請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76888完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李建國(Chien-Kuo Lee) | |
| dc.contributor.author | Jia-Qing Wei | en |
| dc.contributor.author | 魏嘉慶 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:39:31Z | - |
| dc.date.available | 2021-07-10T21:39:31Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-11 | |
| dc.identifier.citation | Alcantara-Hernandez, M., Leylek, R., Wagar, L.E., Engleman, E.G., Keler, T., Marinkovich, M.P., Davis, M.M., Nolan, G.P., and Idoyaga, J. (2017). High-Dimensional Phenotypic Mapping of Human Dendritic Cells Reveals Interindividual Variation and Tissue Specialization. Immunity 47, 1037-1050 e1036. Bajana, S., Roach, K., Turner, S., Paul, J., and Kovats, S. (2012). IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation. J Immunol 189, 3368-3377. Bajana, S., Turner, S., Paul, J., Ainsua-Enrich, E., and Kovats, S. (2016). IRF4 and IRF8 Act in CD11c+ Cells To Regulate Terminal Differentiation of Lung Tissue Dendritic Cells. J Immunol 196, 1666-1677. Banchereau, J., and Steinman, R.M. (1998). Dendritic cells and the control of immunity. Nature 392, 245-252. Black, B.L., and Olson, E.N. (1998). Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14, 167-196. Brown, C.C., Gudjonson, H., Pritykin, Y., Deep, D., Lavallée, V.-P., Mendoza, A., Fromme, R., Mazutis, L., Ariyan, C., Leslie, C., et al. (2019). Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell 179, 846-863.e824. Cante-Barrett, K., Pieters, R., and Meijerink, J.P. (2014). Myocyte enhancer factor 2C in hematopoiesis and leukemia. Oncogene 33, 403-410. Carotta, S., Dakic, A., D'Amico, A., Pang, S.H., Greig, K.T., Nutt, S.L., and Wu, L. (2010). The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 32, 628-641. Caton, M.L., Smith-Raska, M.R., and Reizis, B. (2007). Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J Exp Med 204, 1653-1664. Cella, M., Jarrossay, D., Facchetti, F., Alebardi, O., Nakajima, H., Lanzavecchia, A., and Colonna, M. (1999). Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 5, 919-923. Ceribelli, M., Hou, Z.E., Kelly, P.N., Huang, D.W., Wright, G., Ganapathi, K., Evbuomwan, M.O., Pittaluga, S., Shaffer, A.L., Marcucci, G., et al. (2016). A Druggable TCF4- and BRD4-Dependent Transcriptional Network Sustains Malignancy in Blastic Plasmacytoid Dendritic Cell Neoplasm. Cancer Cell 30, 764-778. Chen, X., Gao, B., Ponnusamy, M., Lin, Z., and Liu, J. (2017a). MEF2 signaling and human diseases. Oncotarget 8, 112152-112165. Chen, X., Gao, B., Ponnusamy, M., Lin, Z., and Liu, J. (2017b). MEF2 signaling and human diseases. Chen, Y.L., Chen, T.T., Pai, L.M., Wesoly, J., Bluyssen, H.A., and Lee, C.K. (2013). A type I IFN-Flt3 ligand axis augments plasmacytoid dendritic cell development from common lymphoid progenitors. J Exp Med 210, 2515-2522. Chopin, M., Lun, A.T., Zhan, Y., Schreuder, J., Coughlan, H., D'Amico, A., Mielke, L.A., Almeida, F.F., Kueh, A.J., Dickins, R.A., et al. (2019). Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT. Immunity 50, 77-90 e75. Chopin, M., Preston, S.P., Lun, A.T.L., Tellier, J., Smyth, G.K., Pellegrini, M., Belz, G.T., Corcoran, L.M., Visvader, J.E., Wu, L., et al. (2016). RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity. Cell Rep 15, 866-878. Cisse, B., Caton, M.L., Lehner, M., Maeda, T., Scheu, S., Locksley, R., Holmberg, D., Zweier, C., den Hollander, N.S., Kant, S.G., et al. (2008). Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135, 37-48. Colonna, M., Trinchieri, G., and Liu, Y.J. (2004). Plasmacytoid dendritic cells in immunity. Nat Immunol 5, 1219-1226. Draheim, M., Wlodarczyk, M.F., Crozat, K., Saliou, J.M., Alayi, T.D., Tomavo, S., Hassan, A., Salvioni, A., Demarta-Gatsi, C., Sidney, J., et al. (2017). Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells. EMBO Mol Med 9, 1605-1621. Dress, R.J., Dutertre, C.A., Giladi, A., Schlitzer, A., Low, I., Shadan, N.B., Tay, A., Lum, J., Kairi, M., Hwang, Y.Y., et al. (2019). Plasmacytoid dendritic cells develop from Ly6D(+) lymphoid progenitors distinct from the myeloid lineage. Nat Immunol 20, 852-864. Eisenbarth, S.C. (2019). Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol 19, 89-103. Farrand, K.J., Dickgreber, N., Stoitzner, P., Ronchese, F., Petersen, T.R., and Hermans, I.F. (2009). Langerin+ CD8alpha+ dendritic cells are critical for cross-priming and IL-12 production in response to systemic antigens. J Immunol 183, 7732-7742. Fitzgerald-Bocarsly, P., Dai, J., and Singh, S. (2008). Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history. Cytokine Growth Factor Rev 19, 3-19. Gekas, C., Rhodes, K.E., Gereige, L.M., Helgadottir, H., Ferrari, R., Kurdistani, S.K., Montecino-Rodriguez, E., Bassel-Duby, R., Olson, E., Krivtsov, A.V., et al. (2009). Mef2C is a lineage-restricted target of Scl/Tal1 and regulates megakaryopoiesis and B-cell homeostasis. Blood 113, 3461-3471. Ghosh, H.S., Ceribelli, M., Matos, I., Lazarovici, A., Bussemaker, H.J., Lasorella, A., Hiebert, S.W., Liu, K., Staudt, L.M., and Reizis, B. (2014). ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2. J Exp Med 211, 1623-1635. Ghosh, H.S., Cisse, B., Bunin, A., Lewis, K.L., and Reizis, B. (2010). Continuous expression of the transcription factor e2-2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity 33, 905-916. Grajkowska, L.T., Ceribelli, M., Lau, C.M., Warren, M.E., Tiniakou, I., Nakandakari Higa, S., Bunin, A., Haecker, H., Mirny, L.A., Staudt, L.M., et al. (2017). Isoform-Specific Expression and Feedback Regulation of E Protein TCF4 Control Dendritic Cell Lineage Specification. Immunity 46, 65-77. Guermonprez, P., Gerber-Ferder, Y., Vaivode, K., Bourdely, P., and Helft, J. (2019). Origin and development of classical dendritic cells. Int Rev Cell Mol Biol 349, 1-54. Guilliams, M., Ginhoux, F., Jakubzick, C., Naik, S.H., Onai, N., Schraml, B.U., Segura, E., Tussiwand, R., and Yona, S. (2014). Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14, 571-578. Hacker, C., Kirsch, R.D., Ju, X.S., Hieronymus, T., Gust, T.C., Kuhl, C., Jorgas, T., Kurz, S.M., Rose-John, S., Yokota, Y., et al. (2003). Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 4, 380-386. Hakim, N.H., Kounishi, T., Alam, A.H., Tsukahara, T., and Suzuki, H. (2010). Alternative splicing of Mef2c promoted by Fox-1 during neural differentiation in P19 cells. Genes Cells 15, 255-267. Han, J., Jiang, Y., Li, Z., Kravchenko, V.V., and Ulevitch, R.J. (1997). Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386, 296-299. Harpur, C.M., Kato, Y., Dewi, S.T., Stankovic, S., Johnson, D.N., Bedoui, S., Whitney, P.G., Lahoud, M.H., Caminschi, I., Heath, W.R., et al. (2019). Classical Type 1 Dendritic Cells Dominate Priming of Th1 Responses to Herpes Simplex Virus Type 1 Skin Infection. The Journal of Immunology 202, 653-663. Herglotz, J., Unrau, L., Hauschildt, F., Fischer, M., Kriebitzsch, N., Alawi, M., Indenbirken, D., Spohn, M., Muller, U., Ziegler, M., et al. (2016). Essential control of early B-cell development by Mef2 transcription factors. Blood 127, 572-581. Ippolito, G.C., Dekker, J.D., Wang, Y.H., Lee, B.K., Shaffer, A.L., 3rd, Lin, J., Wall, J.K., Lee, B.S., Staudt, L.M., Liu, Y.J., et al. (2014). Dendritic cell fate is determined by BCL11A. Proc Natl Acad Sci U S A 111, E998-1006. Kastner, P., and Chan, S. (2008). PU.1: a crucial and versatile player in hematopoiesis and leukemia. Int J Biochem Cell Biol 40, 22-27. Khiem, D., Cyster, J.G., Schwarz, J.J., and Black, B.L. (2008). A p38 MAPK-MEF2C pathway regulates B-cell proliferation. Proceedings of the National Academy of Sciences 105, 17067-17072. Kong, N.R., Davis, M., Chai, L., Winoto, A., and Tjian, R. (2016). MEF2C and EBF1 Co-regulate B Cell-Specific Transcription. PLoS Genet 12, e1005845. Kurotaki, D., Kawase, W., Sasaki, H., Nakabayashi, J., Nishiyama, A., Morse, H.C., III, Ozato, K., Suzuki, Y., and Tamura, T. (2019). Epigenetic control of early dendritic cell lineage specification by the transcription factor IRF8 in mice. Blood 133, 1803-1813. Lewis, K.L., Caton, M.L., Bogunovic, M., Greter, M., Grajkowska, L.T., Ng, D., Klinakis, A., Charo, I.F., Jung, S., Gommerman, J.L., et al. (2011). Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35, 780-791. Leylek, R., Alcantara-Hernandez, M., Lanzar, Z., Ludtke, A., Perez, O.A., Reizis, B., and Idoyaga, J. (2019). Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep 29, 3736-3750 e3738. Li, H.S., Yang, C.Y., Nallaparaju, K.C., Zhang, H., Liu, Y.J., Goldrath, A.W., and Watowich, S.S. (2012). The signal transducers STAT5 and STAT3 control expression of Id2 and E2-2 during dendritic cell development. Blood 120, 4363-4373. Lin, Q., Schwarz, J., Bucana, C., and N. Olson, E. (1997). Control of Mouse Cardiac Morphogenesis and Myogenesis by Transcription Factor MEF2C. Science 276, 1404-1407. Liu, K., and Nussenzweig, M.C. (2010). Development and homeostasis of dendritic cells. Eur J Immunol 40, 2099-2102. Martin, J.F., Schwarz, J.J., and Olson, E.N. (1993). Myocyte enhancer factor (MEF) 2C: a tissue-restricted member of the MEF-2 family of transcription factors. Proceedings of the National Academy of Sciences 90, 5282-5286. Merad, M., Sathe, P., Helft, J., Miller, J., and Mortha, A. (2013). The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31, 563-604. Molkentin, J.D., Black, B.L., Martin, J.F., and Olson, E.N. (1996). Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C. Mol Cell Biol 16, 2627-2636. Nithianandarajah-Jones, G.N., Wilm, B., Goldring, C.E., Muller, J., and Cross, M.J. (2012). ERK5: structure, regulation and function. Cell Signal 24, 2187-2196. Nutt, S.L., and Chopin, M. (2020). Transcriptional Networks Driving Dendritic Cell Differentiation and Function. Immunity 52, 942-956. O'Keeffe, M., Hochrein, H., Vremec, D., Caminschi, I., Miller, J.L., Anders, E.M., Wu, L., Lahoud, M.H., Henri, S., Scott, B., et al. (2002). Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus. J Exp Med 196, 1307-1319. Ohl, L., Mohaupt, M., Czeloth, N., Hintzen, G., Kiafard, Z., Zwirner, J., Blankenstein, T., Henning, G., and Forster, R. (2004). CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279-288. Okamoto, S., Li, Z., Ju, C., Scholzke, M.N., Mathews, E., Cui, J., Salvesen, G.S., Bossy-Wetzel, E., and Lipton, S.A. (2002). Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis. Proc Natl Acad Sci U S A 99, 3974-3979. Onai, N., Obata-Onai, A., Schmid, M.A., Ohteki, T., Jarrossay, D., and Manz, M.G. (2007). Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 8, 1207-1216. Randolph, G.J., Angeli, V., and Swartz, M.A. (2005). Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5, 617-628. Redecke, V., Wu, R., Zhou, J., Finkelstein, D., Chaturvedi, V., High, A.A., and Hacker, H. (2013). Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nat Methods 10, 795-803. Rodrigues, P.F., Alberti-Servera, L., Eremin, A., Grajales-Reyes, G.E., Ivanek, R., and Tussiwand, R. (2018). Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat Immunol 19, 711-722. Sasaki, I., Hoshino, K., Sugiyama, T., Yamazaki, C., Yano, T., Iizuka, A., Hemmi, H., Tanaka, T., Saito, M., Sugiyama, M., et al. (2012). Spi-B is critical for plasmacytoid dendritic cell function and development. Blood 120, 4733-4743. Sathe, P., Vremec, D., Wu, L., Corcoran, L., and Shortman, K. (2013). Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells. Blood 121, 11-19. Satpathy, A.T., Murphy, K.M., and Kc, W. (2011). Transcription factor networks in dendritic cell development. Semin Immunol 23, 388-397. Sawai, C.M., Sisirak, V., Ghosh, H.S., Hou, E.Z., Ceribelli, M., Staudt, L.M., and Reizis, B. (2013). Transcription factor Runx2 controls the development and migration of plasmacytoid dendritic cells. J Exp Med 210, 2151-2159. Schiavoni, G., Mattei, F., Sestili, P., Borghi, P., Venditti, M., Morse, H.C., 3rd, Belardelli, F., and Gabriele, L. (2002). ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8alpha(+) dendritic cells. J Exp Med 196, 1415-1425. Schlitzer, A., Sivakamasundari, V., Chen, J., Sumatoh, H.R., Schreuder, J., Lum, J., Malleret, B., Zhang, S., Larbi, A., Zolezzi, F., et al. (2015). Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat Immunol 16, 718-728. Schonheit, J., Kuhl, C., Gebhardt, M.L., Klett, F.F., Riemke, P., Scheller, M., Huang, G., Naumann, R., Leutz, A., Stocking, C., et al. (2013). PU.1 level-directed chromatin structure remodeling at the Irf8 gene drives dendritic cell commitment. Cell Rep 3, 1617-1628. Shigematsu, H., Reizis, B., Iwasaki, H., Mizuno, S., Hu, D., Traver, D., Leder, P., Sakaguchi, N., and Akashi, K. (2004). Plasmacytoid dendritic cells activate lymphoid-specific genetic programs irrespective of their cellular origin. Immunity 21, 43-53. Stehling-Sun, S., Dade, J., Nutt, S.L., DeKoter, R.P., and Camargo, F.D. (2009). Regulation of lymphoid versus myeloid fate 'choice' by the transcription factor Mef2c. Nat Immunol 10, 289-296. Steinman, R.M., and Cohn, Z.A. (1973). Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137, 1142-1162. Stranges, P.B., Watson, J., Cooper, C.J., Choisy-Rossi, C.M., Stonebraker, A.C., Beighton, R.A., Hartig, H., Sundberg, J.P., Servick, S., Kaufmann, G., et al. (2007). Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity 26, 629-641. Tussiwand, R., Everts, B., Grajales-Reyes, G.E., Kretzer, N.M., Iwata, A., Bagaitkar, J., Wu, X., Wong, R., Anderson, D.A., Murphy, T.L., et al. (2015). Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 42, 916-928. Tussiwand, R., and Gautier, E.L. (2015). Transcriptional Regulation of Mononuclear Phagocyte Development. Front Immunol 6, 533. Villadangos, J.A., and Young, L. (2008). Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 29, 352-361. Villani, A.C., Satija, R., Reynolds, G., Sarkizova, S., Shekhar, K., Fletcher, J., Griesbeck, M., Butler, A., Zheng, S., Lazo, S., et al. (2017). Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356. Wang, R.M., Zhang, Q.G., Li, J., Yang, L.C., Yang, F., and Brann, D.W. (2009). The ERK5-MEF2C transcription factor pathway contributes to anti-apoptotic effect of cerebral ischemia preconditioning in the hippocampal CA1 region of rats. Brain Res 1255, 32-41. Wu, X., Satpathy, A.T., Kc, W., Liu, P., Murphy, T.L., and Murphy, K.M. (2013). Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLoS One 8, e64800. Yang, C.-C., Ornatsky, O.I., McDermott, J.C., Cruz, T.F., and Prody, C.A. (1998). Interaction of myocyte enhancer factor 2 (MEF2) with a mitogen-activated protein kinase, ERK5/BMK1. Nucleic Acids Research 26, 4771-4777. Yoshida, H., Lareau, C.A., Ramirez, R.N., Rose, S.A., Maier, B., Wroblewska, A., Desland, F., Chudnovskiy, A., Mortha, A., Dominguez, C., et al. (2019). The cis-Regulatory Atlas of the Mouse Immune System. Cell 176, 897-912 e820. Zhan, Y., Chow, K.V., Soo, P., Xu, Z., Brady, J.L., Lawlor, K.E., Masters, S.L., O'Keeffe, M., Shortman, K., Zhang, J.G., et al. (2016). Plasmacytoid dendritic cells are short-lived: reappraising the influence of migration, genetic factors and activation on estimation of lifespan. Sci Rep 6, 25060. Zhu, B., and Gulick, T. (2004). Phosphorylation and alternative pre-mRNA splicing converge to regulate myocyte enhancer factor 2C activity. Mol Cell Biol 24, 8264-8275. Zhu, B., Ramachandran, B., and Gulick, T. (2005). Alternative pre-mRNA splicing governs expression of a conserved acidic transactivation domain in myocyte enhancer factor 2 factors of striated muscle and brain. J Biol Chem 280, 28749-28760. Zhu, X.J., Yang, Z.F., Chen, Y., Wang, J., and Rosmarin, A.G. (2012). PU.1 is essential for CD11c expression in CD8(+)/CD8(-) lymphoid and monocyte-derived dendritic cells during GM-CSF or FLT3L-induced differentiation. PLoS One 7, e52141. Zweier, M., Gregor, A., Zweier, C., Engels, H., Sticht, H., Wohlleber, E., Bijlsma, E.K., Holder, S.E., Zenker, M., Rossier, E., et al. (2010). Mutations in MEF2C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression. Hum Mutat 31, 722-733. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76888 | - |
| dc.description.abstract | 樹突細胞作為先天免疫系統以及後天免疫的重要橋梁,其可依照特定的表面抗原以及獨特的功能被分類為漿狀樹突細胞(pDC)、第一型及第二型傳統樹突細胞(cDC1, cDC2)。我們先前已透過廣泛篩選的方式挑選Mef2c 轉錄因子作為研究對象。Mef2c對於心肌細胞發育以及血管生成具有不可或缺的角色。而相較於傳統樹突細胞,其高度表現在pDC中,但Mef2c對於pDC發育的影響卻不甚了解。我們在永生化的造血前驅及幹細胞株(iHSPC)中,發現Mef2c 的缺失致使pDC的分化嚴重受損。而在Mef2c條件式基因剃除小鼠(CD11c-Cre Mef2cf/f, cKO mice) 中,在脾臟以及淋巴結中的pDC比例以及細胞數量皆有明顯下降,而在骨髓中則與對照組無統計差異,這也代表Mef2c不僅調控pDC的發育,同時也調控其遷徙能力。我們首先探討Mef2c 是否會影響pDC細胞凋亡,發現不論是骨髓或是脾臟中的pDC 其細胞凋亡速率無統計差異。但由cKO老鼠CDP或CLP體外培養出的pDC 比例以及數量皆有顯著性下降,顯示Mef2c缺失會對於細胞本身造成影響。而在iHSPC加入會磷酸化Mef2c的活化蛋白p38以及Erk5的抑制劑後,則會降低iHSPC發育成為pDC的能力。相似的性狀也會在活化蛋白基因敲落(knockdown) 的 iHPSC上觀察到,甚而在FL3刺激下,在基因敲落細胞也觀察到Mef2c下游基因,Klf2,表現量降低的性狀。以上結果顯示Mef2c磷酸化對於pDC發育是重要的。總結來說,我們透過體內以及體外實驗發現Mef2c調控前驅細胞如先天免疫CDP 或後天免疫CLP發育成為pDC。更多的是,Mef2c 透過MAPK如p38 或Erk5 活化的訊息路徑對於pDC發育是至關重要的。 | zh_TW |
| dc.description.abstract | Dendritic cells (DCs) bridging innate immunity and adaptive immunity are divided into plasmacytoid DC (pDCs), conventional type 1 DC (cDC1), and conventional type 2 DC (cDC2), which have distinct surface markers and functions. Mef2c, a transcription factor, is known to be critical for cardiac morphogenesis and vascular development. While Mef2c is preferentially expressed in pDC as opposed to cDC, its role in pDC development remains unclear. Mef2c deficiency in immortalized hematopoietic stem and progenitor cells (iHSPC) showed impaired pDC development in vitro. CD11c-Cre Mef2cf/f conditional knockout (cKO) mice decreased pDC percentages and cell numbers in the spleen and lymph nodes, indicating that Mef2c not only regulates pDC development but controls migratory ability of this population in vivo. While the apoptosis rate was comparable between control and Mef2c deficient BM and splenic pDC, in vitro development of pDC from both CDP and CLP of the cKO mice was impaired, suggesting that the defect is intrinsic to the loss of Mef2c. Treatment of inhibitors of p38 or Erk5, two kinases known to activated Mef2c, impaired pDC development in vitro. A similar phenotype was observed when either kinase was selectively knocked down. The expression of Klf2, a downstream target of Mef2c was attenuated in the p38 or Erk5 knockdown iHSPC as opposed to control following FL stimulation. These results suggest that the phosphorylation of Mef2c is important for pDC development. Together, we have defined Mef2c as a transcription factor that regulates pDC development in vitro and in vivo from progenitors of both myeloid and lymphoid lineages. Moreover, the activation of Mef2c by MAPKs, such as p38 and Erk5, is critical for controlling pDC development. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:39:31Z (GMT). No. of bitstreams: 1 U0001-1108202019073600.pdf: 5052991 bytes, checksum: 5636b86506b4777ce4a9c0ebfdc20dd1 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 ii 摘要 iii Abstract iv Contents vi Chapter I Introduction 1 1.1 Dendritic cell subsets 1 1.2 Progenitors of DCs 3 1.3 Transcriptional networks controlling DC development 5 1.4 Myocyte Enhancer Factor 2C (Mef2c) 7 1.5 Activation of Mef2c by MAPK 9 1.6 Rationale 10 Chapter II Materials and Methods 11 2.1 Mice 11 2.2 Lentivirus Production 11 2.3 CRISPR Cas9-mediated deletion in iHSPC 13 2.4 In vitro development of dendritic cells 13 2.5 Flow cytometry 14 2.6 RT-QPCR 14 2.7 Sorting for progenitor cells 15 2.8 CDP, CLP and LF-derived DCs 16 2.9 Viability assay 16 2.10 Competitive adoptive transfer 16 2.11 Statistical analysis 17 2.12 Antibodies 17 Chapter III Results 19 3.1 Mef2c knockout in iHSPC hampers the development of pDC but not of cDC 19 3.2 Mef2c deficiency decreases pDC frequency in the spleen and lymph nodes in vivo 19 3.3 Mef2c deficiency does not alter apoptosis of pDCs 20 3.4 Mef2c deficiency reduced Ccr9 expression in vitro. 21 3.5 Tracing the expression of CD11c in vivo using reporter mice. 22 3.6 Confirming CD11c expression among immune cells of CD11c-Ai6 reporter mice 23 3.7 Mef2c deficiency impairs pDC development from CDP or CLP 23 3.8 Mef2c deficiency does not affect the frequency of Siglec-H+Ly6d- Pre DC and CD115- CDP. 24 3.9 P38 and Erk5 regulate pDC development in iHSPC 25 3.10 Mef2c deficiency downregulates tcf4 and runx2 expression in vitro and in vivo. 26 Chapter IV Discussion 28 4.1 Comparison of Mef2c with other pDC-specific transcription factors 28 4.2 MAPK-regulated Mef2c activity controls pDC 29 4.3 Mef2c does not affect survival/apoptosis of pDC progenitors and pDC 30 4.4 Unexpected fate-mapping phenotype for CD11c reporter mice 31 Chapter V Figures 33 Figure 1. Mef2c knockout in iHSPC hampers the development of pDC but not of cDC. 34 Figure 2. Mef2c deficiency decreases pDC frequency in the spleen and lymph nodes in vivo. 39 Figure 3. Mef2c deficiency does not alter apoptosis of pDCs. 42 Figure 4. Mef2c deficiency reduces CCR9 expression in vitro. 47 Figure 5. Tracing the expression of CD11c expression in vivo using reporter mice. 49 Figure 6. Confirming CD11c expression among immune cells. 53 Figure 7. Mef2c deficiency impairs pDC development from CDP or CLP. 56 Figure 8. Mef2c deficiency does not affect the frequency of Siglec-H+ Ly6c- Pre DC and CD115- CDP, two progenitors of pDC. 58 Figure 9. P38 and Erk5 regulate pDC development in iHSPC. 62 Figure 10. Mef2c deficiency downregulates tcf4 and runx2 expression in vitro and in vivo. 64 Figure 11. Hypothetic model for regulation of pDC development and migration by Mef2c. 65 Chapter VI Reference 66 | |
| dc.language.iso | en | |
| dc.subject | 遷徙 | zh_TW |
| dc.subject | Mef2c轉錄因子 | zh_TW |
| dc.subject | 漿狀樹突細胞 | zh_TW |
| dc.subject | p38磷酸化 | zh_TW |
| dc.subject | Erk5磷酸化 | zh_TW |
| dc.subject | 發育 | zh_TW |
| dc.subject | Mef2c transcription factor | en |
| dc.subject | Erk5 phosphorylation | en |
| dc.subject | p38 phosphorylation | en |
| dc.subject | Migration | en |
| dc.subject | Development | en |
| dc.subject | Plasmacytoid Dendritic Cell | en |
| dc.title | Mef2c的磷酸化調控漿狀樹突細胞的發育 | zh_TW |
| dc.title | The Role of Mef2c Phosphorylation on the Development of Plasmacytoid Dendritic Cell | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐嘉琳(Chia-Lin Hsu),葛一樊(Ivan Dzhagalov) | |
| dc.subject.keyword | 漿狀樹突細胞,Mef2c轉錄因子,發育,遷徙,p38磷酸化,Erk5磷酸化, | zh_TW |
| dc.subject.keyword | Plasmacytoid Dendritic Cell,Mef2c transcription factor,Development,Migration,p38 phosphorylation,Erk5 phosphorylation, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU202003001 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1108202019073600.pdf 未授權公開取用 | 4.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
