請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76880完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳青周(Ching-Chow Chen) | |
| dc.contributor.author | Ting-Hsuan Wu | en |
| dc.contributor.author | 吳亭萱 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:39:18Z | - |
| dc.date.available | 2021-07-10T21:39:18Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | Abo, H., Chassaing, B., Harusato, A., Quiros, M., Brazil, J. C., Ngo, V. L., . . . Denning, T. L. (2020). Erythroid differentiation regulator-1 induced by microbiota in early life drives intestinal stem cell proliferation and regeneration. Nature communications, 11(1), 513. doi:10.1038/s41467-019-14258-z Anest, V., Hanson, J. L., Cogswell, P. C., Steinbrecher, K. A., Strahl, B. D., Baldwin, A. S. (2003). A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature, 423(6940), 659-663. Axelsson, L. G., Landström, E., Goldschmidt, T. J., Grönberg, A., Bylund-Fellenius, A. C. (1996). Dextran sulfate sodium (DSS) induced experimental colitis in immunodeficient mice: Effects in CD4+-cell depleted, athymic and NK-cell depleted SCID mice. Inflammation Research, 45(4), 181-191. doi:10.1007/BF02285159 Ayyaz, A., Kumar, S., Sangiorgi, B., Ghoshal, B., Gosio, J., Ouladan, S., . . . Shen, J. (2019). Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature, 569(7754), 121-125. Bailey, R. W., Bourne, E. J. (1961). Intracellular Glycosidases of Dextran-producing Bacteria. Nature, 191(4785), 277-278. doi:10.1038/191277a0 Balkwill, F., Mantovani, A. (2001). Inflammation and cancer: back to Virchow? The Lancet, 357(9255), 539-545. Ballweg, R., Lee, S., Han, X., Maini, P. K., Byrne, H., Hong, C. I., Zhang, T. (2018). Unraveling the control of cell cycle periods during intestinal stem cell differentiation. Biophysical journal, 115(11), 2250-2258. Bankaitis, E. D., Ha, A., Kuo, C. J., Magness, S. T. (2018). Reserve stem cells in intestinal homeostasis and injury. Gastroenterology, 155(5), 1348-1361. Barker, N. (2014). Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol, 15(1), 19-33. doi:10.1038/nrm3721 Barker, N., Van Es, J. H., Kuipers, J., Kujala, P., Van Den Born, M., Cozijnsen, M., . . . Peters, P. J. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165), 1003-1007. Breault, D. T., Min, I. M., Carlone, D. L., Farilla, L. G., Ambruzs, D. M., Henderson, D. E., . . . Hole, N. (2008). Generation of mTert-GFP mice as a model to identify and study tissue progenitor cells. Proceedings of the National Academy of Sciences, 105(30), 10420-10425. Breider, M. A., Eppinger, M., Gough, A. (1997). Intercellular Adhesion Molecule-1 Expression in Dextran Sodium Sulfate-induced Colitis in Rats. Veterinary Pathology, 34(6), 598-604. doi:10.1177/030098589703400608 Cai, J., Zhang, N., Zheng, Y., De Wilde, R. F., Maitra, A., Pan, D. (2010). The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev, 24(21), 2383-2388. Castillo‐Azofeifa, D., Fazio, E. N., Nattiv, R., Good, H. J., Wald, T., Pest, M. A., . . . Asfaha, S. (2019). Atoh1+ secretory progenitors possess renewal capacity independent of Lgr5+ cells during colonic regeneration. Embo j, 38(4). Chan, H. M., La Thangue, N. B. (2001). p300/CBP proteins: HATs for transcriptional bridges and scaffolds. Journal of cell science, 114(13), 2363-2373. Cho, J. H. (2008). The genetics and immunopathogenesis of inflammatory bowel disease. Nature Reviews Immunology, 8(6), 458-466. doi:10.1038/nri2340 Dalerba, P., Dylla, S. J., Park, I.-K., Liu, R., Wang, X., Cho, R. W., . . . Simeone, D. M. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences, 104(24), 10158-10163. Dekaney, C. M., Gulati, A. S., Garrison, A. P., Helmrath, M. A., Henning, S. J. (2009). Regeneration of intestinal stem/progenitor cells following doxorubicin treatment of mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 297(3), G461-G470. Diamanti, M. A., Gupta, J., Bennecke, M., De Oliveira, T., Ramakrishnan, M., Braczynski, A. K., . . . Greten, F. R. (2017). IKKalpha controls ATG16L1 degradation to prevent ER stress during inflammation. J Exp Med, 214(2), 423-437. doi:10.1084/jem.20161867 DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E., Karin, M. (1997). A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature, 388(6642), 548-554. Dignass, A. U., Sturm, A. (2001). Peptide growth factors in the intestine. European journal of gastroenterology hepatology, 13(7), 763-770. Egger, B., Bajaj-Elliott, M., MacDonald, T. T., Inglin, R., Eysselein, V. E., Büchler, M. W. (2000). Characterisation of Acute Murine Dextran Sodium Sulphate Colitis: Cytokine Profile and Dose Dependency. Digestion, 62(4), 240-248. doi:10.1159/000007822 Gassler, N. (2017). Paneth cells in intestinal physiology and pathophysiology. World journal of gastrointestinal pathophysiology, 8(4), 150. Gaudio, E., Taddei, G., Vetuschi, A., Sferra, R., Frieri, G., Ricciardi, G., Caprilli, R. (1999). Dextran Sulfate Sodium (DSS) Colitis in Rats (Clinical, Structural, and Ultrastructural Aspects). Dig Dis Sci, 44(7), 1458-1475. doi:10.1023/A:1026620322859 Gehart, H., Clevers, H. (2019). Tales from the crypt: new insights into intestinal stem cells. Nature Reviews Gastroenterology Hepatology, 16(1), 19-34. Gerbe, F., Sidot, E., Smyth, D. J., Ohmoto, M., Matsumoto, I., Dardalhon, V., . . . Brulin, B. (2016). Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature, 529(7585), 226-230. Giacomin, P. R., Moy, R. H., Noti, M., Osborne, L. C., Siracusa, M. C., Alenghat, T., . . . Artis, D. (2015). Epithelial-intrinsic IKKalpha expression regulates group 3 innate lymphoid cell responses and antibacterial immunity. J Exp Med, 212(10), 1513-1528. doi:10.1084/jem.20141831 Ginestier, C., Hur, M. H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., . . . Liu, S. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell stem cell, 1(5), 555-567. Goodman, R. H., Smolik, S. (2000). CBP/p300 in cell growth, transformation, and development. Genes Dev, 14(13), 1553-1577. Goto, Y., Kurashima, Y., Kiyono, H. (2015). The gut microbiota and inflammatory bowel disease. Curr Opin Rheumatol, 27(4), 388-396. Hanash, A. M., Dudakov, J. A., Hua, G., O’Connor, M. H., Young, L. F., Singer, N. V., . . . Kappel, L. W. (2012). Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity, 37(2), 339-350. Hansson, G. C. (2012). Role of mucus layers in gut infection and inflammation. Current opinion in microbiology, 15(1), 57-62. Hao, H.-X., Xie, Y., Zhang, Y., Charlat, O., Oster, E., Avello, M., . . . Ruffner, H. (2012). ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature, 485(7397), 195-200. Haramis, A.-P. G., Begthel, H., Van Den Born, M., Van Es, J., Jonkheer, S., Offerhaus, G. J. A., Clevers, H. (2004). De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science, 303(5664), 1684-1686. Harnack, C., Berger, H., Antanaviciute, A., Vidal, R., Sauer, S., Simmons, A., . . . Sigal, M. (2019). R-spondin 3 promotes stem cell recovery and epithelial regeneration in the colon. Nature communications, 10(1), 1-15. Huang, W. C., Ju, T. K., Hung, M. C., Chen, C. C. (2007). Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Mol Cell, 26(1), 75-87. doi:10.1016/j.molcel.2007.02.019 Hynes, M., Huang, K., Huang, E. (2009). Implications of the “cancer stem cell” hypothesis on murine models of colon cancer and colitis-associated cancer. Veterinary Pathology, 46(5), 819-835. Iwanaga, T., Hoshi, O., Han, H., Fujita, T. (1994). Morphological analysis of acute ulcerative colitis experimentally induced by dextran sulfate sodium in the guinea pig: Some possible mechanisms of cecal ulceration. Journal of Gastroenterology, 29(4), 430-438. doi:10.1007/BF02361239 Iyer, N. G., Ozdag, H., Caldas, C. (2004). p300/CBP and cancer. Oncogene, 23(24), 4225-4231. Katoh, M., Katoh, M. (2007). Notch signaling in gastrointestinal tract (review). Int J Oncol, 30(1), 247-251. Kim, K.-A., Kakitani, M., Zhao, J., Oshima, T., Tang, T., Binnerts, M., . . . Emtage, P. (2005). Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science, 309(5738), 1256-1259. Kim, T.-H., Li, F., Ferreiro-Neira, I., Ho, L.-L., Luyten, A., Nalapareddy, K., . . . Shivdasani, R. A. (2014). Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity. Nature, 506(7489), 511-515. Koo, B.-K., Spit, M., Jordens, I., Low, T. Y., Stange, D. E., Van De Wetering, M., . . . Maurice, M. M. (2012). Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature, 488(7413), 665-669. Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P. J., Clevers, H. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature genetics, 19(4), 379-383. Kosinski, C., Li, V. S., Chan, A. S., Zhang, J., Ho, C., Tsui, W. Y., . . . Yuen, S. T. (2007). Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proceedings of the National Academy of Sciences, 104(39), 15418-15423. Kullmann, F., Messmann, H., Alt, M., Gross, V., Bocker, T., Schölmerich, J., Rüschoff, J. (2001). Clinical and histopathological features of dextran sulfate sodium induced acute and chronic colitis associated with dysplasia in rats. International Journal of Colorectal Disease, 16(4), 238-246. doi:10.1007/s003840100311 Kumar, V., Abbas, A. K., Fausto, N., Aster, J. C. (2009). Robbins Cotran Pathologic Basis of Disease E-Book: Elsevier Health Sciences. Lin, Y.-T. (2020). Impaired phosphorylation of CBP leads to colitis through disturbances of intestinal homeostasis and microbiota. (Docteral dissertation), National Taiwan University, Taipei, Taiwan. Liu, T.-C., Stappenbeck, T. S. (2016). Genetics and pathogenesis of inflammatory bowel disease. Annual Review of Pathology: Mechanisms of Disease, 11, 127-148. Mähler, M., Bristol, I. J., Leiter, E. H., Workman, A. E., Birkenmeier, E. H., Elson, C. O., Sundberg, J. P. (1998). Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 274(3), G544-G551. doi:10.1152/ajpgi.1998.274.3.G544 Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R., Mahajan, A. (2013). Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal immunology, 6(4), 666-677. Mao, J., Kim, B.-M., Rajurkar, M., Shivdasani, R. A., McMahon, A. P. (2010). Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development, 137(10), 1721-1729. Martínez‐Balbás, M. A., Bauer, U. M., Nielsen, S. J., Brehm, A., Kouzarides, T. (2000). Regulation of E2F1 activity by acetylation. Embo j, 19(4), 662-671. Massagué, J. (2012). TGFβ signalling in context. Nature reviews Molecular cell biology, 13(10), 616-630. Melgar, S., Karlsson, A., Michaëlsson, E. (2005). Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. American Journal of Physiology-Gastrointestinal and Liver Physiology, 288(6), G1328-G1338. Montgomery, R. K., Carlone, D. L., Richmond, C. A., Farilla, L., Kranendonk, M. E., Henderson, D. E., . . . Algra, S. (2011). Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proceedings of the National Academy of Sciences, 108(1), 179-184. Morgan, R., Mortensson, E., Williams, A. (2018). Targeting LGR5 in Colorectal Cancer: therapeutic gold or too plastic? British journal of cancer, 118(11), 1410-1418. Mowat, A. M., Agace, W. W. (2014). Regional specialization within the intestinal immune system. Nature Reviews Immunology, 14(10), 667-685. Murata, K., Jadhav, U., Madha, S., van Es, J., Dean, J., Cavazza, A., . . . Shivdasani, R. A. (2020). Ascl2-dependent cell dedifferentiation drives regeneration of ablated intestinal stem cells. Cell stem cell, 26(3), 377-390. e376. Murthy, S. N. S., Cooper, H. S., Shim, H., Shah, R. S., Ibrahim, S. A., Sedergran, D. J. (1993). Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig Dis Sci, 38(9), 1722-1734. doi:10.1007/BF01303184 Nenci, A., Becker, C., Wullaert, A., Gareus, R., van Loo, G., Danese, S., . . . Pasparakis, M. (2007). Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature, 446(7135), 557-561. doi:10.1038/nature05698 Ng, S. C., Shi, H. Y., Hamidi, N., Underwood, F. E., Tang, W., Benchimol, E. I., . . . Chan, F. K. (2017). Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet, 390(10114), 2769-2778. Nusse, R., Clevers, H. (2017). Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell, 169(6), 985-999. Okayasu, I., Hatakeyama, S., Yamada, M., Ohkusa, T., Inagaki, Y., Nakaya, R. (1990). A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 98(3), 694-702. doi:10.5555/uri:pii:001650859090290H Orford, K. W., Scadden, D. T. (2008). Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nature Reviews Genetics, 9(2), 115-128. Pinto, D., Gregorieff, A., Begthel, H., Clevers, H. (2003). Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev, 17(14), 1709-1713. Powell, A. E., Wang, Y., Li, Y., Poulin, E. J., Means, A. L., Washington, M. K., . . . Levy, S. E. (2012). The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell, 149(1), 146-158. Sancho, R., Cremona, C. A., Behrens, A. (2015). Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. EMBO reports, 16(5), 571-581. Sangiorgi, E., Capecchi, M. R. (2008). Bmi1 is expressed in vivo in intestinal stem cells. Nature genetics, 40(7), 915. Sasaki, N., Sachs, N., Wiebrands, K., Ellenbroek, S. I., Fumagalli, A., Lyubimova, A., . . . Karthaus, W. R. (2016). Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon. Proceedings of the National Academy of Sciences, 113(37), E5399-E5407. Sato, T., Clevers, H. (2013). Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science, 340(6137), 1190-1194. doi:10.1126/science.1234852 Sato, T., Van Es, J. H., Snippert, H. J., Stange, D. E., Vries, R. G., Van Den Born, M., . . . Clevers, H. (2011). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 469(7330), 415-418. Sato, T., Vries, R. G., Snippert, H. J., Van De Wetering, M., Barker, N., Stange, D. E., . . . Peters, P. J. (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 459(7244), 262-265. Schlieve, C. R., Mojica, S. G., Holoyda, K. A., Hou, X., Fowler, K. L., Grikscheit, T. C. (2016). Vascular endothelial growth factor (VEGF) bioavailability regulates angiogenesis and intestinal stem and progenitor cell proliferation during postnatal small intestinal development. PLoS One, 11(3), e0151396. Schwitalla, S., Fingerle, A. A., Cammareri, P., Nebelsiek, T., Göktuna, S. I., Ziegler, P. K., . . . Moreaux, G. (2013). Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell, 152(1-2), 25-38. Shi, J., Walker, M. G. (2007). Gene set enrichment analysis (GSEA) for interpreting gene expression profiles. Current Bioinformatics, 2(2), 133-137. Snippert, H. J., Van Der Flier, L. G., Sato, T., Van Es, J. H., Van Den Born, M., Kroon-Veenboer, C., . . . Simons, B. D. (2010). Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell, 143(1), 134-144. Solomon, L., Mansor, S., Mallon, P., Donnelly, E., Hoper, M., Loughrey, M., . . . Gardiner, K. (2010). The dextran sulphate sodium (DSS) model of colitis: an overview. Comparative Clinical Pathology, 19(3), 235-239. doi:10.1007/s00580-010-0979-4 Soutoglou, E., Katrakili, N., Talianidis, I. (2000). Acetylation regulates transcription factor activity at multiple levels. Molecular cell, 5(4), 745-751. Takeda, N., Jain, R., LeBoeuf, M. R., Wang, Q., Lu, M. M., Epstein, J. A. (2011). Interconversion between intestinal stem cell populations in distinct niches. Science, 334(6061), 1420-1424. Takemaru, K. I., Moon, R. T. (2000). The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol, 149(2), 249-254. Tetteh, P. W., Basak, O., Farin, H. F., Wiebrands, K., Kretzschmar, K., Begthel, H., . . . Van Es, J. H. (2016). Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell stem cell, 18(2), 203-213. Tetteh, P. W., Farin, H. F., Clevers, H. (2015). Plasticity within stem cell hierarchies in mammalian epithelia. Trends in cell biology, 25(2), 100-108. Tian, H., Biehs, B., Warming, S., Leong, K. G., Rangell, L., Klein, O. D., de Sauvage, F. J. (2011). A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature, 478(7368), 255-259. Van Es, J. H., Sato, T., Van De Wetering, M., Lyubimova, A., Nee, A. N. Y., Gregorieff, A., . . . Korving, J. (2012). Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nature cell biology, 14(10), 1099-1104. Vo, N., Goodman, R. H. (2001). CREB-binding protein and p300 in transcriptional regulation. Journal of Biological Chemistry, 276(17), 13505-13508. Webster, G. A., Perkins, N. D. (1999). Transcriptional cross talk between NF-kappaB and p53. Mol Cell Biol, 19(5), 3485-3495. Worthington, J. J., Reimann, F., Gribble, F. (2018). Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal immunology, 11(1), 3-20. Wullaert, A., Bonnet, M. C., Pasparakis, M. (2011). NF-κB in the regulation of epithelial homeostasis and inflammation. Cell Research, 21(1), 146-158. doi:10.1038/cr.2010.175 Yamada, M., Ohkusa, T., Okayasu, I. (1992). Occurrence of dysplasia and adenocarcinoma after experimental chronic ulcerative colitis in hamsters induced by dextran sulphate sodium. Gut, 33(11), 1521-1527. doi:10.1136/gut.33.11.1521 Yamamoto, Y., Verma, U. N., Prajapati, S., Kwak, Y. T., Gaynor, R. B. (2003). Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature, 423(6940), 655-659. doi:10.1038/nature01576 Yan, K. S., Chia, L. A., Li, X., Ootani, A., Su, J., Lee, J. Y., . . . Amieva, M. R. (2012). The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proceedings of the National Academy of Sciences, 109(2), 466-471. Yan, K. S., Gevaert, O., Zheng, G. X., Anchang, B., Probert, C. S., Larkin, K. A., . . . Han, A. (2017). Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. Cell stem cell, 21(1), 78-90. e76. Yui, S., Azzolin, L., Maimets, M., Pedersen, M. T., Fordham, R. P., Hansen, S. L., . . . Rundsten, C. F. (2018). YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell stem cell, 22(1), 35-49. e37. Zacharias, W. J., Madison, B. B., Kretovich, K. E., Walton, K. D., Richards, N., Udager, A. M., . . . Gumucio, D. L. (2011). Hedgehog signaling controls homeostasis of adult intestinal smooth muscle. Developmental biology, 355(1), 152-162. Zhang, W., Bieker, J. J. (1998). Acetylation and modulation of erythroid Krüppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proceedings of the National Academy of Sciences, 95(17), 9855-9860. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76880 | - |
| dc.description.abstract | CREB-binding protein (CBP) 為具HAT活性之轉錄輔助因子,利於基因轉錄,參與調控多種細胞功能。我們已證明CBP Serine 1383/1387位點磷酸化缺失之CbpS1383/1387Am/m knock-in小鼠 (AA小鼠) 會產生自發性腸炎,有腸道屏障失衡及表皮細胞自我更新延遲之現象。腸道幹細胞可維持腸道屏障之完整性,本研究利用腸道表皮細胞培養成球狀聚落 (spheres),探討CBP磷酸化缺失對幹性之影響。過量表現人類CBP AA磷酸化缺失之突變型蛋白於HCT116腸道上皮細胞,培養之spheres直徑較小、球體生成效率較低、細胞存活率較低,CD44+/CD166+ 與ALDH+ 細胞亦較少,顯示其幹性降低。為了進一步探討CBP磷酸化於近生理條件中之角色,使用小鼠結腸crypts培養初代organoids。AA小鼠之organoids生成效率較低、直徑較小,幹性相關基因如Lgr5、Ascl2、Mmp7之表現量亦較低。以RNA sequencing探討CBP磷酸化缺失導致腸道幹性失調之可能機制,顯示WT和AA小鼠結腸organoids基因表現確實有差異;Gene Set Enrichment Analysis (GSEA)分析顯示,與維持幹性之訊息傳遞路徑如stem cell proliferation、Wnt/β-catenin及Notch signaling於四週齡AA小鼠之表現較低。 為了解腸道表皮細胞幹性失調是否影響腸道損傷之修復,以DSS誘發小鼠腸炎。在損傷及修復期,AA小鼠之體重、潛血反應、軟便症狀及腸組織結構有延遲復原之現象,修復所需之Ki-67+ proliferating cells亦延緩出現。WT小鼠於損傷期, organoids數量增加,但復原期減少;然而AA小鼠於損傷與復原階段,organoids之數量並無變化,但於復原期organoids較WT多但直徑較小。 因此,CBP磷酸化缺失可能影響spheres及結腸organoids之幹性,阻礙腸道之損傷修復。 | zh_TW |
| dc.description.abstract | CREB-binding protein (CBP) is a transcriptional coactivator involving in the regulation of DNA accessibility to affect a variety of cellular functions. We have previously demonstrated that impaired phosphorylation of CBP at Ser1383/1387 in mice (CbpS1383/1387Am/m knock-in mice, AA mice) caused spontaneous colitis instigated by dysregulation of colonic epithelial homeostasis. The integrity of intestinal epithelial barrier is maintained by the self-renew and continuous replacement of intestinal stem cells; therefore, whether impaired phosphorylation of CBP affected stemness was assessed by culturing spheres derived from intestinal epithelial cell (IEC) enriched in stem cell population. The stemness of spheres from human HCT116 IECs overexpressing CBP AA mutant (Ser1382/1386Ala) was decreased, characterized by smaller size of spheres, lower sphere-forming efficiency, a decrease in cell viability, lower CD44+/CD166+ and ALDH+ population. To further investigate the role of CBP in a near-physiological environment, primary colonic epithelium-derived 3D organoid culture system was employed. Decreased organoid-forming efficiency and size were also observed in organoids generated from AA mice. The mRNA levels of stemness-related genes, such as Lgr5, Ascl2 and Mmp7 were decreased in organoids from AA mice. The possible mechanisms of dysregulation of stemness in AA mice were investigated by RNA sequencing. Heat map showed a reverse expression pattern of genes between WT and AA organoids. A decrease in stem cell related signaling such as stem cell proliferation, Wnt/β-catenin, and Notch signaling, as well as downregulation of NF-kB signaling by Gene Set Enrichment Analysis (GSEA) analysis was observed in 4-week-old AA mice. To examine whether dysregulation of IEC stemness delays epithelial regeneration upon intestinal injury, chemical (DSS)-induced model was performed, symptoms were assessed and organoids were generated. After acute DSS treatment, a delay in weight restoration and histopathological recovery in both injury and recovery phases was seen in AA mice. The number of organoids derived from WT mice in injury phase was increased, followed by a decrease in recovery phase. However, those derived from AA mice during injury and recovery phases had no alteration; besides, more and smaller organoids were seen in AA mice compared to WT mice in recovery phase. These findings reveal that impaired phosphorylation of CBP might affect the stemness of both spheres and colonic organoids, impeding intestinal regeneration. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:39:18Z (GMT). No. of bitstreams: 1 U0001-1208202011013300.pdf: 6343019 bytes, checksum: 872203c3905eb965d608a0585d230f40 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii Abstract iv 縮寫表 (Abbreviation) 1 第一章 緒論 (Introduction) 3 第一節 腸道恆定 (Intestinal homeostasis) 4 第二節 發炎性腸道疾病 (Inflammatory bowel disease, IBD) 22 第三節 CREB Binding Protein (CBP) 28 研究動機 (Study motivation) 31 第二章 實驗材料與方法 (Materials and methods) 32 第三章 實驗結果 (Results) 41 第四章 討論 (Discussion) 64 第五章 結論 (Conclusion) 69 參考文獻 (References) 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 發炎性腸炎 | zh_TW |
| dc.subject | 腸道再生 | zh_TW |
| dc.subject | 腸道表皮細胞 | zh_TW |
| dc.subject | 腸道幹細胞 | zh_TW |
| dc.subject | CREB結合蛋白 | zh_TW |
| dc.subject | 腸道修復 | zh_TW |
| dc.subject | Intestinal stem cells | en |
| dc.subject | Intestinal epithelial cells | en |
| dc.subject | Inflammatory bowel disease | en |
| dc.subject | CBP | en |
| dc.subject | Intestinal regeneration | en |
| dc.title | CBP磷酸化缺失造成大腸幹性與再生失調之研究 | zh_TW |
| dc.title | Investigation of impaired CBP phosphorylation on colonic stemness and regeneration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳明賢(Ming-Shiang Wu),黃偉謙(Wei-Chien Huang),魏子堂(Tzu-Tang Wei) | |
| dc.subject.keyword | CREB結合蛋白,發炎性腸炎,腸道表皮細胞,腸道幹細胞,腸道修復,腸道再生, | zh_TW |
| dc.subject.keyword | CBP,Inflammatory bowel disease,Intestinal epithelial cells,Intestinal stem cells,Intestinal regeneration, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU202003058 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1208202011013300.pdf 未授權公開取用 | 6.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
