請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76898完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘俊良(Chun-Liang Pan) | |
| dc.contributor.author | Yueh-Chen Chiang | en |
| dc.contributor.author | 江玥蓁 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:39:53Z | - |
| dc.date.available | 2021-07-10T21:39:53Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-11 | |
| dc.identifier.citation | Bargmann, C.I., Hartwieg, E., and Horvitz, H.R. (1993). Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515-527. Bauer, E.P. (2015). Serotonin in fear conditioning processes. Behav Brain Res 277, 68-77. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94. Castellucci, V., Pinsker, H., Kupfermann, I., and Kandel, E.R. (1970). Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science 167, 1745-1748. Collins, K.M., Bode, A., Fernandez, R.W., Tanis, J.E., Brewer, J.C., Creamer, M.S., and Koelle, M.R. (2016). Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition. Elife 5. Dekker, L.V., McIntyre, P., and Parker, P.J. (1993). Altered substrate selectivity of PKC-eta pseudosubstrate site mutants. FEBS Lett 329, 129-133. Dempsey, C.M., Mackenzie, S.M., Gargus, A., Blanco, G., and Sze, J.Y. (2005). Serotonin (5HT), fluoxetine, imipramine and dopamine target distinct 5HT receptor signaling to modulate Caenorhabditis elegans egg-laying behavior. Genetics 169, 1425-1436. Desai, C., Garriga, G., McIntire, S.L., and Horvitz, H.R. (1988). A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature 336, 638-646. Dickinson, A., and Mackintosh, N.J. (1978). Classical conditioning in animals. Annu Rev Psychol 29, 587-612. Flavell, S.W., Pokala, N., Macosko, E.Z., Albrecht, D.R., Larsch, J., and Bargmann, C.I. (2013). Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell 154, 1023-1035. Gurel, G., Gustafson, M.A., Pepper, J.S., Horvitz, H.R., and Koelle, M.R. (2012). Receptors and other signaling proteins required for serotonin control of locomotion in Caenorhabditis elegans. Genetics 192, 1359-1371. Ha, H.I., Hendricks, M., Shen, Y., Gabel, C.V., Fang-Yen, C., Qin, Y., Colon-Ramos, D., Shen, K., Samuel, A.D., and Zhang, Y. (2010). Functional organization of a neural network for aversive olfactory learning in Caenorhabditis elegans. Neuron 68, 1173-1186. Hobson, R.J., Hapiak, V.M., Xiao, H., Buehrer, K.L., Komuniecki, P.R., and Komuniecki, R.W. (2006). SER-7, a Caenorhabditis elegans 5-HT7-like receptor, is essential for the 5-HT stimulation of pharyngeal pumping and egg laying. Genetics 172, 159-169. Jin, X., Pokala, N., and Bargmann, C.I. (2016). Distinct Circuits for the Formation and Retrieval of an Imprinted Olfactory Memory. Cell 164, 632-643. Kimata, T., Sasakura, H., Ohnishi, N., Nishio, N., and Mori, I. (2012). Thermotaxis of C. elegans as a model for temperature perception, neural information processing and neural plasticity. Worm 1, 31-41. Kunitomo, H., Sato, H., Iwata, R., Satoh, Y., Ohno, H., Yamada, K., and Iino, Y. (2013). Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans. Nat Commun 4, 2210. Lesch, K.P., and Waider, J. (2012). Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron 76, 175-191. Liu, Z., Zhou, J., Li, Y., Hu, F., Lu, Y., Ma, M., Feng, Q., Zhang, J.E., Wang, D., Zeng, J., et al. (2014). Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81, 1360-1374. Lovinger, D.M. (2010). Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58, 951-961. Marder, E., O'Leary, T., and Shruti, S. (2014). Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annu Rev Neurosci 37, 329-346. Mello, C.C., Kramer, J.M., Stinchcomb, D., and Ambros, V. (1991). Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10, 3959-3970. Melo, J.A., and Ruvkun, G. (2012). Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell 149, 452-466. Miesenbock, G., De Angelis, D.A., and Rothman, J.E. (1998). Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192-195. Mohammad-Zadeh, L.F., Moses, L., and Gwaltney-Brant, S.M. (2008). Serotonin: a review. J Vet Pharmacol Ther 31, 187-199. Mori, I., and Ohshima, Y. (1995). Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376, 344-348. Pokala, N., Liu, Q., Gordus, A., and Bargmann, C.I. (2014). Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels. Proc Natl Acad Sci U S A 111, 2770-2775. Ranganathan, R., Cannon, S.C., and Horvitz, H.R. (2000). MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature 408, 470-475. Rhoades, J.L., Nelson, J.C., Nwabudike, I., Yu, S.K., McLachlan, I.G., Madan, G.K., Abebe, E., Powers, J.R., Colon-Ramos, D.A., and Flavell, S.W. (2019). ASICs Mediate Food Responses in an Enteric Serotonergic Neuron that Controls Foraging Behaviors. Cell 176, 85-97 e14. Saeki, S., Yamamoto, M., and Iino, Y. (2001). Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. J Exp Biol 204, 1757-1764. Sawin, E.R., Ranganathan, R., and Horvitz, H.R. (2000). C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26, 619-631. Senn, V., Wolff, S.B., Herry, C., Grenier, F., Ehrlich, I., Grundemann, J., Fadok, J.P., Muller, C., Letzkus, J.J., and Luthi, A. (2014). Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81, 428-437. Sze, J.Y., Victor, M., Loer, C., Shi, Y., and Ruvkun, G. (2000). Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403, 560-564. Torayama, I., Ishihara, T., and Katsura, I. (2007). Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone. J Neurosci 27, 741-750. Troemel, E.R., Kimmel, B.E., and Bargmann, C.I. (1997). Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 91, 161-169. Tsunozaki, M., Chalasani, S.H., and Bargmann, C.I. (2008). A behavioral switch: cGMP and PKC signaling in olfactory neurons reverses odor preference in C. elegans. Neuron 59, 959-971. White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314, 1-340. Zanoveli, J.M., Carvalho, M.C., Cunha, J.M., and Brandao, M.L. (2009). Extracellular serotonin level in the basolateral nucleus of the amygdala and dorsal periaqueductal gray under unconditioned and conditioned fear states: an in vivo microdialysis study. Brain Res 1294, 106-115. Zhang, Y., Lu, H., and Bargmann, C.I. (2005). Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438, 179-184. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76898 | - |
| dc.description.abstract | 學習幫助動物更好地適應環境變化。學習的過程中,動物改變神經迴路的結構或功能,進而調控其行為。血清素(serotonin)是一種神經調節劑,高度保留在不同物種,調控動物的內在狀態,如醒覺、焦慮以及恐懼。然而,目前研究並未詳細指出血清素迴路與行為可塑性的關聯。本研究利用秀麗隱桿線蟲,探討內在生理狀況如何重塑血清素迴路。當正常生理機制遭受干擾,如粒線體的損傷,線蟲會調整其行為以適應環境。線蟲可連結粒線體受損的事件與其當下所攝取食物的訊息,並改變其先天對於無害細菌的喜好,進而產生厭惡行為。此行為具有聯想記憶的數個特徵,如專一性。我們的研究指出粒線體的損傷增加血清素於NSM之合成與釋放,且極可能透過其下游之中間神經元RIB表現的G蛋白偶聯受體SER-4,調控線蟲的行為。NSM神經元可能具有監控線蟲消化道的功能,暗示其偵測內在生理狀況的可能性。未來我們將著重於此聯想學習中,NSM與RIB神經元活性的改變,與個體線蟲如何衍生運動策略。此研究使我們對於內在狀態相關之學習行為與血清素的關聯有了更進一步的了解。 | zh_TW |
| dc.description.abstract | Internal physiological states shape behaviors evoked by sensory cues by changing the structure or function of neuronal circuits. Serotonin is a conserved neuromodulatory signal that has been proposed to report internal states of the animal, such as arousal, anxiety or fear, but how serotonergic circuits link internal states to behavioral plasticity remains largely unclear. Here, we characterize a serotonin circuit that modulates aversive associative learning triggered by mitochondrial insult in the nematode Caenorhabditis elegans. Innate preference of C. elegans for nutritious bacteria can switch to aversion by concurrent disruption of mitochondrial functions. This learned bacterial aversion displays core features of associated aversive memory including specificity to the conditioned stimuli. We found that serotonin is required for conditioned bacterial aversion, and it enhances bacterial avoidance in the presence of mild mitochondrial disruption. Mitochondrial injury likely increases serotonin synthesis and secretion from the NSM modulatory neurons, which targets the interneurons RIB that express the G-protein coupled serotonergic receptor SER-4. NSM is hypothesized to monitor signals from the digestive tract of C. elegans, raising the possibility that it is an interoceptive neuron for reporting the physiological states of the animal. In the future, we will investigate how serotonergic signaling reshapes circuit functions and organizes the animals’ locomotion strategies to promote avoidance behavior. Our findings provide insight into the neuromodulatory mechanisms underlying behavioral plasticity triggered by changes of the internal states. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:39:53Z (GMT). No. of bitstreams: 1 U0001-1108202010525100.pdf: 81708003 bytes, checksum: 62dc24b60975f3e84ed3d5114185858e (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 # ACKNOWLEDGEMENT i 中文摘要 iii ABSTRACT iv CONTENTS vi Chapter 1 INTRODUCTION 1 1.1 Serotonergic Signaling and Learning 2 1.2 Food- And Pathogen-Related Behavioral Plasticity in C. elegans 3 1.3 Mitochondrial Disruption: A Paradigm for Studying Serotonin Signaling and Aversive Conditioned Behavior 5 Chapter 2 MATERIALS and METHODS 8 2.1 C. elegans Strains 8 2.2 Molecular Biology 9 2.3 Anitmycin Assay 9 2.4 Locomotion Assessment 11 2.5 Bacterial Chemotaxis Assay 11 2.6 Serotonin Pharmacology Experiment 12 2.7 Histamine Supplementation 12 2.8 Microscopy 13 2.9 Serotonin Staining 13 Chapter 3 RESULTS 15 3.1 Mitochondrial Insults Alter Bacterial Preference and Induce Avoidance Behavior in C. elegans 15 3.2 Serotonin Signaling Regulates Conditioned Avoidance Behavior 16 3.3 The Serotonergic Neuron NSM Is Essential for Conditioned Bacterial Avoidance 18 3.4 Mitochondrial Stress Increases NSM-Specific tph-1 Transcription and Synaptic Secretion 20 3.5 The SER-4 Serotonin Receptor Is Important for Conditioned Bacterial Avoidance 22 3.6 Serotonin Signaling in Conditioned Bacterial Avoidance Requires the SER-4 Serotonin Receptor in the RIB Interneuron 23 Chapter 4 DISCUSSION 25 4.1 Bacterial Avoidance Behavior Induced by Mitochondrial Disruption 25 4.2 The Serotonergic Neuron NSM Modulates Conditioned Avoidance Behavior 27 4.3 The Interneuron RIB Receives Serotonin Signals to Drive Conditioned Avoidance Behavior 28 Chapter 5 FIGURES 31 Figure 1. Schematic diagram of the bacterial avoidance assay by antimycin. 32 Figure 2. Bacterial avoidance induced by antimycin. 34 Figure 3. Bacterial chemotaxis assay. 36 Figure 4. C. elegans changed innate preference for nutritious bacteria after conditioning. 38 Figure 5. Serotonin was required for conditioned avoidance behavior. 40 Figure 6. The locomotion of tph-1 is normal. 42 Figure 7. The schematic diagram of the antimycin assay with the pretreatment of exogenous serotonin. 44 Figure 8. Excessive serotonin promoted conditioned avoidance behavior of the wild-type animals. 46 Figure 9. tph-1 expression pattern. 48 Figure 10. tph-1 functioned in serotonergic neurons to regulate bacterial conditioned avoidance. 50 Figure 11. tph-1 functioned in NSM to regulate bacterial conditioned avoidance. 52 Figure 12. tph-1 did not function in serotonergic neuron ADF or HSN to regulate bacterial conditioned avoidance. 54 Figure 13. NSM was necessary for bacterial conditioned avoidance. 56 Figure 14. NSM was sufficient to trigger bacterial conditioned avoidance under mitochondrial damage. 58 Figure 15. The expression level of Ptph-1::mCherry in NSM was increased under mitochondrial damage. 60 Figure 16. The two major branches were likely axons of NSM. 62 Figure 17. Serotonin were enriched in the two major branches of NSM. 64 Figure 18. NSM increased serotonin secretion under mitochondrial damage. 66 Figure 19. Serotonin receptor SER-4 acted downstream to regulate bacterial conditioned avoidance behavior. 68 Figure 20. The locomotion of ser-4 is normal. 70 Figure 21. ser-4 expression pattern. 72 Figure 22. ser-4 functioned in RIB to regulate bacterial conditioned avoidance. 74 Figure 23. ser-4 did not function in AIB or NSM to regulate bacterial conditioned avoidance. 76 Chapter 6 REFERENCE 78 | |
| dc.language.iso | en | |
| dc.subject | 秀麗隱桿線蟲 | zh_TW |
| dc.subject | 血清素 | zh_TW |
| dc.subject | 粒線體損傷 | zh_TW |
| dc.subject | 聯想學習 | zh_TW |
| dc.subject | 神經可塑性 | zh_TW |
| dc.subject | Mitchondrial Disruption | en |
| dc.subject | Associative Learning | en |
| dc.subject | Neuronal Plasticity | en |
| dc.subject | Caenorhabditis elegans | en |
| dc.subject | Serotonin | en |
| dc.title | 探討線蟲受粒線體損傷引發之細菌迴避行為的血清素神經迴路 | zh_TW |
| dc.title | Investigation of the Serotonergic Circuit for Conditioned Bacterial Avoidance by Mitochondrial Insults in C. elegans | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 連正章(Cheng-Chang Lien),吳益群 (Yi-Chun Wu) | |
| dc.subject.keyword | 秀麗隱桿線蟲,神經可塑性,聯想學習,粒線體損傷,血清素, | zh_TW |
| dc.subject.keyword | Caenorhabditis elegans,Neuronal Plasticity,Associative Learning,Mitchondrial Disruption,Serotonin, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU202002908 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1108202010525100.pdf 未授權公開取用 | 79.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
