Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76878
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡育彰(Yu-Chang Tsai)
dc.contributor.authorMing-Hsien Changen
dc.contributor.author張銘顯zh_TW
dc.date.accessioned2021-07-10T21:39:15Z-
dc.date.available2021-07-10T21:39:15Z-
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-13
dc.identifier.citation侯雅文. (2016). 水稻細胞分裂素訊息反應調節蛋白 OsRR6 與 OsRR11之生理功能探討. 國立台灣大學生物資源暨農學院農藝學系碩士論文.
吳函䭲. (2018). 水稻細胞分裂素訊息反應調節蛋白 OsRR6 與 OsRR11於鹽害逆應下之生理功能探討. 國立台灣大學生物資源暨農學院農藝學系碩士論文.
Albacete A, Ghanem ME, Martinez-Andujar C, Acosta M, Sanchez-Bravo J, Martinez V, Lutts S, Dodd IC, Perez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59: 4119-4131
Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19: 307-321
Argyros RD, Mathews DE, Chiang YH, Palmer CM, Thibault DM, Etheridge N, Argyros DA, Mason MG, Kieber JJ, Schaller GE (2008) Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20: 2102-2116
Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69: 473-488
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433: 39-44
Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34: 67-75
Casanovas EM, Fasciglione G, Barassi CA (2015) Azospirillum spp. and Related PGPRs Inocula Use in Intensive Agriculture. In Handbook for Azospirillum, pp 447-467
Cheng X, Jiang H, Zhang J, Qian Y, Zhu S, Cheng B (2010) Overexpression of type-A rice response regulators, OsRR3 and OsRR5, results in lower sensitivity to cytokinins. Genet Mol Res 9: 348-359
Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55: 225-236
Coenen C, Lomax TL (1997) Auxin-cytokinin interactions in higher plants: old problems and new tools. Trends Plant Sci 2: 351-356
Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmulling T (2019) Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ 42: 998-1018
Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology 11: 163
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61: 651-679
Davies WJ, Kudoyarova G, Hartung W (2005) Long-distance ABA Signaling and Its Relation to Other Signaling Pathways in the Detection of Soil Drying and the Mediation of the Plant’s Response to Drought. J Plant Growth Regul 24: 285-295
Finkelstein R, Lynch T, Reeves W, Petitfils M, Mostachetti M (2011) Accumulation of the transcription factor ABA-insensitive (ABI4) is tightly regulated post-transcriptionally. J Exp Bot 62: 3971-3979
Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y (2011) Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233: 175-188
Gao R, Stock AM (2009) Biological insights from structures of two-component proteins. Annu Rev Microbiol 63: 133-154
Gao S, Fang J, Xu F, Wang W, Sun X, Chu J, Cai B, Feng Y, Chu C (2014) CYTOKININ OXIDASE/DEHYDROGENASE4 Integrates Cytokinin and Auxin Signaling to Control Rice Crown Root Formation. Plant Physiol 165: 1035-1046
Gao Y, Lynch JP (2016) Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). J Exp Bot 67: 4545-4557
Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17: 172-179
Han SY, Kitahata N, Sekimata K, Saito T, Kobayashi M, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K, Yoshida S, Asami T (2004) A novel inhibitor of 9-cis-epoxycarotenoid dioxygenase in abscisic acid biosynthesis in higher plants. Plant Physiol 135: 1574-1582
Hirose N, Makita N, Kojima M, Kamada-Nobusada T, Sakakibara H (2007) Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol 48: 523-539
Hossain M, Imran S, Islam M, Md. Abdul K, Uddin M (2017) Expressional analysis of OsNHX1, OsNHX2, OsSOS1 and OsDREB transporters in salt tolerant (FR13A) and salt sensitive rice (brri dhan29) induced by salinity stress. IOSR JAVS 10: 64-70
Huang X, Hou L, Meng J, You H, Li Z, Gong Z, Yang S, Shi Y (2018) The Antagonistic Action of Abscisic Acid and Cytokinin Signaling Mediates Drought Stress Response in Arabidopsis. Mol Plant 11: 970-982
Huang Y, Guo Y, Liu Y, Zhang F, Wang Z, Wang H, Wang F, Li D, Mao D, Luan S, Liang M, Chen L (2018) 9-cis-Epoxycarotenoid Dioxygenase 3 Regulates Plant Growth and Enhances Multi-Abiotic Stress Tolerance in Rice. Front Plant Sci 9: 162
Huang Y, Jiao Y, Xie N, Guo Y, Zhang F, Xiang Z, Wang R, Wang F, Gao Q, Tian L, Li D, Chen L, Liang M (2019) OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice. Plant Sci 287: 110188
Hwang I, Chen HC, Sheen J (2002) Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129: 500-515
Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP (2007) F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143: 1467-1483
Jain M, Tyagi AK, Khurana JP (2006) Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biol 6: 1
Jain R, Jenkins J, Shu S, Chern M, Martin JA, Copetti D, Duong PQ, Pham NT, Kudrna DA, Talag J, Schackwitz WS, Lipzen AM, Dilworth D, Bauer D, Grimwood J, Nelson CR, Xing F, Xie W, Barry KW, Wing RA, Schmutz J, Li G, Ronald PC (2019) Genome sequence of the model rice variety KitaakeX. BMC Genomics 20: 905
Jang G, Choi YD (2018) Drought stress promotes xylem differentiation by modulating the interaction between cytokinin and jasmonic acid. Plant Signal Behav 13: e1451707
Jeon J, Kim NY, Kim S, Kang NY, Novak O, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M, Kim J (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285: 23371-23386
Jiang L, Matthys C, Marquez-Garcia B, De Cuyper C, Smet L, De Keyser A, Boyer FD, Beeckman T, Depuydt S, Goormachtig S (2016) Strigolactones spatially influence lateral root development through the cytokinin signaling network. J Exp Bot 67: 379-389
Jiang W, Zhou S, Zhang Q, Song H, Zhou DX, Zhao Y (2017) Transcriptional regulatory network of WOX11 is involved in the control of crown root development, cytokinin signals, and redox in rice. J Exp Bot 68: 2787-2798
Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. PNAS 93: 11274-11279
Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Sejalon-Delmas N, Combier JP, Becard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233: 209-216
Khandal H, Gupta SK, Dwivedi V, Mandal D, Sharma NK, Vishwakarma NK, Pal L, Choudhary M, Francis A, Malakar P, Singh NP, Sharma K, Sinharoy S, Singh NP, Sharma R, Chattopadhyay D (2020) Root-specific expression of chickpea cytokinin oxidase/dehydrogenase 6 leads to enhanced root growth, drought tolerance and yield without compromising nodulation. Plant Biotechnol J
Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y (2011) The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Plant J 67: 472-484
Koltai H (2011) Strigolactones are regulators of root development. New Phytol 190: 545-549
Lee DJ, Kim S, Ha YM, Kim J (2008) Phosphorylation of Arabidopsis response regulator 7 (ARR7) at the putative phospho-accepting site is required for ARR7 to act as a negative regulator of cytokinin signaling. Planta 227: 577-587
Li T, Zhang Y, Liu H, Wu Y, Li W, Zhang H (2010) Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations. Chinese Science Bulletin 55: 1127-1134
Li X, Mo X, Shou H, Wu P (2006) Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol 47: 1112-1123
Liu J, Han L, Chen F, Bao J, Zhang F, Mi G (2008) Microarray analysis reveals early responsive genes possibly involved in localized nitrate stimulation of lateral root development in maize (Zea mays L.). Plant Science 175: 272-282
Liu X, Huang B, Banowetz G (2001) Cytokinin effects on creeping bentgrass responses to heat stress: I. Shoot and root growth. Crop Science 42: 457-465
Lobet G, Pages L, Draye X (2011) A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol 157: 29-39
Läuchli A, Grattan SR (2007) Plant Growth And Development Under Salinity Stress. In MA Jenks, PM Hasegawa, SM Jain, eds, Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer Netherlands, Dordrecht, pp 1-32
Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229: 605-615
Marshall A, Aalen RB, Audenaert D, Beeckman T, Broadley MR, Butenko MA, Cano-Delgado AI, de Vries S, Dresselhaus T, Felix G, Graham NS, Foulkes J, Granier C, Greb T, Grossniklaus U, Hammond JP, Heidstra R, Hodgman C, Hothorn M, Inze D, Ostergaard L, Russinova E, Simon R, Skirycz A, Stahl Y, Zipfel C, De Smet I (2012) Tackling drought stress: receptor-like kinases present new approaches. Plant Cell 24: 2262-2278
Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, Schaller GE (2005) Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17: 3007-3018
Milborrow BV (1974) The Chemistry and Physiology of Abscisic Acid. Annual Review of Plant Physiology 25: 259-307
Mishra P, Mishra V, Singh NK, Rai V (2017) Gene expression dynamics of HKT family genes in salt-tolerant and salt-sensitive indica rice cultivars. Indian J Genet Plant Breed 77: 364-370
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7: 405-410
Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. PNAS 103: 16598-16603
Mohammadkhani N (2008) Drought-induced Accumulation of Soluble Sugars and Proline in Two Maize Varieties. World Appl Sci J 3: 448-453
Moreira S, Bishopp A, Carvalho H, Campilho A (2013) AHP6 inhibits cytokinin signaling to regulate the orientation of pericycle cell division during lateral root initiation. PLoS One 8: e56370
Neogy A, Garg T, Kumar A, Dwivedi AK, Singh H, Singh U, Singh Z, Prasad K, Jain M, Yadav SR (2019) Genome-Wide Transcript Profiling Reveals an Auxin-Responsive Transcription Factor, OsAP2/ERF-40, Promoting Rice Adventitious Root Development. Plant Cell Physiol 60: 2343-2355
Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One 7: e32124
Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmulling T, Tran LS (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23: 2169-2183
O'Brien JA, Benkova E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci 4: 451
Pacifici E, Polverari L, Sabatini S (2015) Plant hormone cross-talk: the pivot of root growth. J Exp Bot 66: 1113-1121
Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14: 290-295
Perilli S, Moubayidin L, Sabatini S (2010) The molecular basis of cytokinin function. Curr Opin Plant Biol 13: 21-26
Rani Debi B, Taketa S, Ichii M (2005) Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa L.). J Plant Physiol 162: 507-515
Riefler M, Novak O, Strnad M, Schmulling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18: 40-54
Saab IN, Sharp RE, Pritchard J, Voetberg GS (1990) Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol 93: 1329-1336
Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. PNAS 103: 18822-18827
Santner A, Calderon-Villalobos L, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5: 301-307
Sato Y, Takehisa H, Kamatsuki K, Minami H, Namiki N, Ikawa H, Ohyanagi H, Sugimoto K, Antonio BA, Nagamura Y (2013) RiceXPro version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Res 41: D1206-1213
Schaller GE, Street IH, Kieber JJ (2014) Cytokinin and the cell cycle. Curr Opin Plant Biol 21: 7-15
Shi X, Gupta S, Lindquist IE, Cameron CT, Mudge J, Rashotte AM (2013) Transcriptome analysis of cytokinin response in tomato leaves. PLoS One 8: e55090
Shkolnik-Inbar D, Bar-Zvi D (2010) ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22: 3560-3573
Singh V, Singh AP, Bhadoria J, Giri J, Singh J, T VV, Sharma PC (2018) Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage. Protoplasma 255: 1667-1681
Stenlid G (1982) Cytokinins as inhibitors of root growth. Physiol Plant 56: 500-506
Sumanta N, Haque C, Nishika J, Suprakash R (2014) Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res J Chem Sci 4: 63-69
Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284: 173-183
Takatsuka H, Umeda M (2019) ABA inhibits root cell elongation through repressing the cytokinin signaling. Plant Signal Behav 14: e1578632
To JP, Deruere J, Maxwell BB, Morris VF, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2007) Cytokinin regulates type-A Arabidopsis Response Regulator activity and protein stability via two-component phosphorelay. Plant Cell 19: 3901-3914
To JP, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16: 658-671
Tran L-SP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. PNAS 104: 20623-20628
Tsai YC, Weir NR, Hill K, Zhang W, Kim HJ, Shiu SH, Schaller GE, Kieber JJ (2012) Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiol 158: 1666-1684
Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97: 11632-11637
Verslues PE (2016) ABA and cytokinins: challenge and opportunity for plant stress research. Plant Mol Biol 91: 629-640
Wang WC, Lin TC, Kieber J, Tsai YC (2019) Response Regulators 9 and 10 Negatively Regulate Salinity Tolerance in Rice. Plant Cell Physiol 60: 2549-2563
Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15: 2532-2550
Werner T, Schmulling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12: 527-538
Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63: 3499-3509
Wu W, Cheng S (2014) Root genetic research, an opportunity and challenge to rice improvement. Field Crops Res 165: 111-124
Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148: 1938-1952
Xing L, Zhao Y, Gao J, Xiang C, Zhu JK (2016) The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth. Sci Rep 6: 27177
Yang C, Liu J, Dong X, Cai Z, Tian W, Wang X (2014) Short-term and continuing stresses differentially interplay with multiple hormones to regulate plant survival and growth. Mol Plant 7: 841-855
Yang J, Zhang J, Wang Z, Zhu Q, Liu L (2003) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ 26: 1621-1631
Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217: 523-539
Yarra R, He S-J, Abbagani S, Ma B, Bulle M, Zhang W-K (2012) Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tissue Organ Cult 111: 49-57
Yin W, Xiao Y, Niu M, Meng W, Li L, Zhang X, Liu D, Zhang G, Qian Y, Sun Z, Huang R, Wang S, Liu CM, Chu C, Tong H (2020) ARGONAUTE2 Enhances Grain Length and Salt Tolerance by Activating BIG GRAIN3 to Modulate Cytokinin Distribution in Rice. Plant Cell 32: 2292-2306
Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30: 529-539
Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21: 133-139
Zdarska M, Cuyacot AR, Tarr PT, Yamoune A, Szmitkowska A, Hrdinova V, Gelova Z, Meyerowitz EM, Hejatko J (2019) ETR1 Integrates Response to Ethylene and Cytokinins into a Single Multistep Phosphorelay Pathway to Control Root Growth. Mol Plant 12: 1338-1352
Zhang J, Gao W-Y, Wang J, Li X-L (2011) Effects of explant types and media salt strength on growth and secondary metabolite accumulation in adventitious roots of Periploca sepium Bunge. Acta Physiol Plant 33: 2447-2452
Zhang X, Garreton V, Chua NH (2005) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19: 1532-1543
Zhao Y, Hu Y, Dai M, Huang L, Zhou DX (2009) The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 21: 736-748
Zhu G, Ye N, Zhang J (2009) Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol 50: 644-651
Zhu J-K (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6: 441-445
Zou M, Guan Y, Ren H, Zhang F, Chen F (2007) Characterization of alternative splicing products of bZIP transcription factors OsABI5. Biochem Biophys Res Commun 360: 307-313
Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66: 675-683
Zwack PJ, Rashotte AM (2015) Interactions between cytokinin signalling and abiotic stress responses. J Exp Bot 66: 4863-4871
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76878-
dc.description.abstract為因應氣候變遷以確保糧食安全,了解作物於非生物逆境下之反應機制與其理想株型為重要的農業課題。植物荷爾蒙調控作物生長發育並參與非生物逆境反應,其中細胞分裂素訊息傳遞所扮演之角色亦為目前探討對象。實驗室先前研究利用 CRISPR/Cas9 基因編輯技術建立水稻細胞分裂素訊息傳導系統下游 Type-A RRs 中 osrr6/osrr11 雙重突變株,於鹽害逆境下顯示 OsRR6 及 OsRR11 為耐鹽性之正向調控因子。在全基因體轉錄分析指出 OsRR6 與 OsRR11 可能參與鹽害逆境下離層酸之反應調控。為釐清鹽害逆境下 OsRR6 及 OsRR11個別功能性與其是否參與 ABA 調控之反應路徑,本試驗首先分離出 osrr6 與 osrr11 單突變株,發現 OsRR11 相較於 OsRR6 為調控鹽害耐受性之主要角色,基因表現分析顯示 OsRR6 與 OsRR11 同時參與鹽害逆境下鈉離子運移、細胞分裂素含量變化,離層酸依賴性與非依賴性路徑。而由單突變株結果顯示相較於 OsRR11,OsRR6 於鹽害逆境下 ABA 影響之生理作用中扮演正向調控之功能。此外,鹽害逆境回復後,osrr6/11 突變株具有較野生型少之不定根,且因鹽害逆境下細胞分裂素代謝及離層酸訊息相關基因具差異表現,推測 OsRR6 和 OsRR11 可能經由其他荷爾蒙之交互作用調控根系生長發育,透過外施細胞分裂素氧化酵素抑制劑與離層酸,可見 osrr6/11 突變株相較於野生型形成較少之側根數目及較低之側根密度,初步顯示 OsRR6 與 OsRR11 負向調控對於離層酸與內源性細胞分裂素抑制根系發育之敏感性。綜合上述結果,本試驗確立水稻 OsRR6 與 OsRR11 參與鹽分逆境根系發育之生理功能。zh_TW
dc.description.abstractTo cope with the climate change, understanding the mechanism of crops under abiotic stress and its ideotype is an important agriculture issue. Plant hormones are known to regulate plant growth and abiotic stress responses, and the role of cytokinin signaling in abiotic stress response currently is still under investigation. Previous studies in our lab using CRISPR/Cas9 to generate double cytokinin signaling type-A response regulator (osrr6/osrr11) mutants had shown that OsRR6 and OsRR11 play a positive role in response to salinity stress, and the transcriptomic analysis further suggest that they may be involved in the cross-talk between ABA under salinity stress response. To evaluate whether OsRR6 and/or OsRR11 interact with ABA signaling in the present or absence salinity stress, this study first reveals OsRR11 plays a more important role than OsRR6 under salinity stress. Both of them participate in the regulation of sodium transport, cytokinin metabolism, ABA-dependent and independent pathway associated gene. In comparing with OsRR11, OsRR6 positively regulates the ABA responses under salinity stress. Besides, osrr6/11 mutants developed few adventitious root than wild type after the recovery of the salinity stress. Considering there are cytokinin and ABA associated differential expression genes under salinity stress, I suggest that OsRR6 and OsRR11 interact with other plant hormones in root developmental system. Under exogenous application of ABA and inhibitor of cytokinin oxidase/dehydrogenase, osrr6/11 mutants have reduced lateral root number and lower lateral root density than wild type. The results show that OsRR6 and OsRR11 may positively regulate root growth and development by inhibition sensitivity of cytokinin and ABA. Collectively, this study emphasizes the function of rice response regulator OsRR6 and OsRR11 in mediating various responses in root development under different treatments.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:39:15Z (GMT). No. of bitstreams: 1
U0001-1208202013112900.pdf: 5761197 bytes, checksum: 3c57902d2266936dd565974cf8aa0587 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
摘要 III
Abstract IV
縮寫字對照 V
目錄 VI
圖目錄 VIII
表目錄 IX
附表目錄 IX
第一章 前人研究 1
1.1 植物荷爾蒙參與調控植物根系發展 2
1.2 細胞分裂素對於植物根系之影響 2
1.3 細胞分裂素與其他植物荷爾蒙於根系發育之交互作用 3
1.4 植物於非生物逆境下之防禦機制 4
1.5 細胞分裂素於非生物逆境下之反應 5
1.6 非生物逆境下細胞分裂素與其他荷爾蒙之交互作用 6
1.7 水稻細胞分裂素雙分子訊息傳導系統 6
1.8 細胞分裂素反應調節蛋白 Type-A Response Regulators 7
1.9 CRISPR/Cas9 基因編輯 osrr6/11 突變株之建立及特性分析 8
1.10 OsRR6 與 OsRR11 於鹽害逆境下之生理功能 9
第二章 材料方法 11
2.1 osrr6/11 水稻突變株之建立 11
2.2 試驗之水稻材料與生長條件 11
2.3 鹽害逆境處理 12
2.4 葉綠素螢光量 12
2.5 水稻地上部熱像溫度測定 12
2.6 地下部型態分析 13
2.7 種子發芽率測定 13
2.8 葉綠素含量分析 14
2.9 DNA 萃取 14
2.10 DNA 聚合酶連鎖反應 (polymerase chain reaction, PCR) 14
2.11 HRM (High Resolution Melting analysis) 15
2.12 RNA萃取 16
2.13 RT-PCR (Reverse transcription polymerase chain reaction) 16
2.14 Real time qPCR 17
2.15 統計分析方法 18
第三章 結果 19
3.1 osrr6 及 osrr11 單突變株細胞分裂素反應及其產量特性分析 19
3.2 osrr11 單突變株鹽害下較 osrr6 單突變株敏感 20
3.3 osrr6 及 osrr11 單突變株鹽害下具有較雙重突變株低之植體溫度 20
3.4 osrr6/11 雙重突變株鹽害下 NHXs 與 CKXs 基因誘導表現較野生型差 21
3.5 OsRR6/11 參與調節鹽害下離層酸依賴性與非依賴性反應路徑 22
3.6 osrr6/11 雙重突變株與離層酸於鹽害逆境下交互作用之生理表現 23
3.7 osrr6/11 雙重突變株鹽害逆境生長回復能力較野生型弱 24
3.8 osrr6/11 雙重突變株於鹽害下具有較野生型少之不定根數量 26
3.9 osrr6/11 雙重突變株根系發育對於細胞分裂素反應較野生型敏感 26
3.10 osrr6/11 雙重突變株根系發育對於 ABA 反應較野生型敏感 27
第四章 討論 30
4.1 OsRR6 及 OsRR11 正向調控耐鹽機制並影響細胞分裂素代謝反應 31
4.2 OsRR6 及 OsRR11 鹽害逆境下生理功能比較 33
4.3 鹽害逆境下 OsRR6 及 OsRR11 與 ABA 之交互作用探討 34
4.4 OsRR6 及 OsRR11 參與水稻根系發育 38
第五章 結論 42
參考文獻 43
dc.language.isozh-TW
dc.subject根系發育zh_TW
dc.subjectOsRR6zh_TW
dc.subjectOsRR11zh_TW
dc.subject鹽害zh_TW
dc.subject離層酸zh_TW
dc.subjectroot developmenten
dc.subjectOsRR6en
dc.subjectOsRR11en
dc.subjectsalinity stressen
dc.subjectabscisic aciden
dc.title水稻 OsRR6 與 OsRR11 參與鹽分逆境根系發育之功能研究zh_TW
dc.titleFunctional Analysis of Rice OsRR6 and OsRR11 in Root Development under Salinity Stressen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭萬興(Wan-Hsing Cheng)
dc.subject.keywordOsRR6,OsRR11,鹽害,離層酸,根系發育,zh_TW
dc.subject.keywordOsRR6,OsRR11,salinity stress,abscisic acid,root development,en
dc.relation.page86
dc.identifier.doi10.6342/NTU202003074
dc.rights.note未授權
dc.date.accepted2020-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
U0001-1208202013112900.pdf
  未授權公開取用
5.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved