (2017).
112.Tenreiro, S., Eckermann, K. Outeiro, T.F. Protein phosphorylation in neurodegeneration: friend or foe? Frontiers in Molecular Neuroscience. 7, 42 (2014).
113.Wang, J.Z., Xia, Y.Y., Grundke-Iqbal, I. Iqbal, K. Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. Journal of Alzheimer's Disease. 33 Suppl 1, S123-139 (2013).
114.Leroy, K., Bretteville, A., Schindowski, K., Gilissen, E., Authelet, M., De Decker, R., Yilmaz, Z., Buee, L. Brion, J.P. Early axonopathy preceding neurofibrillary tangles in mutant tau transgenic mice. The American Journal of Pathology. 171, 976-992 (2007).
115.Camins, A., Verdaguer, E., Folch, J., Canudas, A.M. Pallas, M. The role of CDK5/P25 formation/inhibition in neurodegeneration. Drug News Perspectives. 19, 453-460 (2006).
116.Gomez-Sintes, R., Hernandez, F., Bortolozzi, A., Artigas, F., Avila, J., Zaratin, P., Gotteland, J.P. Lucas, J.J. Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. The EMBO Journal. 26, 2743-2754 (2007).
117.Sun, L.H., Ban, T., Liu, C.D., Chen, Q.X., Wang, X., Yan, M.L., Hu, X.L., Su, X.L., Bao, Y.N., Sun, L.L., Zhao, L.J., Pei, S.C., Jiang, X.M., Zong, D.K. Ai, J. Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 down-regulation. Journal of Neurochemistry. 134, 1139-1151 (2015).
118.Lei, P., Ayton, S., Bush, A.I. Adlard, P.A. GSK-3 in Neurodegenerative Diseases. International Journal of Alzheimer's Disease. 2011, 189246 (2011).
119.Kanungo, J., Zheng, Y.L., Amin, N.D. Pant, H.C. Targeting Cdk5 activity in neuronal degeneration and regeneration. Cellular and Molecular Neurobiology. 29, 1073-1080 (2009).
120.Wang, Y., Song, X., Liu, D., Lou, Y.X., Luo, P., Zhu, T., Wang, Q. Chen, N. IMM-H004 reduced okadaic acid-induced neurotoxicity by inhibiting Tau pathology in vitro and in vivo. Neurotoxicology. 75, 221-232 (2019).
121.Shen, X.Y., Luo, T., Li, S., Ting, O.Y., He, F., Xu, J. Wang, H.Q. Quercetin inhibits okadaic acid-induced tau protein hyperphosphorylation through the Ca2+calpainp25CDK5 pathway in HT22 cells. International Journal of Molecular Medicine. 41, 1138-1146 (2018).
122.Ravindran, J., Gupta, N., Agrawal, M., Bala Bhaskar, A.S. Lakshmana Rao, P.V. Modulation of ROS/MAPK signaling pathways by okadaic acid leads to cell death via, mitochondrial mediated caspase-dependent mechanism. Apoptosis. 16, 145-161 (2011).
123.Kim, C. Park, S. IGF-1 protects SH-SY5Y cells against MPP(+)-induced apoptosis via PI3K/PDK-1/Akt pathway. Endocrine Connections. 7, 443-455 (2018).
124.Tarozzi, A., Morroni, F., Bolondi, C., Sita, G., Hrelia, P., Djemil, A. Cantelli-Forti, G. Neuroprotective effects of erucin against 6-hydroxydopamine-induced oxidative damage in a dopaminergic-like neuroblastoma cell line. International Journal of Molecular Sciences. 13, 10899-10910 (2012).
125.Brandt, R., Leger, J. Lee, G. Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain. The Journal of Cell Biology. 131, 1327-1340 (1995).
126.Valdiglesias, V., Laffon, B., Pasaro, E. Mendez, J. Okadaic acid induces morphological changes, apoptosis and cell cycle alterations in different human cell types. Journal of Environmental Monitoring. 13, 1831-1840 (2011).
127.Li, D.W., Xiang, H., Mao, Y.W., Wang, J., Fass, U., Zhang, X.Y. Xu, C. Caspase-3 is actively involved in okadaic acid-induced lens epithelial cell apoptosis. Experimental Cell Research. 266, 279-291 (2001).
128.Sharma, P., Tripathi, M.K. Shrivastava, S.K. Cholinesterase as a Target for Drug Development in Alzheimer's Disease. Methods in Molecular Biology. 2089, 257-286 (2020).
129.Ye, M., Chung, H.S., Lee, C., Yoon, M.S., Yu, A.R., Kim, J.S., Hwang, D.S., Shim, I. Bae, H. Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer's disease. Journal of Neuroinflammation. 13, 10 (2016).
130.Nordberg, A. Svensson, A.L. Cholinesterase inhibitors in the treatment of Alzheimer's disease: a comparison of tolerability and pharmacology. Drug Safety. 19, 465-480 (1998).
131.Weon, J.B., Jung, Y.S. Ma, C.J. Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice. Biomolecules Therapeutics. 24, 298-304 (2016).
132.Meng, T., Fu, S., He, D., Hu, G., Gao, X., Zhang, Y., Huang, B., Du, J., Zhou, A., Yingchun Su, Y. Liu, D. Evodiamine Inhibits Lipopolysaccharide (LPS)-Induced Inflammation in BV-2 Cells via Regulating AKT/Nrf2-HO-1/NF-kappaB Signaling Axis. Cellular and molecular neurobiology. (2020).
133.Heo, S.K., Yun, H.J., Yi, H.S., Noh, E.K. Park, S.D. Evodiamine and rutaecarpine inhibit migration by LIGHT via suppression of NADPH oxidase activation. Journal of Cellular Biochemistry. 107, 123-133 (2009).
134.Habbab, W., Aoude, I., Palangi, F., Abdulla, S. Ahmed, T. The Anti-Tumor Agent Sodium Selenate Decreases Methylated PP2A, Increases GSK3betaY216 Phosphorylation, Including Tau Disease Epitopes and Reduces Neuronal Excitability in SHSY-5Y Neurons. International Journal of Molecular Sciences. 20, 844 (2019).
135.Zhang, Z. Simpkins, J.W. An okadaic acid-induced model of tauopathy and cognitive deficiency. Brain Research. 1359, 233-246 (2010).
136.Roufayel, R. Murshid, N. CDK5: Key Regulator of Apoptosis and Cell Survival. Biomedicines. 7, 88 (2019).
137.Xu, L. Deng, X. Suppression of cancer cell migration and invasion by protein phosphatase 2A through dephosphorylation of mu- and m-calpains. The Journal of Biological Chemistry. 281, 35567-35575 (2006).
138.Dhavan, R. Tsai, L.H. A decade of CDK5. Nature Reviews. Molecular Cell Biology. 2, 749-759 (2001).
139.Lloret, A., Fuchsberger, T., Giraldo, E. Vina, J. Molecular mechanisms linking amyloid beta toxicity and Tau hyperphosphorylation in Alzheimers disease. Free Radical Biology Medicine. 83, 186-191 (2015).
140.Dajani, R., Fraser, E., Roe, S.M., Young, N., Good, V., Dale, T.C. Pearl, L.H. Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell. 105, 721-732 (2001).
141.Leroy, K., Yilmaz, Z. Brion, J.P. Increased level of active GSK-3beta in Alzheimer's disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathology and Applied Neurobiology 33, 43-55 (2007).
142.Engel, T., Lucas, J.J., Gomez-Ramos, P., Moran, M.A., Avila, J. Hernandez, F. Cooexpression of FTDP-17 tau and GSK-3beta in transgenic mice induce tau polymerization and neurodegeneration. Neurobiology of Aging 27, 1258-1268 (2006).
143.Liu, S.L., Wang, C., Jiang, T., Tan, L., Xing, A. Yu, J.T. The Role of Cdk5 in Alzheimer's Disease. Molecular Neurobiology. 53, 4328-4342 (2016).
144.Ahlijanian, M.K., Barrezueta, N.X., Williams, R.D., Jakowski, A., Kowsz, K.P., McCarthy, S., Coskran, T., Carlo, A., Seymour, P.A., Burkhardt, J.E., Nelson, R.B. McNeish, J.D. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proceedings of the National Academy of Sciences of the United States of America. 97, 2910-2915 (2000).
145.Hancock, J.T., Desikan, R. Neill, S.J. Role of reactive oxygen species in cell signalling pathways. Biochemical Society Transactions. 29, 345-350 (2001).
146.Kim, E.K. Choi, E.J. Compromised MAPK signaling in human diseases: an update. Archives of Toxicology. 89, 867-882 (2015).
147.Ferrer, I., Blanco, R., Carmona, M. Puig, B. Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. Journal of Neural Transmission. 108, 1397-1415 (2001).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76902-
dc.description.abstract阿茲海默症 (Alzheimer’s disease, AD) 是一種神經退化性疾病,是最常造成失智 (dementia) 的疾病因素,會表現漸進式記憶喪失及認知障礙。臨床上,阿茲海默症的病理特徵為β-amyloid (Aβ) 老年斑塊之沉積、神經細胞內表現過度磷酸化tau蛋白所聚集成的神經纖維糾結 (NFTs) 及乙醯膽鹼 (acetylcholine) 含量減少。美國食品藥物管理局 (Food and Drug Administration, FDA) 認可已上市的藥物有五種分別為donepezil、rivastigmine、galantamine、memantine、namzaric,然而這些藥物僅能減緩症狀無法完全根治阿茲海默症;因此科學家們仍致力於找尋有效治療阿茲海默症的藥物。吳茱萸成分evodiamine被指出具有抗發炎、抗氧化等許多藥理活性,只有少數關於抗阿茲海默症之研究發表。
本研究建立阿茲海默症模式是利用外加okadaic acid (OA) 至分別為人類神經母細胞瘤–SH-SY5Y和老鼠神經母細胞瘤–Neuro-2a兩種細胞株,抑制蛋白質磷酸酶,進而引發tau蛋白的磷酸化。OA會抑制protein phosphatase 2a (PP2A) 活性和誘發細胞產生氧化壓力引起一系列蛋白激酶如glycogen synthase kinase 3 beta (GSK3β) 和cyclin-dependent kinase 5 (CDK5) 的異常活化,進而使得tau蛋白磷酸化,以此建立阿茲海默症模式。本研究將觀察evodiamine改善氧化壓力的情況以及利用西方墨點法觀察evodimaine在神經細胞株中對於蛋白激酶異常活化之抑制狀況,進而觀察evodiamine減少tau蛋白磷酸化與其蛋白異常聚集之情形,更進一步以流式細胞儀觀察細胞凋亡情形。結果顯示evodiamine能顯著降低細胞氧化壓力及顯著抑制GSK3β、CDK5和mitogen-activated protein kinases (MAPK) /extracellular signal-regulated kinases (ERK) 路徑異常活化的蛋白激酶之效果,進而觀察到evodiamine可以顯著地減少tau過度磷酸化的狀況,更進一步地減少tau在細胞中堆積並且降低細胞凋亡情形;而且呈現時間和劑量相關。在動物實驗中藉由使用莫氏水迷宮和被動式逃避學習來測試動物記憶相關的行為模式,我們可以觀察到evodimaine具有改善小鼠認知記憶學習能力,而西方墨點法之結果顯示在小鼠腦中evodiamine 減少tau蛋白的磷酸化,且如上述提到的像是GSK3β、CDK5和MAPKs這些異常活化的激酶也具有抑制效果。
總結來說,利用外加OA至細胞株的阿茲海默症模式,evodiamine會透過抑制GSK3β和CDK5活性及減少c-Jun N-terminal kinase (JNK) 、ERK、p38磷酸化,顯著地減少tau蛋白磷酸化,並減少細胞內tau蛋白聚集,更進一步減少神經細胞凋亡情形。證明evodiamine具有神經保護效果,為具有潛力能改善阿茲海默症之天然活性物質。
zh_TW
dc.description.abstractAlzheimer’s disease (AD) is the most common neurodegenerative disease that displays as progressive memory loss and cognitive deterioration. The pathogenesis of AD includes β-amyloid (Aβ) accumulation, tau aggregations, cholinergic deficits and excessive N-methyl-D-aspartate (NMDA) stimulation. Currently, there is still an urgent need to find potential strategies to treat for AD. Evodiamine (Evo), one of the main bioactive ingredients of Evodia rutaecarpa, has been reported to demonstrate anti-inflammation and cardiovascular protective effects. However, few research studies are about the relationship with AD. Consequently, this study is to examine the neuroprotective effects of evodiamine for AD.
In this study, we used the in vitro model by treating okadaic acid (OA) to induce phosphorylation of tau to mimic AD-like models in neuronal cells. OA inhibited protein phosphatase 2A (PP2A) and led to active glycogen synthase kinase 3 beta (GSK3β) and cyclin-dependent kinase (CDK5), two main kinases to cause phosphorylation of tau; as well as increase mitogen-activated protein kinases (MAPK) activity due to oxidative stress levels upregulation; and all of which enhanced the hyperphosphorylation of tau. Results by western blot analysis showed that evodiamine significantly reduced the expression of phosphor-tau in a time- and concentration -dependent manner and further decreased the tau aggregation in response to OA treatment; and this inhibition was through the inhibition of GSK3β, CDK5 and MAPK pathways since evodiamine treatment the increase of pGSK3βS9 (the inactive form), the decrease of pGSK3βY216 (the active form), the decline of CDK5 plus p25 and the reduction of phosphorylated MAPK via descending oxidative stress levels. Subsequently, the results from flow cytometry were observed that evodiamine treatment diminished OA-mediated neuronal cell death. Furthermore, the in vivo results indicated that evodiamine treatment ameliorated learning and memory impairments in mice via Morris water maze and passive avoidance test; and the results of western blot analysis by mice brain also demonstrated reduction of phosphorylated tau and inhibition of hyperactive kinases such as GSK3β and ERK1/2. In AD-like animal model, there were the behavioral test and biochemical parameter to confirm the neuroprotective effects of evodiamine.
In conclusion, evodiamine can reduce tau phosphorylation, decrease the neurotoxicity of tau aggregation, and acquire the neuroprotective effect. Our results demonstrate evodiamine has therapeutic potential for AD treatment.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:39:59Z (GMT). No. of bitstreams: 1
U0001-1008202022285700.pdf: 4849413 bytes, checksum: f5bbbfde3a7a5e65b73339c95b37dd24 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsAbbreviations…………………………………………………………….II
Abstract in Chinese…………………………………………………......IV
Abstract…………………………………………………..……………..VI
Chapter 1. The aim of this study……………………………………...….1
Chapter 2. Paper review…………………………………………………..3
Chapter 3. Materials and Methods………………………………..……..36
Chapter 4. Results………………………………………...……………..54
Chapter 5. Discussion………………………………………...…………65
Figure of results…………………………………………………………69
Reference………………………………………………………..………88
dc.language.isoen
dc.subject阿茲海默症zh_TW
dc.subjectevodiamineen
dc.subjectalzheimer's diseaseen
dc.title探討evodiamine在okadaic acid誘導的阿茲海默症模型中神經保護的作用zh_TW
dc.titleNeuroprotective effect of evodiamine on okadaic acid-induced Alzheimer’s disease-like modelen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee潘秀玲(Shiow-Lin Pan),蕭哲志(George Hsiao)
dc.subject.keyword阿茲海默症,zh_TW
dc.subject.keywordalzheimer's disease,evodiamine,en
dc.relation.page101
dc.identifier.doi10.6342/NTU202002875
dc.rights.note未授權
dc.date.accepted2020-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
U0001-1008202022285700.pdf
  未授權公開取用
4.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved