請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76889完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡懷楨(Huai-Jen Tsai) | |
| dc.contributor.author | Jui-Che Tsai | en |
| dc.contributor.author | 蔡睿哲 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:39:32Z | - |
| dc.date.available | 2021-07-10T21:39:32Z | - |
| dc.date.copyright | 2020-09-16 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | 行政院農委會漁業署,中華民國107年中華民國台閩地區漁業統計年報(2019). 劉文御、黃世鈴、張正芳、徐榮彬、陳敏隆、林式修,養殖淡水魚類疾病防治。水產試驗所特刊2 (2003) 2-46. Agnew, W., Barnes, A.C., Streptococcus iniae: An aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Veterinary Microbiology 122 (2007) 1-15. Allaker, R.P., Kapas, S., Adrenomedullin and mucosal defence: interaction between host and microorganism. Regulatory Peptides 112 (2003) 147-152. Altmann, F., Staudacher, E., Wilson, I.B.H., März, L., Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconjugate Journal 16 (1999) 109-123. Atkins, T.W., Biodegradation of poly (ethylene adipate) microcapsules in physiological media. Biomaterials 19 (1998) 61-67. Balamurugan, V., Sen, A., Saravanan, P., Singh, R.K., Biotechnology in the Production of Vaccine or Antigen for animal health. Journal of Animal and Veterinary Sciences 5 (2006) 487-495. Baneyx, F., Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology 10 (1999) 411–421. Bellamy, W., Takase, M., Wakabayashi, H., Kawase, K., Tomita, M., Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N ‐terminal region of bovine lactoferrin. Journal of Applied Bacteriology 73 (1992b) 472-479. Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K., Tomita, M., Identification of the bactericidal domain of lactoferrin. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1121 (1992a) 130-136. Bellamy, W., Yamauchi, K., Wakabayashi, H., Takase, M., Takakura, N., Shimamura, S., Tomita, M., Antifungal properties of lactoferricin B, a peptide derived from the N ‐terminal region of bovine lactoferrin. Letters in Applied Microbiology 18 (1994) 230-233. Berkhout, B., van Wamel, J.L.B., Beljaars, L., Meijer, D.K.F., Visser, S., Floris, R., Characterization of the anti-HIV effects of native lactoferrin and other milk proteins and protein-derived peptides. Antiviral Research 55 (2002) 341-355. Brogden, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology 3 (2005) 238-250. Brogden, K.A., Guthmiller, J.M., Salzet, M., Zasloff, M., The nervous system and innate immunity: the neuropeptide connection. Nature Immunology 6 (2005) 558-564. Caccavo, D., Pellegrino, N.M., Altamura, M., Rigon, A., Amati, L., Amoroso, A., Jirillo, E., Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. Journal of Endotoxin Research 8 (2002) 403-417. Chiou, A., Chen, L.H., Chen, S.K., Foodborne Illness in Taiwan 1981-1989. Annual Scientific Report of National Laboratories of Foods and Drugs, Department of Health, Executive Yuan 9 (1991) 452-453. Chou, K.C., Maggiora, G.M., Némethy, G., Scheraga, H.A., Energetics of the structure of the four-alpha-helix bundle in proteins. Proceedings of the National Academy of Sciences of the United States of America 85 (1988) 4295-4299. Cohn. F., Untersuchungen über Bakterien. Beitr Biol Pflanzen 1 (1872) 127-224. Contesini, F.J., Melo, R.R., Sato, H.H., An overview of Bacillus proteases: from production to application. Critical Reviews in Biotechnology 38 (2018) 321-334. Cramer, E., Pryzwansky, K.B., Villeval, J.L., Testa, U., Breton-Gorius, J., Ultrastructural localization of lactoferrin and myeloperoxidase in human neutrophils by immunogold. Blood 65 (1985) 423-432. de la Fuente-Núñez, C., Reffuveille, F., Fernández, L., Hancock, R.E.W., Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Current Opinion in Microbiology 16 (2013) 580-589. de Tejada, B.M., Antibiotic use and misuse during pregnancy and delivery: benefits and risks, International Journal of Environmental Research and Public Health 11 (2014) 7993-8009. Di Biase, A.M., Pietrantoni, A., Tinari, A., Siciliano, R., Valenti, P., Antonini, G., Seganti, L., Superti, F., Heparin-interacting sites of bovine lactoferrin are involved in anti-adenovirus activity. Journal of Medical Virology 64 (2003) 495-502. DiMiceli, L., Pool, V., Kelso, J.M., Shadomy, S.V., Iskander, J., Vaccination of yeast sensitive individuals: review of safety data in the US vaccine adverse event reporting system. Vaccine 24 (2006) 703-707. Durban, M.A., Silbersack, J., Schweder, T., Schauer, F., Bornscheuer, U.T., High level expression of a recombinant phospholipase C from Bacillus cereus in Bacillus subtilis, Applied Microbiology and Biotechnology 74 (2007) 634-639. Durocher, Y., Perret, S., Kamen, A., High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Research 30 (2002) e9. Eagon, R.G., Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. Journal of Bacteriology 83 (1962) 736-737. Ehrenberg. C.G., Dritter Beitrag zur Erkenntniss grosser Organisation in der Richtung des Kleinsten Raumes. Abhandlungen der Königlichen Akademie der Wissenschaften Berlin (1833) 145-336. Elass, E., Masson, M., Mazurier, J., Legrand, D., Lactoferrin inhibits the lipopolysaccharide-induced expression and proteoglycan-binding ability of interleukin-8 in human endothelial cells. Infection and Immunity 70 (2002) 1860-1866. El Karim, I.A., Linden, G.J., Orr, D.F., Lundy, F.T., Antimicrobial activity of neuropeptides against a range of micro-organisms from skin, oral, respiratory and gastrointestinal tract sites. Journal of Neuroimmunology 200 (2008) 11-16. Elmahdi, S., DaSilva, L.V., Parveen, S., Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. Food Microbiology 57 (2016) 128-134. Fedders, H., Michalek, M., Grötzinger, J., Leippe, M., An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. Biochemical Journal 416 (2008) 65-75. Fedders, H., Podschun, R., Leippe, M., The antimicrobial peptide Ci-MAM-A24 is highly active against multidrug-resistant and anaerobic bacteria pathogenic for humans. International Journal of Antimicrobial Agents 36 (2010) 264-266. Fleming, A., On a remarkable bacteriolytic element found in tissues and secretions. Proceedings of the Royal Society B Biological Sciences 93 (1922) 306-317. Ganz, T., Selsted, M.E., Lehrer, R.I., Defensins. European Journal of Haematology 44 (1990) 1-8. Ganz, T., Defensins: antimicrobial peptides of innate immunity. Nature Reviews Immunology 3 (2003) 710-720. Ganz, T., Hepcidin—A Peptide Hormone at the Interface of Innate Immunity and Iron Metabolism. Antimicrobial Peptides and Human Disease 306 (2006) 183-198. Gellissen, G., Melber, K., Janowicz, Z.A., Dahlems, U.M., Weydemann, U., Piontek, M., Strasser, A.W.M., Hollenberg, C.P., Heterologous protein production in yeast. Antonie van Leeuwenhoek 62 (1992) 79-93. Gifford, J.L., Hunter, H.N., Vogel, H.J., Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cellular and Molecular Life Sciences 62 (2005) 2588-2598. Gomes, A.R., Byregowda, S.M., Veeregowda, B.M., Balamurugan, V., An Overview of Heterologous Expression Host Systems for the Production of Recombinant Proteins, Advances in Animal and Veterinary Sciences 4 (2016) 346-356. Gómez-León, J., Villamil, L., Lemos, M.L., Novoa, B., Figueras, A., Isolation of Vibrio alginolyticus and Vibrio splendidus from Aquacultured Carpet Shell Clam (Ruditapes decussatus) Larvae Associated with Mass Mortalities. Applied and Environmental Microbiology 71 (2001) 98-104. Gräslund, S., Nordlund, P., Weigelt, J. et al., Protein production and purification. Nature Methods 5 (2008) 135-146. Hartmann, A., Alder, A.C., Koller, T., Widmer, R.M., Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater. Environmental Chemistry 17 (1998) 377-382. Hitzeman, R.A., Hagie, F.E., Levine, H.L., Goeddel, D.V., Ammerer, G., Hall, B.D., Expression of a human gene for interferon in yeast. Nature 293 (1981) 717-722. Hong, H.A., Duc, L.H., Cutting, S.M., The use of bacterial spore formers as probiotics. FEMS Microbiology Reviews 29 (2005) 813-835. Hong, H.A., Khaneja, R., Tam, N.M.K., Cazzato, A., Tan, S., Urdaci, M., Brisson, A., Gasbarrini, A., Barnes, I., Cutting, S.M., Bacillus subtilis isolated from the human gastrointestinal tract. Research in Microbiology 120 (2009) 134-143. Huber, C., Klimant, I., Krause, C., Werner, T., Mayr, T., Wolfbeis, O.S., Optical sensor for seawater salinity. Fresenius' Journal of Analytical Chemistry 368 (2000) 196-202. Hsieh, F.C., Li, M.C., Kao, S.S., Evaluation of the inhibition activity of Bacillus subtilis-based products and their related metabolites against pathogenic fungi in Taiwan. Plant Protection Bulletin 45 (2003) 155-162. Hwang, P.M., Zhou, N., Shan, X., Arrowsmith, C.H., Vogel, H.J., Three-Dimensional Solution Structure of Lactoferricin B, an Antimicrobial Peptide Derived from Bovine Lactoferrin. Biochemistry 37 (1998) 4288-4298. Jena, P., Mishra, B., Leippe, M., Hasilik, A., Griffiths, G., Sonawane, A., Membrane-active antimicrobial peptides and human placental lysosomal extracts are highly active against mycobacteria. Peptides 32 (2011) 881-887. Jung, E., Williams, K.L., The production of recombinant glycoproteins with special reference to simple eukaryotes including Dictyostelium discoideum. Biotechnology and Applied Biochemistry 25 (1997) 3-8. Kaplan, A., Lee, M.W., Wolf, A.J., Limon, J.J., Becker, C.A., Ding, M., Murali, R., Lee, E.Y., Liu, G.Y., Wong G.C.L., Underhill, D.M., Direct Antimicrobial Activity of IFN-β. The Journal of Immunology 198 (2017) 4036-4045. Khan, K.H., Gene expression in mammalian cells and its applications. Advanced Pharmaceutical Bulletin 3 (2013) 257-263. Kirkpatrick, C.H., Green, I., Rich, R.R., Schade, A.L., Inhibition of Growth of Candida albicans by Iron-Unsaturated Lactoferrin: Relation to host-defense mechanisms in chronic mucocutaneous candidiasis. The Journal of Infectious Diseases 124 (1971) 539-544. Kowalska, K., Carr, D.B., Lipkowski, A.W., Direct antimicrobial properties of substance P. Life Sciences 71 (2002) 747-750. Kloos, W.E., Musselwhite, M.S., Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Applied and Environmental Microbiology 30 (1975) 381-385. Lai, C.C., Wang, C.Y., Chu, C.C., Tan, C.K., Lu, C.L., Lee, Y.C., Huang, Y.T., Lee, P.I., Hsueh, P.R., Correlation between antibiotic consumption and resistance of Gram-negative bacteria causing healthcare-associated infections at a university hospital in Taiwan from 2000 to 2009. Journal of Antimicrobial Chemotherapy 66 (2011) 1374-1382. Lau, S.K.P., Woo, P.C.Y., Tse, H., Leung, K.W., Wong, S.S.Y., Yuen, K.Y., Invasive Streptococcus iniae infections outside north America. Journal of Clinical Microbiology 41 (2003) 1004-1009. Lázár, V., Martins, A., Spohn, R., Daruka, L., Grézal, G., Fekete, G., Számel, M., Jangir, P.K., Kintses, B., Csörgő, B., Nyerges, Á., Györkei, Á., Kincses, A., Dér, A., Walter, F.R., Deli, M.A., Urbán, E., Hegedűs, Z., Olajos, G., Méhi, O., Bálint, B., Nagy, I., Martinek, T.A., Papp, B., Pál, C., Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nature Microbiology 3 (2018) 718-731. Lee, B.C., Hung, C.W., Lin, C.Y., Shin, C.H., Tsai, H.J., Oral administration of transgenic biosafe microorganism containing antimicrobial peptide enhances the survival of tilapia fry infected bacterial pathogen. Fish and Shellfish Immunology 95 (2019) 606-616. Lehrer, R.I., Primate defensins. Nature Reviews Microbiology 2 (2004) 727-738. Li, J., Yie, J., Foo, R.W.T., Ling, J.M.L., Xu, H., Wo, N.Y.S., Antibiotic Resistance and Plasmid Profiles of Vibrio Isolates from Cultured Silver Sea Bream, Sparus sarba Marine Pollution Bulletin 39 (1999) 245-249. Liepke, C., Baxmann, S., Heine, C., Breithaupt, N., Ständker, L., Forssmann, W.G., Human hemoglobin-derived peptides exhibit antimicrobial activity: a class of host defense peptides. Journal of Chromatography B 791 (2003) 345-356. Liew, P.X., Wang, C.L., Wong, S.L., Functional characterization and localization of a Bacillus subtilis sortase and its substrate and use of this sortase system to covalently anchor a heterologous protein to the B. subtilis cell wall for surface display. Journal of Bacteriology 194 (2012) 161-175. Lin, S.C., Chen C.W., Tzeng, D.S., The effect of Microorganism Bioagent for Biological Control of Rice Leaf Blight Disease and Influence of Rice Agriculture Characters. Bulletin of Taichung Districe Agricultural Research and Extension Station 81 (2003) 65-77. Liu, C.H., Cheng, W., Hsu, J.P., Chen, J.C., Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Diseases of Aquatic Organisms 61 (2004) 169-174. Maida, I., Bosi, E., Perrin, E., Papaleo, M.C., Orlandini, V., Fondi, M., Fani, R., Wiegel, J., Bianconi, G., Canganella, F., Draft Genome Sequence of the Fast-Growing Bacterium Vibrio natriegens Strain DSMZ 759. Genome Announcements 1 (2013) e00648-13. Makrides, S.C., Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Review 60 (1996) 512-538. Meddeb-Mouelhi, F., Dulcey, C., Beauregard, M., High transformation efficiency of Bacillus subtilis with integrative DNA using glycine betaine as osmoprotectant. Analytical Biochemistry 424 (2012) 127-129. Michna, R.H., Commichau, F.M., Tödter, D., Zschiedrich, C.P., Stülke, J., SubtiWiki–a database for the model organism Bacillus subtilis that links pathway, interaction and expression information. Nucleic Acids Research 42 (2014) 692-698. Moreno, E., Prats, G., Sabate, M., Perez, T., Johnson, J.R., Andreu, A., Quinolone, fluoroquinolone and trimethoprim/sulfamethoxazole resistance in relation to virulence determinants and phylogenetic background among uropathogenic Escherichia coli. Journal of Antimicrobial Chemotherapy 57 (2006) 204-211. Nakano. M.M., Zuber, P., Anaerobic growth of a 'strict aerobe' (Bacillus subtilis). Annual Review of Microbiology 52 (1998) 165-190. Palmer, A.C., Kishony, R., Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nature Reviews Genetics 14 (2013) 243-248. Park, S.B., Aoki, T., Jung, T.S., Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Veterinary Research 43 (2012) 67. Payne, W.J., Eagon, R.G., Williams, A.K., Some observations on the physiology of Pseudomonas natriegens nov. spec. Antonie van Leeuwenhoek 27 (1961) 121-128. Phuong, N.D., Jeong, Y.S., Selvaraj, T., Kim. S.K., Kim, Y.H., Jung, K.H., Kim, J., Yun, H.D., Wong, S.L., Lee, J.K., Kim, H., Production of XynX, a large multimodular protein of Thermoanaerobacterium sp., by protease-deficient Bacillus subtilis strains. Applied Biochemistry and Biotechnology 168 (2012) 375-382. Pier, G.B., Madin, S.H., Streptococcus iniae sp. nov., a Beta-Hemolytic Streptococcus Isolated from an Amazon Freshwater Dolphin, Inia geoffrensis. International Journal of Systematic Bacteriology 26 (1976) 543-553. Rainard, P., Bacteriostasis of Escherichia coli by bovine lactoferrin,transferrin and immunoglobulins (IgG1, IgG2, IgM) acting alone or in combination. Veterinary Microbiology 11 (1986a) 103-115. Rainard, P., Bacteriostatic activity of bovine milk lactoferrin against mastitic bacteria. Veterinary Microbiology 11 (1986b) 387-392. Rajan, P.R., Lopez, C., Lin, J.H.U., Yang, H.A., Vibrio alginolyticus infection in cobia (Rachycentron canadum) cultured in Taiwan. Bulletin- European Association of Fish Pathologists 21 (2001) 228-234. Romero, S., Merino, E., Bolívar, F., Gosset, G., Martinez, A., Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Applied and Environmental Microbiology 73 (2007) 5190–5198. Shoemaker, C.A., Klesius, P.H., Evans, J.J., Prevalence of Streptococcus iniae in tilapia, hybrid striped bass, and channel catfish on commercial fish farms in the United States. American Journal of Veterinary Research 62 (2001) 174-177. Siciliano, R., Rega, B., Marchetti, M., Seganti, L., Antonini, G., Valenti, P., Bovine lactoferrin peptidic fragments involved in inhibition of herpes simplex virus Type 1 infection. Biochemical and Biophysical Research Communications 264 (1999) 19-23. Slifka, K.M. J., Newton, A.E., Mahon, B.E., Vibrio alginolyticus infections in the USA, 1988–2012. Epidemiology and Infection 145 (2017) 1491-1499. Song, Y., Nikoloff, J.M., Fu, G., Chen, J., Li, Q., Xie, N., Zheng, P., Sun, J., Zhang, D., Promoter screening from bacillus subtilis in various conditions hunting for synthetic biology and industrial applications. PLoS One 11 (2016) e0158447. Stein, T., Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular microbiology 56 (2005) 845-857. Stephens, S., Dolby, J.M., Montreuil, J., Spik, G., Differences in inhibition of the growth of commensal and enteropathogenic strains of Escherichia coli by lactotransferrin and secretory immunoglobulin A isolated from human milk. Immunology 41 (1980) 597-603. Su, Y.C., Liu, C., Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiology 24 (2007) 549-558. Tan, I.S., Ramamurthi, K.S., Spore formation in Bacillus subtilis. Environmental Microbiology Report 6 (2014) 212-225. Tanaka, T., Omata, Y., Saito, A., Shimazaki, K., Yamauchi, K., Takase, M., Kawase, K., Igarashi, I., Suzuki, N., Toxoplasma gondii: Parasiticidal Effects of Bovine Lactoferricin against Parasites. Experimental Parasitology 81 (1995) 614-617. Turchany, J.M., Aley, S.B., Gillin, F.D., Giardicidal activity of lactoferrin and N-terminal peptides. Infection and Immunity 63 Uçkay, I., Pittet, D., Vaudaux, P., Sax, H., Lew, D., Waldvogel, F., Foreign body infections due to Staphylococcus epidermidis. Annals of Medicine 41 (2009) 109-119. Valenti, P., Antonini, G., Lactoferrin: an important host defence against microbial and viral attack. Cellular and Molecular Life Sciences 62 (2005) 2576-2587. Visser, H., Joosten, V., Punt, P.J., Gusakov, A.V., Olson, P.T., Joosten, R., Bartels, J., Visser, J. Sinitsyn, A.P., Emalfarb, M.A., Verdoes, J.C., Wery, J., Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1. Industrial Biotechnology 7 (2011) 214-223. Wakabayashi, H., Bellamy, W., Takase, M. Tomita, M., Inactivation of Listeria monocytogenes by Lactoferricin, a Potent Antimicrobial Peptide Derived from Cow's Milk. Journal of Food Protection 55 (1992) 238-240. Wang, P.Z., Doi, R.H., Overlapping promoters transcribed by Bacillus subtilis sigma 55 and sigma 37 RNA polymerase holoenzymes during growth and stationary phases. The Journal of Biological Chemistry 259 (1984) 8619-8625. Wang, I.K., Kuo, H.L., Chen, Y.M., Lin, C.L., Chang, H.Y., Chuang, F.R., Lee, M.H., Extraintestinal manifestations of Edwardsiella tarda infection. The International Journal of Clinical Practice 59 (2005) 917-921. Weinstein, M.R., Litt, M., Kertesz, A.D., Wyper, P., Rose, D., Coulter, M., McGeer, A., Facklam, R., Ostach, C., Willey, B.M., Borczyk, A., Low, D.E., Invasive Infections Due to a Fish Pathogen, Streptococcus iniae. The New England Journal of Medicine 337 (1997) 589-594. Westers, L., Dijkstra, D.S., Westers, H., van Dijl, J.M,, Quax, W.J., Secretion of functional human interleukin-3 from Bacillus subtilis. Journal of Biotechnology 123 (2006) 211-224. Wu, S.C., Yeung, J.C., Duan, Y., Ye, R., Szarka, S.J., Habibi, H.R., Wong, S.L., Functional Production and Characterization of a Fibrin-Specific Single-Chain Antibody Fragment from Bacillus subtilis: Effects of Molecular Chaperones and a Wall-Bound Protease on Antibody Fragment Production. Applied and Environmental Microbiology 68 (2002) 3261-3269. Yang, D., Chen, Q., Hoover D.M., Staley, P., Tucker, K.D., Lubkowski, J., Oppenheim, J.J., Many chemokines including CCL20/MIP‐3α display antimicrobial activity. Journal of Leukocyte Biology 74 (2003) 448-455. Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature 415 (2002) 389-395. Zhou, N., Tieleman, D.P., Vogel, H.J., Molecular dynamics simulations of bovine lactoferricin: turning a helix into a sheet. BioMetals 17 (2004) 217-223. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76889 | - |
| dc.description.abstract | 由於抗生素殘留對人體健康的疑慮,和抗藥性病原菌的產生及擴散,若能使用具有抗生素抗菌能力但不具有抗生素缺點的抗菌蛋白質,必能減少抗生素的使用,這在水產養殖與畜牧業上會有極大的助益。過去的實驗中,以安全微生物枯草桿菌(Bacillus subtilis)為宿主細胞,用質體轉殖的方式表現外源性抗菌胜肽Lactoferricin被證明是可行的。在這裡,我們以兩種方向來嘗試改進原來的表現載體以增進轉殖株的抗菌能力:其一是將質體攜帶的抗菌蛋白改為殺菌環境較廣的 Ciona molecule against microbes (CiMAM);其二是將質體上表現抗菌蛋白的啟動子改為較強勢的PtrnQ。用電穿孔的方式,將表現質體轉殖進入細胞。轉殖後使用能夾取質體DNA中報導基因的引子(primers)進行PCR初步的篩選,分別挑選了170顆與480顆轉殖株;之後再以西方浸漬法(Western Blot)偵測CiMAM重組蛋白和lactoferricin重組蛋白的表現(在37 kDa與44 kDa處可偵測到訊號),最後挑選到表現量佳及穩定性高的第一種轉殖株C117和C166與第二種轉殖株P245和P263。在in vitro的抑菌測試裡,我們先選常見的格蘭氏陰性的Escherichia coli (E. coli)和陽性病原菌的Staphylococcus epidermidis (S. epidermidis)為對象,結果得到5 ml之C117 (1.45 x 108 CFU·ml-1)、C166 (2.17 x 108 CFU·ml-1)與P245 (1.7 x 108 CFU·ml-1)、P263 (1 x 108 CFU·ml-1)之5.5 ml萃取液中,取其1 l的抑菌效果在E. coli中分別相當於87.43 ng、70.24 ng 與238.25 ng、322.7 ng的Ampicillin;在S. epidermidis中則相當於47.97 ng、40.5 ng 與366.4 ng、452.52 ng的Ampicillin。同時,我們也選擇了養殖漁業常見的淡水病原菌Edwardsiella tarda (E. tarda)試驗,結果得到以相同方式處理的C117、C166與P245、P263其 1 l萃取液的抑菌效果在E. tarda中分別為38.59 ng、37.47 ng 與168.04 ng、249.94 ng的Ampicillin。由於CiMAM來自生長在海洋環境中的玻璃海鞘(Ciona intestinalis),因此又選擇了嗜鹽性細菌Vibrio natriegens (V. natriegens)進行測試,結果顯示C117、C166與P245、P263的1 l萃取液抑菌效果分別相當於57.06 ng、32.35 ng 與25.38 ng、32.93 ng的Tetracycline。若對海洋性病原菌Vibrio parahaemolyticus (V. parahaemolyticus)、Vibrio alginolyticus (V. alginolyticus)與Streptococcus iniae (S. iniae)進行測試,結果得到C117、C166與P245、P263之1 l萃取液的抑菌效果在V. parahaemolyticus中分別為47.07 ng、25.20 ng 與178.42 ng、192.81 ng的Tetracycline;在V. alginolyticus中分別為58.17 ng、36.55 ng 與264.25 ng、275.73 ng的Tetracycline;在S. iniae中分別為50.97 ng、39.28 ng 與219.7 ng、252.43 ng Tetracycline。最後,我們用對Ampicillin有抗藥性的E. coli進行測試,結果得到C117、C166與P245、P263之1 l萃取液的抑菌效果分別為42.77 ng、30.35 ng與250.39 ng、276.76 ng的Tetracycline。綜合上述研究結果證實,以枯草桿菌作為宿主細胞,可以表現外源性耐鹽性的抗菌蛋白CiMAM,其對海洋性細菌都具有比lactoferricin好的殺菌效果;另一方面,以PtrnQ為啟動子的轉殖株,和以前使用的P43啟動子並含有相近plasmid copy number的轉殖株相比較,擁有顯著的殺菌效力提升。這些轉殖株預期會有運用在養殖及畜牧業的潛力。 | zh_TW |
| dc.description.abstract | With the concerns about antibiotic residues on human health and the production and spread of drug-resistant pathogens, the use of antimicrobial peptides (AMPs) that have the bactericidal activity of antibiotics but do not have the shortcomings of antibiotics might reduce the widespread usage of antibiotics, which in turn, beneficial for aquaculture and animal husbandry. It has been reported that a biosafe probiotic microorganism Bacillus subtilis is a good host cell to express the exogenous AMPs such as lactoferricin (LFB) through gene transfer. However, not only the condition that LFB enables to present the antibacterial ability is relatively narrow but also the yield production of recombinant LFB is low. To solve these issues, in this study, we attempted to improve the transgenic strain of B. subtilis to enhance the antibacterial capability and production. In the first part, we replaced LFB by Ciona molecule against microbes (CiMAM) since CiMAM is isolated from Ciona intestinalis which habitats in the seawater so that it is more capable to kill bacteria at salt environment. After the expression plasmid containing CiMAM was constructed, we employed electroporation to introduce this plasmid harbored by the competent host cells, followed by PCR to screen 170 transformants. We further used Western blot analysis to examine the transgenic strains that enable to steadily produce recombinant CiMAM (rCiMAM) presented two positive signals localized at 37 and 48 kDa positions. Among them, two transgenic strains C117 and C166 were selected since they expressed rCiMAM in a stronger and more stable manner. In vitro bactericidal assay, results demonstrated that the bactericidal activities of 1 l aliquot of a total 5.5-ml extracted from 5-ml cultured C117 (1.45 x 108 CFU·ml-1) and C166 (2.17 x 108 CFU·ml-1) were equivalent to the efficacy of 87.43 and 70.24 ng of Ampicillin against Escherichia coli, respectively, while the bactericidal activities equivalent to the efficacy of 47.97 and 40.5 ng of Ampicillin against Staphylococus epidermidis, 38.59 and 37.47 ng of Ampicillin against Edwardsiella tarda, a common pathogen in aquaculture. Importantly, the bactericidal activities of 1 l aliquot extracted from C117 and C166 were equivalent to the efficacy of 57.06 and 32.35 ng of Tetracycline against Vibrio natriegens, a halophilic bacterium, while they were equivalent to the efficacy of 47.07 and 25.2 ng of Tetracycline against V. parahaemolyticus and 58.17 and 36.55 ng of Tetracycline against V. alginolyticus, suggesting that transgenic strains C117 and C166 expressing rCiMAM does display a higher bactericidal capability against halophilic bacteria than strains expressing LFB generated previously. Moreover, we also found that the bactericidal activities of C117 and C166 were equivalent to the efficacy of 50.97 and 39.28 ng of Tetracycline against Streptococcus iniae and 42.77 and 30.35 ng of Tetracycline against an Ampicillin- resistance E. coli strain. In the second part, we replaced a common P43 promoter by a stronger promoter PtrnQ, which is a promoter of tRNA gene, trnQ, within the expression plasmid to enhance the amount of recombinant LFB (rLFB) produced by host cell B. subtilis. Following the same strategy described abpve, we selected two transgenic strains P245 and P263 after screening from 480 transformants. In vitro bactericidal assay, results demonstrated that the bactericidal activities of 1 ul aliquot of a total 5.5-ml extracted from 5-ml cultured P245 (1.7 x 108 CFU·ml-1) and P263 (1 x 108 CFU·ml-1) were equivalent to the efficacy of 238.25 and 322.7 ng of Ampicillin against Escherichia coli, respectively, while the bactericidal activities equivalent to the efficacy of 366.4 and 452.52 ng of Ampicillin against Staphylococus epidermidis, 168.04 and 249.94 ng of Ampicillin against Edwardsiella tarda, a common pathogen in aquaculture. Likewise, the bactericidal activities of 1 l aliquot extracted from P245 and P263 were equivalent to the efficacy of 25.38 and 32.93 ng of Tetracycline against Vibrio natriegens, a halophilic bacterium, while they were equivalent to the efficacy of 178.42 and 192.81 ng of Tetracycline against V. parahaemolyticus and 264.25 and 275.73 ng of Tetracycline against V. alginolyticus. Furthermore, we also found that the bactericidal activities of P245 and P263 were equivalent to the efficacy of 219.7 and 252.43 ng of Tetracycline against Streptococcus iniae and 250.39 and 276.76 ng of Tetracycline against an Ampicillin-resistance E. coli strain. Based on this collective evidence, we demonstrated that the yield of rLFB driven by PtrnQ was greater than that of rLFB driven by P43 in the transgenic strains harboring the same number (around 1000 per cell) of plasmids. Taken together, we strongly suggest that the transgenic B. subtilis strains generated by this study are highly potential to be used in aquaculture and animal husbandry to prevent animals from bacterial infection during disease outbreak. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:39:32Z (GMT). No. of bitstreams: 1 U0001-1108202018124700.pdf: 3970142 bytes, checksum: 3975ba10ee33c48f5fafc05405c256a0 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 1 謝辭 5 摘要 6 Abstract 8 Part A 利用枯草桿菌表現來自玻璃海鞘的抗菌胜肽 11 前言 12 材料與方法 16 使用菌株 16 質體 16 枯草桿菌培養與勝任細胞製備 17 電穿孔實驗 17 聚合酶連鎖反應 18 凝膠電泳分析 18 西方浸漬法 19 Agar well diffusion 19 Colony-forming unit (CFU)計算 20 Dot blot analysis 20 結果 23 以PCR證實B. subtilis轉殖株帶有能表現CiMAM重組蛋白的外源性DNA片段 23 以西方浸漬法證實B. subtilis轉殖株表現CiMAM重組蛋白的能力 23 表現CiMAM重組蛋白之B. subtilis轉殖株的萃取液對Escherichia coli生長的抑制效果 24 表現CiMAM重組蛋白之B. subtilis轉殖株的萃取液對Staphylococcus epidermidis生長的抑制效果 25 表現CiMAM重組蛋白之B. subtilis轉殖株的萃取液對Edwardsiella tarda生長的抑制效果 26 表現CiMAM重組蛋白之B. subtilis轉殖株的萃取液對Vibrio parahaemolyticus生長的抑制效果 26 表現CiMAM重組蛋白之B. subtilis轉殖株的萃取液對Vibrio natriegens生長的抑制效果 27 表現CiMAM重組蛋白之B. subtilis轉殖株的萃取液對Vibrio alginolyticus生長的抑制效果 28 表現CiMAM重組蛋白之B. subtilis轉殖株的萃取液對Streptococcus iniae生長的抑制效果 29 表現CiMAM重組蛋白之B. subtilis轉殖株的萃取液對抗藥性E. coli生長的抑制效果 29 偵測表現CiMAM重組蛋白之B. subtilis轉殖株中所含質體之拷貝數 30 Part B 以強勢啟動子PtrnQ增強枯草桿菌表現乳鐵蛋白肽的能力 32 前言 33 材料與方法 35 菌株及培養條件 35 質體 35 枯草桿菌培養與勝任細胞製備 35 電穿孔實驗 36 聚合酶連鎖反應 36 凝膠電泳分析 37 西方浸漬法 37 Agar well diffusion 38 Colony-forming unit (CFU)計算 39 Dot blot analysis 39 結果 41 以PCR證實B. subtilis轉殖株帶有能表現lactoferricin重組蛋白的外源性DNA片段 41 以西方浸漬法證實B. subtilis轉殖株所表現的lactoferricin重組蛋白 41 表現lactoferricin重組蛋白之B. subtilis轉殖株的萃取液對E. coli生長的抑制效果 42 表現lactoferricin重組蛋白之B. subtilis轉殖株的萃取液對S. epidermidis生長的抑制效果 43 表現lactoferricin重組蛋白之B. subtilis轉殖株的萃取液對E. tarda生長的抑制效果 43 表現lactoferricin重組蛋白之B. subtilis轉殖株的萃取液對V. parahaemolyticus生長的抑制效果 44 表現lactoferricin重組蛋白之B. subtilis轉殖株的萃取液對V. alginolyticus生長的抑制效果 45 表現lactoferricin重組蛋白之B. subtilis轉殖株的萃取液對Streptococcus iniae生長的抑制效果 45 表現lactoferricin重組蛋白之B. subtilis轉殖株的萃取液對抗藥性E. coli生長的抑制效果 46 表現lactoferricin重組蛋白之B. subtilis轉殖株的萃取液對V. natriegens生長的抑制效果 46 偵測表現lactoferricin重組蛋白之B. subtilis轉殖株中所含質體之拷貝數 47 討論 49 表現CiMAM之B. subtilis轉殖株C117和C166的萃取液能抑制多種細菌生長 49 鹽度對於抑菌胜肽效力的影響 49 CiMAM重組蛋白在轉殖株內的表現 50 表現lactoferricin的B. subtilis轉殖株P245和P263的萃取液能抑制多種細菌生長 51 強勢啟動子PtrnQ顯著提升轉殖株萃取液的抑菌效果 52 表現CiMAM或lactoferricin重組蛋白之轉殖株萃取液對抗藥性細菌的抑制效果 52 Plasmid copy number與B. subtilis轉殖株抑菌能力的關聯 53 表現AMPs重組蛋白可能會影響轉殖株自身的生長 53 作為重組蛋白marker的GFP段的切割和對其表現的影響 54 參考文獻 55 圖說 68 Fig. 1. 以PCR確認pP43-2CiMAM-GFP質體在B. subtilis中的轉殖效果。 69 Fig. 2. 以Western blot確認重組CiMAM蛋白在B. subtilis轉殖株中的表現效果。 71 Fig. 3. 以agar well diffusion assay證實含有pP43-2CiMAM-GFP的B. subtilis轉殖株具有對E. coli生長抑制的效力。 73 Fig. 4. 以agar well diffusion assay證實含有pP43-2CiMAM-GFP的B. subtilis轉殖株具有對S. epidermidis生長抑制的效力。 75 Fig. 5. 以agar well diffusion assay證實含有pP43-2CiMAM-GFP的B. subtilis轉殖株具有對E. tarda生長抑制的效力。 77 Fig. 6. 以agar well diffusion assay證實含有pP43-2CiMAM-GFP的B. subtilis轉殖株具有對V. parahaemolyticus生長抑制的效力。 79 Fig. 7. 以agar well diffusion assay證實含有pP43-2CiMAM-GFP的B. subtilis轉殖株具有對V. natriegens生長抑制的效力。 81 Fig. 8. 以agar well diffusion assay證實含有pP43-2CiMAM-GFP的B. subtilis轉殖株具有對V. alginolyticus生長抑制的效力。 84 Fig. 9. 以agar well diffusion assay證實含有pP43-2CiMAM-GFP的B. subtilis轉殖株具有對S. iniae生長抑制的效力。 86 Fig. 10. 以agar well diffusion assay證實含有pP43-2CiMAM-GFP的B. subtilis轉殖株對抗藥性E. coli具有生長抑制的效力。 88 Fig. 11. 以Dot blot測量兩株含有pP43-2CiMAM-GFP的B. subtilis轉殖株所含的plasmid copy number。 90 Fig. 12. 以PCR確認pPtrnQ-6LFB-GFP質體在B. subtilis中的轉殖效果。 92 Fig. 13. 以Western blot確認重組lactoferricin蛋白質在B. subtilis轉殖株中的表現。 94 Fig. 14. 以agar well diffusion assay證實含有pPtrnQ-6LFB-GFP的B. subtilis轉殖株具有對E. coli生長抑制的效力。 96 Fig. 15. 以agar well diffusion assay證實含有pPtrnQ-6LFB-GFP的B. subtilis轉殖株具有對S. epidermidis生長抑制的效力。 98 Fig. 16. 以agar well diffusion assay證實含有pPtrnQ-6LFB-GFP的B. subtilis轉殖株具有對E. tarda生長抑制的效力。 100 Fig. 17. 以agar well diffusion assay證實含有pPtrnQ-6LFB-GFP的B. subtilis轉殖株具有對V. parahaemolyticus生長抑制的效力。 102 Fig. 18. 以agar well diffusion assay證實含有pPtrnQ-6LFB-GFP的B. subtilis轉殖株具有對V. alginolyticus生長抑制的效力。 104 Fig. 19. 以agar well diffusion assay證實含有pPtrnQ-6LFB-GFP的B. subtilis轉殖株具有對S. iniae生長抑制的效力。 106 Fig. 20. 以agar well diffusion assay證實含有pPtrnQ-6LFB-GFP的B. subtilis轉殖株對抗藥性E. coli具有生長抑制的效力。 108 Fig. 21. B. subtilis轉殖株C117和P263與達抑菌濃度之抗生素對抗藥性E. coli生長抑制的效力 109 Fig. 22. 以agar well diffusion assay證實含有pPtrnQ-6LFB-GFP的B. subtilis轉殖株具有對V. natriegens生長抑制的效力。 111 Fig. 23. 以Dot blot測量兩株含有pPtrnQ-6LFB-GFP的B. subtilis轉殖株所含的plasmid copy number。 113 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電穿孔 | zh_TW |
| dc.subject | 基因轉殖 | zh_TW |
| dc.subject | CiMAM-A24 | zh_TW |
| dc.subject | 抗生素 | zh_TW |
| dc.subject | Lactoferricin | zh_TW |
| dc.subject | PtrnQ | zh_TW |
| dc.subject | Lactoferricin | en |
| dc.subject | CiMAM-A24 | en |
| dc.subject | Transgenic strain | en |
| dc.subject | Antibiotics | en |
| dc.subject | Electroporate | en |
| dc.subject | PtrnQ | en |
| dc.title | 檢測及改進能表現兩種抑菌蛋白之枯草桿菌轉殖品系的抗菌效力 | zh_TW |
| dc.title | To Examine and Improve the Bactericidal Activity Possessed by Transgenic Bacillus subtilis Strains Expressing two Antimicrobial Peptides | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0001-9872-5867 | |
| dc.contributor.oralexamcommittee | 李昆達(Kung-Ta Lee),陳媺玫(Meei-Mei Chen),林正勇(Cheng-Yung Lin),李秉璋(Bing-Chang Lee) | |
| dc.subject.keyword | Lactoferricin,CiMAM-A24,基因轉殖,抗生素,電穿孔,PtrnQ, | zh_TW |
| dc.subject.keyword | Lactoferricin,CiMAM-A24,Transgenic strain,Antibiotics,Electroporate,PtrnQ, | en |
| dc.relation.page | 114 | |
| dc.identifier.doi | 10.6342/NTU202002998 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1108202018124700.pdf 未授權公開取用 | 3.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
