請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76893完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡育彰(Yu-Chang Tsai) | |
| dc.contributor.author | Fan-Yu Tseng | en |
| dc.contributor.author | 曾繁宇 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:39:40Z | - |
| dc.date.available | 2021-07-10T21:39:40Z | - |
| dc.date.copyright | 2020-09-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-13 | |
| dc.identifier.citation | 王維晨. (2018). 水稻細胞分裂素訊息反應調節蛋白 OsRR9, 10 與鹽害逆境耐受性之關係. 吳函䭲. (2018). 水稻細胞分裂素訊息反應調節蛋白 OsRR6 與 OsRR11 於鹽害逆境下之生理功能探討. 臺灣大學農藝學研究所學位論文, 1-98. 林德哲. (2016). 水稻細胞分裂素訊息反應調節蛋白 OsRR9 和 OsRR10 之生理功能探討. 林德哲, 侯雅文, 吳涵䭲, 蔡育彰. (2017). 利用超早熟水稻 Kitaake 結合簡單的突變篩選方法建立高效率 CRISPR/Cas9 基因編輯技術. 作物, 環境與生物資訊, 14(3), 175-186. 崔立新, 和亚男, 李亚萍, 谢先芝. (2017). 水稻 OsHKT 基因表达模式分析. 中国水稻科学, 31(6), 559-567. Agarwal, P. K., Agarwal, P., Reddy, M., Sopory, S. K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25(12), 1263-1274. Argyros, R. D., Mathews, D. E., Chiang, Y.-H., Palmer, C. M., Thibault, D. M., Etheridge, N., . . . Schaller, G. E. (2008). Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. The Plant Cell, 20(8), 2102-2116. Armstrong, D. J. (1994). Cytokinin oxidase and the regulation of cytokinin degradation. Cytokinins: Chemistry, Activity, and Function. CRC Press, Boca Raton, FL, 139-154. Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., . . . Matsuoka, M. (2005). Cytokinin oxidase regulates rice grain production. Science, 309(5735), 741-745. Brandstatter, I., Kieber, J. J. (1998). Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. The Plant Cell, 10(6), 1009-1019. Chinnusamy, V., Schumaker, K., Zhu, J. K. (2004). Molecular genetic perspectives on cross‐talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany, 55(395), 225-236. Chory, J., Reinecke, D., Sim, S., Washburn, T., Brenner, M. (1994). A role for cytokinins in de-etiolation in Arabidopsis (det mutants have an altered response to cytokinins). Plant Physiology, 104(2), 339-347. Cock, J., Yoshida, S., Forno, D. A. (1976). Laboratory manual for physiological studies of rice: Int. Rice Res. Inst. Colebrook, E. H., Thomas, S. G., Phillips, A. L., Hedden, P. (2014). The role of gibberellin signalling in plant responses to abiotic stress. Journal of Experimental Biology, 217(1), 67-75. Dubouzet, J. G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E. G., Miura, S., . . . Yamaguchi‐Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought‐, high‐salt‐and cold‐responsive gene expression. The Plant Journal, 33(4), 751-763. Finkelstein, R. R. (1994). Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. The Plant Journal, 5(6), 765-771. Frey, A., Audran, C., Marin, E., Sotta, B., Marion-Poll, A. (1999). Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression. Plant Molecular Biology, 39(6), 1267-1274. Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt, N., Maurel, C. (2015). Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. The Plant Cell, 27(7), 1945-1954. Guiltinan, M. J., Marcotte, W. R., Quatrano, R. S. (1990). A plant leucine zipper protein that recognizes an abscisic acid response element. Science, 250(4978), 267-271. Gupta, S., Rashotte, A. M. (2012). Down-stream components of cytokinin signaling and the role of cytokinin throughout the plant. Plant Cell Reports, 31(5), 801-812. Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.-S. P. (2012). Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends in Plant Science, 17(3), 172-179. Hosoda, K., Imamura, A., Katoh, E., Hatta, T., Tachiki, M., Yamada, H., . . . Yamazaki, T. (2002). Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators. The Plant Cell, 14(9), 2015-2029. Huang, X., Hou, L., Meng, J., You, H., Li, Z., Gong, Z., . . . Shi, Y. (2018). The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Molecular Plant, 11(7), 970-982. Hwang, I., Chen, H.-C., Sheen, J. (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiology, 129(2), 500-515. Hwang, I., Sheen, J. (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature, 413(6854), 383-389. Ishida, K., Yamashino, T., Yokoyama, A., Mizuno, T. (2008). Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana. Plant and Cell Physiology, 49(1), 47-57. Jain, M., Tyagi, A. K., Khurana, J. P. (2006). Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biology, 6(1), 1. Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., Parcy, F. (2002). bZIP transcription factors in Arabidopsis. Trends in Plant Science, 7(3), 106-111. Karssen, C., Brinkhorst-Van der Swan, D., Breekland, A., Koornneef, M. (1983). Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta, 157(2), 158-165. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 17(3), 287-291. Kiba, T., Yamada, H., Mizuno, T. (2002). Characterization of the ARR15 and ARR16 response regulators with special reference to the cytokinin signaling pathway mediated by the AHK4 histidine kinase in roots of Arabidopsis thaliana. Plant and Cell Physiology, 43(9), 1059-1066. Kim, S. Y., Chung, H. J., Thomas, T. L. (1997). Isolation of a novel class of bZIP transcription factors that interact with ABA‐responsive and embryo‐specification elements in the Dc3 promoter using a modified yeast one‐hybrid system. The Plant Journal, 11(6), 1237-1251. Kucera, B., Cohn, M. A., Leubner-Metzger, G. (2005). Plant hormone interactions during seed dormancy release and germination. Seed Science Research, 15(4), 281-307. Kuroha, T., Tokunaga, H., Kojima, M., Ueda, N., Ishida, T., Nagawa, S., . . . Sakakibara, H. (2009). Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. The Plant Cell, 21(10), 3152-3169. Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., . . . Nambara, E. (2004). The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′‐hydroxylases: key enzymes in ABA catabolism. The EMBO Journal, 23(7), 1647-1656. Laplaze, L., Benkova, E., Casimiro, I., Maes, L., Vanneste, S., Swarup, R., . . . Herrera-Rodriguez, M. B. (2007). Cytokinins act directly on lateral root founder cells to inhibit root initiation. The Plant Cell, 19(12), 3889-3900. Leung, J., Giraudat, J. (1998). Abscisic acid signal transduction. Annual Review of Plant Biology, 49(1), 199-222. Lindgren, L. O., Stålberg, K. G., Höglund, A.-S. (2003). Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiology, 132(2), 779-785. Lohrmann, J., Buchholz, G., Keitel, C., Sweere, U., Kircher, S., Bäurle, I., . . . Harter, K. (1999). Differential expression and nuclear localization of response regulator-like proteins from Arabidopsis thaliana. Plant Biology, 1(05), 495-505. Lohrmann, J., Sweere, U., Zabaleta, E., Baurle, I., Keitel, C., Kozma-Bognar, L., . . . Harter, K. (2001). The response regulator ARR2: a pollen-specific transcription factor involved in the expression of nuclear genes for components of mitochondrial complex I in Arabidopsis. Molecular Genetics and Genomics, 265(1), 2-13. Lu, G., Gao, C., Zheng, X., Han, B. (2009). Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta, 229(3), 605-615. Mantri, N., Patade, V., Penna, S., Ford, R., Pang, E. (2012). Abiotic stress responses in plants: present and future. In Abiotic stress responses in plants (pp. 1-19): Springer. Mason, M. G., Mathews, D. E., Argyros, D. A., Maxwell, B. B., Kieber, J. J., Alonso, J. M., . . . Schaller, G. E. (2005). Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. The Plant Cell, 17(11), 3007-3018. Mok, M. C. (1994). Cytokinins and plant development. Cytokinins: Chemistry, Activity and Function, 155-166. Morgan, P. W., Drew, M. C. (1997). Ethylene and plant responses to stress. Physiologia Plantarum, 100(3), 620-630. Mukherjee, S., Choudhuri, M. (1983). Implications of water stress‐induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum, 58(2), 166-170. Nakashima, K., Ito, Y., Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149(1), 88-95. Narusaka, Y., Nakashima, K., Shinwari, Z. K., Sakuma, Y., Furihata, T., Abe, H., . . . Yamaguchi‐Shinozaki, K. (2003). Interaction between two cis‐acting elements, ABRE and DRE, in ABA‐dependent expression of Arabidopsis rd29A gene in response to dehydration and high‐salinity stresses. The Plant Journal, 34(2), 137-148. Nishiyama, R., Watanabe, Y., Fujita, Y., Le, D. T., Kojima, M., Werner, T., . . . Kakimoto, T. (2011). Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. The Plant Cell, 23(6), 2169-2183. Nongpiur, R., Soni, P., Karan, R., Singla-Pareek, S. L., Pareek, A. (2012). Histidine kinases in plants: cross talk between hormone and stress responses. Plant Signaling Behavior, 7(10), 1230-1237. Oh, S.-J., Song, S. I., Kim, Y. S., Jang, H.-J., Kim, S. Y., Kim, M., . . . Kim, J.-K. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology, 138(1), 341-351. Peleg, Z., Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 14(3), 290-295. Roychoudhury, A., Paul, A. (2012). Abscisic acid-inducible genes during salinity and drought stress. Advances in Medicine and Biology, 51, 1-78. Roychoudhury, A., Paul, S., Basu, S. (2013). Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Reports, 32(7), 985-1006. Sakai, H., Honma, T., Aoyama, T., Sato, S., Kato, T., Tabata, S., Oka, A. (2001). ARR1, a transcription factor for genes immediately responsive to cytokinins. Science, 294(5546), 1519-1521. Schroeder, J. I., Raschke, K., Neher, E. (1987). Voltage dependence of K+ channels in guard-cell protoplasts. Proceedings of the National Academy of Sciences, 84(12), 4108-4112. Sharan, A., Soni, P., Nongpiur, R. C., Singla-Pareek, S. L., Pareek, A. (2017). Mapping the ‘Two-component system’network in rice. Scientific Reports, 7(1), 1-13. Shinozaki, K., Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 3(3), 217-223. Song, S., Wang, G., Wu, H., Fan, X., Liang, L., Zhao, H., . . . Ayaad, M. (2020). OsMFT2 is involved in the regulation of ABA signaling‐mediated seed germination through interacting with OsbZIP23/66/72 in rice. The Plant Journal. Srivastava, A. K., Zhang, C., Caine, R. S., Gray, J., Sadanandom, A. (2017). Rice SUMO protease Overly Tolerant to Salt 1 targets the transcription factor, Osb ZIP 23 to promote drought tolerance in rice. The Plant Journal, 92(6), 1031-1043. Stock, A. M., Robinson, V. L., Goudreau, P. N. (2000). Two-component signal transduction. Annual Review of Biochemistry, 69(1), 183-215. Tanaka, Y., Sano, T., Tamaoki, M., Nakajima, N., Kondo, N., Hasezawa, S. (2005). Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiology, 138(4), 2337-2343. Tanaka, Y., Sano, T., Tamaoki, M., Nakajima, N., Kondo, N., Hasezawa, S. (2006). Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. Journal of Experimental Botany, 57(10), 2259-2266. Thompson, A. J., Jackson, A. C., Symonds, R. C., Mulholland, B. J., Dadswell, A. R., Blake, P. S., . . . Taylor, I. B. (2000). Ectopic expression of a tomato 9‐cis‐epoxycarotenoid dioxygenase gene causes over‐production of abscisic acid. The Plant Journal, 23(3), 363-374. To, J. P., Deruère, J., Maxwell, B. B., Morris, V. F., Hutchison, C. E., Ferreira, F. J., . . . Kieber, J. J. (2007). Cytokinin regulates type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay. The Plant Cell, 19(12), 3901-3914. To, J. P., Haberer, G., Ferreira, F. J., Deruere, J., Mason, M. G., Schaller, G. E., . . . Kieber, J. J. (2004). Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. The Plant Cell, 16(3), 658-671. Tognetti, V. B., Mühlenbock, P., Van Breusegem, F. (2012). Stress homeostasis–the redox and auxin perspective. Plant, Cell Environment, 35(2), 321-333. Tran, L.-S. P., Shinozaki, K., Yamaguchi-Shinozaki, K. (2010). Role of cytokinin responsive two-component system in ABA and osmotic stress signalings. Plant Signaling Behavior, 5(2), 148-150. Tran, L.-S. P., Urao, T., Qin, F., Maruyama, K., Kakimoto, T., Shinozaki, K., Yamaguchi-Shinozaki, K. (2007). Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proceedings of the National Academy of Sciences, 104(51), 20623-20628. Tsai, Y.-C., Weir, N. R., Hill, K., Zhang, W., Kim, H. J., Shiu, S.-H., . . . Kieber, J. J. (2012). Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiology, 158(4), 1666-1684. Tuteja, N. (2007). Abscisic acid and abiotic stress signaling. Plant Signaling Behavior, 2(3), 135-138. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences, 97(21), 11632-11637. Verma, V., Ravindran, P., Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16(1), 86. Wang, W.-C., Lin, T.-C., Kieber, J., Tsai, Y.-C. (2019). Response Regulators 9 and 10 Negatively Regulate Salinity Tolerance in Rice. Plant and Cell Physiology, 60(11), 2549-2563. Wang, Y., Li, L., Ye, T., Zhao, S., Liu, Z., Feng, Y. Q., Wu, Y. (2011). Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. The Plant Journal, 68(2), 249-261. Werner, T., Motyka, V., Strnad, M., Schmülling, T. (2001). Regulation of plant growth by cytokinin. Proceedings of the National Academy of Sciences, 98(18), 10487-10492. Wilkinson, S., Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, Cell Environment, 33(4), 510-525. Wohlbach, D. J., Quirino, B. F., Sussman, M. R. (2008). Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. The Plant Cell, 20(4), 1101-1117. Woolley, D., Wareing, P. (1972). The role of roots, cytokinins and apical dominance in the control of lateral shoot form in Solanum andigena. Planta, 105(1), 33-42. Xiang, Y., Tang, N., Du, H., Ye, H., Xiong, L. (2008). Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology, 148(4), 1938-1952. Yamaguchi-Shinozaki, K., Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol., 57, 781-803. Yang, C., Liu, J., Dong, X., Cai, Z., Tian, W., Wang, X. (2014). Short-term and continuing stresses differentially interplay with multiple hormones to regulate plant survival and growth. Molecular Plant, 7(5), 841-855. Yeh, S.-Y., Chen, H.-W., Ng, C.-Y., Lin, C.-Y., Tseng, T.-H., Li, W.-H., Ku, M. S. (2015). Down-regulation of cytokinin oxidase 2 expression increases tiller number and improves rice yield. Rice, 8(1), 36. Ying, S., Zhang, D.-F., Fu, J., Shi, Y.-S., Song, Y.-C., Wang, T.-Y., Li, Y. (2012). Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta, 235(2), 253-266. Zahir, Z., Asghar, H., Arshad, M. (2001). Cytokinin and its precursors for improving growth and yield of rice. Soil Biology and Biochemistry, 33(3), 405-408. Zhang, X., Wang, X., Zhuang, L., Gao, Y., Huang, B. (2019). Abscisic acid mediation of drought priming‐enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis. Physiologia Plantarum, 167(4), 488-501. Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. Zhu, J. K. (2007). Plant salt stress. Encyclopedia of Life Sciences. Zou, M., Guan, Y., Ren, H., Zhang, F., Chen, F. (2008). A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Molecular Biology, 66(6), 675-683. Zwack, P. J., Shi, X., Robinson, B. R., Gupta, S., Compton, M. A., Gerken, D. M., . . . Rashotte, A. M. (2012). Vascular expression and C-terminal sequence divergence of cytokinin response factors in flowering plants. Plant and Cell Physiology, 53(10), 1683-1695. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76893 | - |
| dc.description.abstract | 細胞分裂素 (cytokinin) 屬於一種植物激素,參與調控植物的許多生理功能,近年陸續有研究指出細胞分裂素的訊息傳遞會影響植物在逆境下的反應。OsRR9以及OsRR10是細胞分裂素下游的A型反應調節蛋白 (type-A RR),可接收磷酸根並負向調控細胞分裂素的訊息傳遞。本實驗室先前研究中osrr9/10突變株轉錄體研究中發現許多離層酸生合成以及下游轉錄因子的基因表現相較於野生型受到抑制,對植株外施離層酸處理後觀察osrr9/10雙重突變株與野生型相比氣孔導度與水分蒸散速率抑制情形較輕微,並在處理4天後保有較高的地上部鮮重和乾重,而在種子萌芽時期進行離層酸處理後突變株在2天後有相對較低的發芽抑制情形;對植株進行離層酸前處理後野生型與突變株相比相對水分含量亦有顯著提升,指出osrr9/10突變可能會抑制植物體中離層酸的訊號,進而降低其對於離層酸的敏感度,並且可能會影響植株在乾旱、滲透逆境下的耐受性。本文結果顯示OsRR9與OsRR10可能與離層酸反應之間具有交互作用,並在離層酸參與調節氣孔和植物生長的訊息中扮演正向調節的角色。 | zh_TW |
| dc.description.abstract | cytokinin is a group of plant hormone well known for its role in numerous aspects of growth and development in plants, such as regulating cell division and differentiation, organ morphogenesis, apical dominance and chlorophyll degradation. Recently, it is reported that cytokinin might also participates in stress response in plants as well. OsRR9 and OsRR10 are two type-A response regulators (type-A RR) downstream of cytokinin, which could receive phosphate and inhibit cytokinin signal response via negative feedback. Previous study has showed that the gene expression of ABA biosynthesis and its downstream transcriptional factors were inhibited in osrr9/10 mutant line. After treated with ABA, plant growth, stomatal conductance, evapotranspiration rate, and germination rate were less suppressed in osrr9/10 mutant compared with wild type. In addition, pretreating ABA increased relative water content in wild type under osmotic stress but not in osrr9/10 mutant, suggesting that ABA sensitivity decreased in mutant and might affect plant stress tolerance. These results showed that OsRR9 and OsRR10 might interact with ABA signaling and play a positive role in ABA response. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:39:40Z (GMT). No. of bitstreams: 1 U0001-1108202015532700.pdf: 5096558 bytes, checksum: 3dd436fd0a777a7e72ce967a5fed6b69 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 致謝 I 摘要 II Abstract III 目錄 IV 圖表索引 VI 前言 1 細胞分裂素在植株體中的功能 1 細胞分裂素在水稻中的下游訊息傳遞 1 細胞分裂素反應調節蛋白Type-A RRs 3 離層酸的功能 3 逆境下ABA依賴性以及非依賴性途徑 4 細胞分裂素與ABA在逆境下之交互作用 6 OsRR9和OsRR10調節細胞分裂素訊息傳遞以及與ABA之間的生理功能 7 材料與方法 9 植物材料與生長條件 9 離層酸處理測定發芽率 9 鹽害逆境處理 10 離層酸、ACC處理測定氣孔導度 10 滲透逆境處理 10 水分蒸散速率測定 11 相對水分含量(Relative water content, RWC)測定 11 離子滲漏 (Electrical conductivity) 分析 11 RNA萃取 11 移除 RNA 樣品中之 DNA 12 合成cDNA 13 Real-time qPCR 14 統計分析 15 結果 16 OsRR9、OsRR10基因編輯雙重突變系在ABA處理下之外表型 16 OsRR9、OsRR10基因編輯雙重突變系在ABA處理下有較高的氣孔導度 16 ACC處理無法拮抗ABA在OsRR9、OsRR10基因編輯雙重突變系與野生型中誘導的氣孔閉合 17 OsRR9、OsRR10基因編輯雙重突變系在ABA處理下發芽率與發芽後生長較不受到抑制 17 OsRR9、OsRR10雙重突變系在ABA外加處理下ABA相關基因之表現 18 OsRR9、OsRR10基因編輯雙重突變系在鹽害下ABA相關基因之表現 19 OsRR9、OsRR10基因編輯雙重突變系在鹽害處理下之外表型 19 OsRR9、OsRR10基因編輯雙重突變系經ABA前處理後在滲透逆境下有較高的相對水分含量 20 OsRR9、OsRR10可能也透過ABA非依賴性途徑調節植株的逆境反應 20 討論 22 OsRR9、OsRR10雙重突變系在鹽害逆境下的逆境反應 23 OsRR9、OsRR10對ABA的生合成及下游訊息傳遞的影響 24 ABA、細胞分裂素對氣孔的調節 25 OsRR9、OsRR10對種子發芽的影響 26 結論 28 參考文獻 29 圖表索引 Fig. 1. Phenotype analysis of osrr9/10 double mutant in response to ABA treatment. 41 Fig. 2. Stomatal conductance and transpiration rate of WT and osrr9/10 under ABA treatment.. 42 Fig. 3. Relative stomatal conductance of WT and osrr9/10 under ABA and ACC treatment.. 43 Fig. 4 . Relative germination rate of Wild type and osrr9/10 double mutants.. 44 Fig. 5. Post germination rate of Wild type and osrr9/10 double mutants.. 45 Fig. 6. Gene expression fold change of OsbZIP23 and OsbZIP72 in osrr9/10 mutant under ABA treatment. 46 Fig. 7. Gene expression fold change of OsbZIP23 and OsbZIP72 in osrr9/10 mutant under salt treatment. 47 Fig. 8. Root morphology of osrr9/10 mutant under NaCl and ABA treatment. 48 Fig. 9. Electrical conductance of WT and osrr9/10. 49 Fig. 10. Relative water content of WT and osrr9/10 under osmotic stress. 50 Fig. 11. Gene expression fold change of OsHKT1;1 in osrr9/10 mutant pretreated with fluridone under salt treatment. 51 Fig. 12. Gene expression fold change of OsDREB1A in osrr9/10 mutant under salt treatment. 52 Supplemental Fig. 1. Phylogenetic relationship of cytokinin signal Type-A RR from rice and Arabidopsis. 53 Supplemental Fig. 2. The sequence alignment of wild type OsRR9 and OsRR10 and mutants generated by CRISPR/Cas9. 54 Supplemental Fig. 3. Chlorophyll content of WT and osrr9/10 under BA treatment.. 55 Supplemental Fig. 4. Gene expression of rice OsRR9/10 in response to different stress conditions. 56 Supplemental Fig. 5. Salt recovery experiment of WT and osrr9/10. 57 Supplemental Fig. 6. Gene expression fold change of OsNCED4, OsbZIP66 and OsBZ8 in osrr9/10 mutant under salt treatment. 58 Table 1. Kimura solution recipe 59 Table 2. Primers used in this study 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | OsRR9 | zh_TW |
| dc.subject | 細胞分裂素 | zh_TW |
| dc.subject | OsRR10 | zh_TW |
| dc.subject | 離層酸 | zh_TW |
| dc.subject | OsRR10 | en |
| dc.subject | Cytokinin | en |
| dc.subject | ABA | en |
| dc.subject | OsRR9 | en |
| dc.title | 水稻細胞分裂素反應調節蛋白OsRR9、OsRR10與離層酸反應之交互作用 | zh_TW |
| dc.title | Studies on the Interaction between Rice Cytokinin Response Regulators, OsRR9 and OsRR10, and ABA Responses | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | 蔡育彰(0000-0001-5590-040X) | |
| dc.contributor.oralexamcommittee | 張孟基(Men-Chi Chang),洪傳揚(Chwan-Yang Hong),鄭萬興(Wan-Hsing Cheng) | |
| dc.contributor.oralexamcommittee-orcid | 張孟基(0000-0001-8081-4298),洪傳揚(0000-0002-1058-3073) | |
| dc.subject.keyword | 細胞分裂素,OsRR9,OsRR10,離層酸, | zh_TW |
| dc.subject.keyword | Cytokinin,OsRR9,OsRR10,ABA, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU202002969 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1108202015532700.pdf 未授權公開取用 | 4.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
