請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76899完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹智強(Chih-Chiang Chan) | |
| dc.contributor.author | Chih-Wei Lin | en |
| dc.contributor.author | 林志維 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:39:55Z | - |
| dc.date.available | 2021-07-10T21:39:55Z | - |
| dc.date.copyright | 2020-09-07 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-11 | |
| dc.identifier.citation | [1] Pant, D. C., Dorboz, I., Schluter, A., Fourcade, S., Launay, N., Joya, J., Aguilera-Albesa, S., Yoldi, M. E., Casasnovas, C., Willis, M. J., Ruiz, M., Ville, D., Lesca, G., Siquier-Pernet, K., Desguerre, I., Yan, H., Wang, J., Burmeister, M., Bradt, L., Tarnopolsky, M., Cornet, C., Rubbini, D., Terriente, J., James, K. N., Musaev, D., Zaki, M. S., Patterson, M. C., Lanpher, B. C., Klee, E. W., Pinto, E. Vairo, F., Wohler, E., Sobreira, N. L. M., Cohen, J. S., Maroofian, R., Galehdari, H., Mazaheri, N., Shariati, G., Colleaux, L., Rodriguez, D., Gleeson, J. G., Pujades, C., Fatemi, A., Boespflug-Tanguy, O., Pujol, A. (2019). Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy. The Journal of clinical investigation, 129(3), 1240-1256. [2] Karsai, G., Kraft, F., Haag, N., Korenke, G. C., Hänisch, B., Othman, A., Suriyanarayanan, S., Steiner, R., Knopp, C., Mull, M., Bergmann, M., Schröder, J. M., Weis, J., Elbracht, M., Bergmann, M., Hornemann, T., Kurth, I. (2019). DEGS1-associated aberrant sphingolipid metabolism impairs nervous system function in humans. The Journal of clinical investigation, 129(3), 1229-1239. [3] Holland, W. L., Brozinick, J. T., Wang, L. P., Hawkins, E. D., Sargent, K. M., Liu, Y., Narra, K., Hoehn, K. L., Knotts, T. A., Siesky, A., Nelson, D. H., Karathanasis,S. K., Fontenot, G. K., Birnbaum, M. J., Summers, S. A. (2007). Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell metabolism, 5(3), 167-179. [4] Jung, W. H., Liu, C. C., Yu, Y. L., Chang, Y. C., Lien, W. Y., Chao, H. C., Huang, S. Y., Kuo, C. H., Ho, H. C., Chan, C. C. (2017). Lipophagy prevents activity‐dependent neurodegeneration due to dihydroceramide accumulation in vivo. EMBO reports, 18(7), 1150-1165. [5] Merrill, A. H. (2002). De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. Journal of Biological Chemistry, 277(29), 25843-25846. [6] Perry, D. K. (2002). Serine palmitoyltransferase: role in apoptotic de novo ceramide synthesis and other stress responses. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1585(2-3), 146-152. [7] Gault, C. R., Obeid, L. M., Hannun, Y. A. (2010). An overview of sphingolipid metabolism: from synthesis to breakdown. In Sphingolipids as Signaling and Regulatory Molecules (pp. 1-23). Springer, New York, NY. [8] Dvir, H., Harel, M., McCarthy, A. A., Toker, L., Silman, I., Futerman, A. H., Sussman, J. L. (2003). X‐ray structure of human acid‐β‐glucosidase, the defective enzyme in Gaucher disease. EMBO reports, 4(7), 704-709. [9] Jenkins, R. W., Canals, D., Hannun, Y. A. (2009). Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cellular signalling, 21(6), 836-846. [10] Kitatani, K., Idkowiak-Baldys, J., Hannun, Y. A. (2008). The sphingolipid salvage pathway in ceramide metabolism and signaling. Cellular signalling, 20(6), 1010-1018. [11] Ben-David, O., Futerman, A. H. (2010). The role of the ceramide acyl chain length in neurodegeneration: involvement of ceramide synthases. Neuromolecular medicine, 12(4), 341-350. [12] Chalfant, C. E., Spiegel, S. (2005). Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. Journal of cell science, 118(20), 4605-4612. [13] Lavieu, G., Scarlatti, F., Sala, G., Carpentier, S., Levade, T., Ghidoni, R., Botti, J., Codogno, P. (2006). Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. Journal of Biological Chemistry, 281(13), 8518-8527. [14] Michel, C., van Echten-Deckert, G., Rother, J., Sandhoff, K., Wang, E., Merrill, A. H. (1997). Characterization of ceramide synthesis a dihydroceramide desaturase introduces the 4, 5-trans-double bond of sphingosine at the level of dihydroceramide. Journal of Biological Chemistry, 272(36), 22432-22437. [15] Fabrias, G., Munoz-Olaya, J., Cingolani, F., Signorelli, P., Casas, J., Gagliostro, V., Ghidoni, R. (2012). Dihydroceramide desaturase and dihydrosphingolipids: debutant players in the sphingolipid arena. Progress in lipid research, 51(2), 82-94. [16] Shanklin, J., Whittle, E., Fox, B. G. (1994). Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry, 33(43), 12787-12794. [17] Zhu, G., Koszelak-Rosenblum, M., Connelly, S. M., Dumont, M. E., Malkowski, M. G. (2015). The crystal structure of an integral membrane fatty acid α-hydroxylase. Journal of Biological Chemistry, 290(50), 29820-29833. [18] Glick, D., Barth, S., Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. The Journal of pathology, 221(1), 3-12. [19] Yamamoto, H., Kakuta, S., Watanabe, T. M., Kitamura, A., Sekito, T., Kondo-Kakuta, C., Ichikawa, R., Kinjo, M., Ohsumi, Y. (2012). Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol, 198(2), 219-233. [20] Kotani, T., Kirisako, H., Koizumi, M., Ohsumi, Y., Nakatogawa, H. (2018). The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Proceedings of the National Academy of Sciences, 115(41), 10363-10368. [21] Williams, R. A., Smith, T. K., Cull, B., Mottram, J. C., Coombs, G. H. (2012). ATG5 is essential for ATG8-dependent autophagy and mitochondrial homeostasis in Leishmania major. PLoS pathogens, 8(5), e1002695. [22] Viret, C., Faure, M. (2019). Regulation of Syntaxin 17 during Autophagosome Maturation. Trends in cell biology, 29(1), 1-3. [23] Li, Y., Li, S., Qin, X., Hou, W., Dong, H., Yao, L., Xiong, L. (2014). The pleiotropic roles of sphingolipid signaling in autophagy. Cell death disease, 5(5), e1245. [24] Zhang, J. (2015). Teaching the basics of autophagy and mitophagy to redox biologists—mechanisms and experimental approaches. Redox biology, 4, 242-259. [25] Xu, T., Rubin, G. M. (1993). Analysis of genetic mosaics in developing and adult Drosophila tissues. Development, 117(4), 1223-1237. [26] Stowers, R. S., Schwarz, T. L. (1999). A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics, 152(4), 1631-1639. [27] Newsome, T. P., Asling, B., Dickson, B. J. (2000). Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development, 127(4), 851-860. [28] Ferreiro, M. J., Pérez, C., Marchesano, M., Ruiz, S., Caputi, A., Aguilera, P., Barrio, R., Cantera, R. (2018). Drosophila melanogaster white mutant w1118 undergo retinal degeneration. Frontiers in Neuroscience, 11, 732. [29] Li, X., Xu, M., Pitzer, A. L., Xia, M., Boini, K. M., Li, P. L., Zhang, Y. (2014). Control of autophagy maturation by acid sphingomyelinase in mouse coronary arterial smooth muscle cells: protective role in atherosclerosis. Journal of molecular medicine, 92(5), 473-485. [30] Muto, M., Kubota, C., Tanaka, M., Satoh, A., Matsumoto, M., Yoshino, T., Tanaka, T. (2013). Identification and functional analysis of delta-9 desaturase, a key enzyme in PUFA synthesis, isolated from the oleaginous diatom Fistulifera. PLoS One, 8(9), e73507. [31] Xie, S. Z., Garcia-Prat, L., Voisin, V., Ferrari, R., Gan, O. I., Wagenblast, E., Kaufmann, K. B., Zeng, A. G. X., Takayanagi, S. I., Patel, I., Lee, E. K. Jargstorf, J., Holmes, G., Romm, G., Pan, K., Shoong, M., Vedi, A., Luberto, C., Minden, M. D., Bader, G. D., Laurenti, E., Dick, J. E., (2019). Sphingolipid Modulation Activates Proteostasis Programs to Govern Human Hematopoietic Stem Cell Self-Renewal. Cell stem cell, 25(5), 639-653. [32] Mashima, R., Okuyama, T., Ohira, M. (2019). Biosynthesis of long chain base in sphingolipids in animals, plants and fungi. Future Science OA, 6(1), FSO434. [33] Hashimoto, K., Yoshizawa, A. C., Okuda, S., Kuma, K., Goto, S., Kanehisa, M. (2008). The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. Journal of lipid research, 49(1), 183-191. [34] Krishnamurthy, K., Dasgupta, S., Bieberich, E. (2007). Development and characterization of a novel anti-ceramide antibody. Journal of lipid research, 48(4), 968-975. [35] Cowart, L. A., Szulc, Z., Bielawska, A., Hannun, Y. A. (2002). Structural determinants of sphingolipid recognition by commercially available anti-ceramide antibodies. Journal of lipid research, 43(12), 2042-2048. [36] Lin, G., Lee, P. T., Chen, K., Mao, D., Tan, K. L., Zuo, Z., Lin, W. W., Wang, L., Bellen, H. J. (2018). Phospholipase PLA2G6, a Parkinsonism-associated gene, affects Vps26 and Vps35, retromer function, and ceramide levels, similar to α-Synuclein gain. Cell metabolism, 28(4), 605-618. [37] Oswald, M. C., West, R. J., Lloyd-Evans, E., Sweeney, S. T. (2015). Identification of dietary alanine toxicity and trafficking dysfunction in a Drosophila model of hereditary sensory and autonomic neuropathy type 1. Human molecular genetics, 24(24), 6899-6909. [38] Bauer, R., Voelzmann, A., Breiden, B., Schepers, U., Farwanah, H., Hahn, I., Eckardt, F., Sandhoff, K., Hoch, M. (2009). Schlank, a member of the ceramide synthase family controls growth and body fat in Drosophila. The EMBO journal, 28(23), 3706-3716. [39] Winklhofer, K. F., Tatzelt, J., Haass, C. (2008). The two faces of protein misfolding: gain‐and loss‐of‐function in neurodegenerative diseases. The EMBO journal, 27(2), 336-349. [40] Mizuno, Y., Hattori, N., Mori, H., Suzuki, T., Tanaka, K. (2001). Parkin and Parkinson's disease. Current opinion in neurology, 14(4), 477-482. [41] Arkinson, C., Walden, H. (2018). Parkin function in Parkinson's disease. Science, 360(6386), 267-268. [42] Sakono, M., Zako, T. (2010). Amyloid oligomers: formation and toxicity of Aβ oligomers. The FEBS journal, 277(6), 1348-1358. [43] Manczak, M., Kandimalla, R., Yin, X., Reddy, P. H. (2018). Hippocampal mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. Human molecular genetics, 27(8), 1332-1342. [44] Toops, K. A., Tan, L. X., Jiang, Z., Radu, R. A., Lakkaraju, A. (2015). Cholesterol-mediated activation of acid sphingomyelinase disrupts autophagy in the retinal pigment epithelium. Molecular biology of the cell, 26(1), 1-14. [45] Lee, J. K., Jin, H. K., Park, M. H., Kim, B. R., Lee, P. H., Nakauchi, H., Carter, J. E., He, X., Schuchman, E. H., Bae, J. S. (2014). Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer’s disease. Journal of Experimental Medicine, 211(8), 1551-1570. [46] Corcelle-Termeau, E., Vindeløv, S. D., Hämälistö, S., Mograbi, B., Keldsbo, A., Bräsen, J. H., Favaro, E., Adam, D., Szyniarowski, P., Hofman, P., Krautwald, S. Farkas, T., Pertersen, N. H. T., Rohde, M., Linkermann, A., Jäättelä, M. (2016). Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure. Autophagy, 12(5), 833-849. [47] Gabande-Rodriguez, E., Boya, P., Labrador, V., Dotti, C. G., Ledesma, M. D. (2014). High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A. Cell Death Differentiation, 21(6), 864-875. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76899 | - |
| dc.description.abstract | 人類的DEGS1為二羥基神經醯胺去飽和酶(dihydroceramide desaturase),在神經脂質(sphingolipid)的從頭合成(de novo synthesis)路徑中,負責將二羥基神經醯胺(dihydroceramide)催化為神經醯胺(ceramide),其蛋白質結構上除了有六個可能的跨膜結構域(transmembrane domains)外,還有三個可能具有酵素催化活性的組胺酸膜體(histidine motifs)。先前的研究指出不同的DEGS1突變會造成神經退化性疾病,而實驗室過去也發現將果蠅的同源基因ifc剔除(knockout)後會造成發育遲緩並在二齡幼蟲階段死亡,若只將果蠅視神經的ifc基因剔除則會造成光依賴性(light-dependent)神經退化,且是由於二羥基神經醯胺堆積所致,顯示Ifc的酵素催化活性對視神經功能維持的重要性。我們將Ifc上對應於病人的位點進行相同突變,並在ifc-KO的情況下全身性過表達這些帶有不同突變的ifc,發現只要突變位置發生在Ifc的組胺酸膜體上即無法拯救果蠅免於死亡。接著我們以西方墨點法測試各組別的蛋白質表現量,結果顯示若將第一組組胺酸膜體或所有組胺酸膜體進行突變,以及N255S的點突變皆會導致Ifc的蛋白質穩定度下降。此外,我們也想測試Ifc的組胺酸模體突變是否會導致二羥基神經醯胺的堆積,結果發現以群組分析(clonal analysis)在果蠅幼蟲眼碟(eye disc)的ifc-KO細胞中過表達帶有第二組或第三組組胺酸模體突變的ifc並不會造成二羥基神經醯胺的訊號有明顯的增加,然而經神經脂質體學分析(sphingolipidomics analysis)則看到在ifc-KO的果蠅幼蟲全身性過表達帶有組胺酸模體突變的ifc確實會導致二羥基神經醯胺/神經醯胺的比值上升。最後我們在果蠅眼睛失去ifc的情況下過表達帶有不同突變的ifc,發現僅有第三組組胺酸膜體的突變無法拯救光依賴性神經退化,此結果顯示了組胺酸膜體對Ifc的酵素催化活性與神經功能維持的重要性。 有研究指出神經醯胺的含量會影響自噬作用(autophagy)的進行,而實驗室過去也發現過表達ifc會促進自噬作用的啟動,然而卻無法順利將自噬小體(autophagosome)進行酸化分解,因此我們想知道過表達ifc是對自噬作用的哪個階段造成影響。結果顯示無論是過表達野生型(wild type)或是帶有第三組組胺酸模體突變的ifc皆會導致自噬小體的標記(marker) GABARAP及自噬小體內作為特殊運送蛋白質(cargo protein)隨自噬作用被分解的ref(2)P表現量上升,而這與我們將syntaxin17的STX17基因減弱(gene knockdown)來抑制自噬小體及溶酶體(lysosome)結合的結果相似,顯示過表達ifc可能是對自噬作用下游的該步驟造成影響,至於為何在過表達野生型或帶有組胺酸模體突變的ifc看到相似的結果,我們推論這是由於突變並沒有完全破壞Ifc的酵素催化活性所致。 | zh_TW |
| dc.description.abstract | Human DEGS1 is a dihydroceramide desaturase that converts dihydroceramide to ceramide in the de novo synthesis pathway. It contains six transmembrane domains and three histidine motifs which are essential for catalytic activity. Previously we have found that loss of ifc, the homolog of DEGS1 in Drosophila, results in the death of larvae at the L2 larval stage, and loss of ifc in Drosophila photoreceptors leads to light-dependent neurodegeneration which is caused by the accumulation of dihydroceramide. According to the studies, different DEGS1 mutations lead to neurodegeneration disorder. To test the impact of these mutations on lethality rescue, we created different ifc point mutations which are the same as the neurodegeneration patients that have mutant DEGS1, and overexpressed in ifc-KO Drosophila. The result showed that only the mutations on histidine motifs cannot rescue ifc-KO lethality. We further used western blot to test the expression level of different ifc mutations, finding that CAT1m, one of the histidine motifs mutant ifc, CATtotalm and N255S affect Ifc protein stability. Also, we found that overexpression of ifc-CAT2m-mCherry or ifc-CAT3m-mCherry did not increase dihydroceramide level in ifc-KO cells of Drosophila eye disc. Nevertheless, sphingolipidomics analysis showed that ifc-CAT2m-mCherry and ifc-CAT3m-mCherry overexpressing increase dihydroceramide/ceramide ratio in ifc-KO Drosophila. Furthermore, we found overexpression of ifc-CAT3m-mCherry cannot rescue light-dependent neurodegeneration in ifc-KO photoreceptor, indicating that histidine motifs play an important role in catalytic activity and neuronal maintenance. Based on research, ceramide level can affect autophagy, and previously we have found that ifc overexpressing can induce autophagy initiation but cannot complete. To further investigate the stage that overexpressed ifc blocks, we used gene knockdown to block different stages of autophagy and observed the signal difference of GABARAP, an autophagosome marker, and ref(2)P, an autophagy cargo protein. The result showed that overexpression of ifc-mCherry or ifc-CAT3m-mCherry increases GABARAP and ref(2)P level. And the phenotype is similar to the syntaxin17 gene knockdown that blocks the fusion of autophagosome and lysosome. As a result, we though that ifc overexpressing can probably block the fusion of autophagosome and lysosome to affect autophagy. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:39:55Z (GMT). No. of bitstreams: 1 U0001-1108202010482300.pdf: 2926154 bytes, checksum: ec012fa77a815b8576b9f685e4ef5273 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書………………………………………………………………………...# 誌謝……………………………………………………………………………………....i 中文摘要………………………………………………………………………………...ii Abstract………………………………………………………………………………….iv 目錄……………………………………………………………………………………..vi 第一章 實驗背景……………………………………………………………………….1 1.1 二羥基神經醯胺去飽和酶(DEGS1)對哺乳類及果蠅生理功能之影響…......2 1.2 神經脂質(sphingolipid)的合成與功能………………………………………..3 1.3 Ifc之功能與酵素催化中心……………………………………………………4 1.4 自噬作用(autophagy)之路徑與調控…………..………………………………5 1.5 小結………………………………………………………………………….…7 第二章 實驗材料與方法……………………………………………………………….9 2.1 果蠅株及培養方法…………………………………………………………...10 2.2 果蠅食物培養基製備………………………………………………………...11 2.3 QuikChange聚合酶連鎖反應(QuikChange PCR)……………………….......11 2.4 西方墨點法(Western blot)……………………………………………………13 2.5 免疫螢光染色與共軛焦顯微鏡(IHC confocal microscope)……………...15 2.6 視神經電位紀錄(electroretinogram)………………………………………....17 2.7 神經脂質體學分析(sphingolipidomics analysis)…………………………….18 2.8 統計分析…………………………………………………………………...…18 第三章 實驗結果……………………………………………………………………...19 3.1 在果蠅全身性過表達帶有組胺酸模體(histidine motif)突變的ifc轉殖基因(transgene)無法拯救ifc基因剔除(gene knockout)導致的死亡…………….20 3.2 對Ifc上可能具有酵素催化功能之組胺酸模體進行突變會造成二羥基神經醯胺(dihydroceramide)堆積………………………………………………….22 3.3 在果蠅眼睛過表達帶有第三組組胺酸模體(histidine motif)突變的ifc轉殖基因(transgene)無法拯救失去ifc所導致的光依賴性視神經退化(light-dependent neurodegeneration)………………………………………………...23 3.4 過表達野生型(wild type)或帶有組胺酸模體(histidine motif)突變之ifc會導致果蠅視神經細胞內的自噬作用(autophagy)在發展後期受阻……………24 第四章 實驗討論……………………………………………………………………...26 4.1 Ifc/DEGS1的蛋白質特性及不同點突變對其產生之影響…………………27 4.2 組胺酸模體(histidine motifs)對Ifc酵素催化功能的影響………………….28 4.3 探討為何部分Ifc/DEGS1突變轉殖基因(transgene)無法拯救果蠅發育存活卻能夠拯救視神經功能與型態……………………………………………...29 第五章 未來實驗方向………………………………………………………………...32 5.1 確認不同ifc突變轉殖基因(transgene)是否會產生鞘氨醇(sphingosine)的異構代謝產物(isomeric metabolite),以及該物質對神經是否具有毒性…….33 5.2 探討過表達ifc對自噬作用(autophagy)造成的影響是由神經醯胺(ceramide)或其下游的哪一種神經脂質(sphingolipid)的增加有關…………………….34 5.3 探討ifc突變轉殖基因(transgene)對於二羥基神經醯胺(dihydroceramide)的堆積與活性氧物質(ROS)的生成…………………………………………….35 第六章 實驗圖表……………………………………………………………………...36 Fig. 1 測試不同ifc或DEGS1突變轉殖基因(transgene)對於ifc基因剔除(gene knockout)致死性(lethality)的拯救效果…………………………………...37 Fig. 2 測試不同ifc及DEGS1突變轉殖基因(transgene)的蛋白質表現量…….38 Fig. 3 以群組分析(clonal analysis)的方式在果蠅幼蟲眼碟(eye disc)比較過表達 帶有組胺酸模體(histidine motif)突變的Ifc對野生型(wild type)細胞與ifc 基因剔除細胞內二羥基神經醯胺(dihydroceramide, DHC)分布的影響...39 Fig. 4 以神經脂質體學分析(sphingolipidomics analysis)測量Ifc組胺酸模體 (histidine motif)突變對二羥基神經醯胺(dihydroceramide, DHC)、神經醯 胺(ceramide, Cer),以及兩者間比值的影響……………………………..40 Fig. 5 測試不同ifc或DEGS1突變轉殖基因(transgene)對於失去ifc所導致的 光依賴性視神經退化(light-dependent neurodegeneration)在形態及功能上 的保護效果………………………………………………………………...41 Fig. 6 測試過表達野生型(wild type) ifc或帶有組胺酸模體(histidine motif)突變 的ifc對於果蠅視神經細胞內自噬作用(autophagy)的影響……………..43 第七章 參考文獻……………………………………………………………………...45 | |
| dc.language.iso | zh-TW | |
| dc.subject | 神經退化 | zh_TW |
| dc.subject | 二羥基神經醯胺去飽和酶 | zh_TW |
| dc.subject | 自噬作用 | zh_TW |
| dc.subject | dihydroceramide desaturase | en |
| dc.subject | autophagy | en |
| dc.subject | neurodegeneration | en |
| dc.title | Ifc之酵素催化能力對神經功能維持及自噬作用調控之研究 | zh_TW |
| dc.title | Investigating the catalytic activity of Ifc in neuronal maintenance and autophagic regulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 簡正鼎(Cheng-Ting Chien),郭錦樺(Chin-Hua Kuo) | |
| dc.subject.keyword | 二羥基神經醯胺去飽和酶,自噬作用,神經退化, | zh_TW |
| dc.subject.keyword | dihydroceramide desaturase,autophagy,neurodegeneration, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU202002906 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1108202010482300.pdf 未授權公開取用 | 2.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
