請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76873完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃楓婷(Feng-Ting Huang) | |
| dc.contributor.author | Jing-Yi Wu | en |
| dc.contributor.author | 吳靜宜 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:39:08Z | - |
| dc.date.available | 2021-07-10T21:39:08Z | - |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-13 | |
| dc.identifier.citation | Abraham, N. G., Kappas, A. (2008). Pharmacological and clinical aspects of heme oxygenase. Pharmacological Reviews, 60(1), 79. Auten, R. L., Davis, J. M. (2009). Oxygen toxicity and reactive oxygen species: The devil is in the details. Pediatric Research, 66(2), 121-127. Balducci, S., Sacchetti, M., Haxhi, J., Orlando, G., D'Errico, V., Fallucca, S., Menini, S., Pugliese, G. (2014). Physical exercise as therapy for type 2 diabetes mellitus. Diabetes/Metabolism Research and Reviews, 30(S1), 13-23. Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., Rasbach, K. A., Boström, E. A., Choi, J. H., Long, J. Z., Kajimura, S., Zingaretti, M. C., Vind, B. F., Tu, H., Cinti, S., Højlund, K., Gygi, S. P., Spiegelman, B. M. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463–468. Borg, P., Kukkonen-Harjula, K., Fogelholm, M., Pasanen, M. (2002). Effects of walking or resistance training on weight loss maintenance in obese, middle-aged men: a randomized trial. International Journal of Obesity, 26(5), 676-683. Carey, A. L., Steinberg, G. R., Macaulay, S. L., Thomas, W. G., Holmes, A. G., Ramm, G., Prelovsek, O., Hohnen-Behrens, C., Watt, M. J., James, D. E., Kemp, B. E., Pedersen, B. K., Febbraio, M. A. (2006). Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes, 55(10), 2688. Chang, L.-C., Chiang, S.-K., Chen, S.-E., Yu, Y.-L., Chou, R.-H., Chang, W.-C. (2018). Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Letters, 416, 124-137. Chang. Y. C. (2017). Study the mechanism of exercise-induced irisin on human glioblastoma cell line, U-87 MG. (Unpublish master dissertation), National Taiwan University Cheng, J., Fan, Y.-Q., Liu, B.-H., Zhou, H., Wang, J.-M., Chen, Q.-X. (2020). ACSL4 suppresses glioma cells proliferation via activating ferroptosis. Oncology reports, 43(1), 147-158. Chiang, S.-K., Chen, S.-E., Chang, L.-C. (2018). A dual role of heme oxygenase-1 in cancer cells. International journal of molecular sciences, 20(1), 39. Dayem, A. A., Choi, H.-Y., Kim, J.-H., Cho, S.-G. (2010). Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers, 2(2), 859-884. Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D.N., Bauer, A. J., Cantley. A. M., Yang, W. S., Morrison, B., 3rd, Stockwell, B. R. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060-1072. Dixon, S. J., Stockwell, B. R. (2019). The hallmarks of ferroptosis. Annual Review of Cancer Biology, 3(1), 35-54. Djavaheri-Mergny, M., Wietzerbin, J., Besançon, F. (2003). 2-Methoxyestradiol induces apoptosis in Ewing sarcoma cells through mitochondrial hydrogen peroxide production. Oncogene, 22(17), 2558-2567. Eling, N., Reuter, L., Hazin, J., Hamacher-Brady, A., Brady, N. R. (2015). Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience, 2(5), 517-532. Erden, Y., Tekin, S., Sandal, S., Onalan, E. E., Tektemur, A., Kirbag, S. (2016). Effects of central irisin administration on the uncoupling proteins in rat brain. Neuroscience Letters, 618, 6-13. Erickson, K. I., Weinstein, A. M., Lopez, O. L. (2012). Physical activity, brain plasticity, and Alzheimer's disease. Archives of medical research, 43(8), 615-621. Ericsson, A., Palstam, A., Larsson, A., Löfgren, M., Bileviciute-Ljungar, I., Bjersing, J., Gerdle, B., Kosek, E., Mannerkorpi, K. (2016). Resistance exercise improves physical fatigue in women with fibromyalgia: a randomized controlled trial. Arthritis Research Therapy, 18(1), 176. Ferrandiz, M., Devesa, I. (2008). Inducers of heme Oxygenase1. Current Pharmaceutical Design - CURR PHARM DESIGN, 14, 473-486. Fiuza-Luces, C., Santos-Lozano, A., Joyner, M., Carrera-Bastos, P., Picazo, O., Zugaza, J. L., Izquierdo, M., Ruilope, L. M., Lucia, A. (2018). Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nature Reviews Cardiology, 15(12), 731-743. Gai, C., Yu, M., Li, Z., Wang, Y., Ding, D., Zheng, J., Lv, S., Zhang, W., Li, W. (2020). Acetaminophen sensitizing erastin-induced ferroptosis via modulation of Nrf2/heme oxygenase-1 signaling pathway in non-small-cell lung cancer. Journal of Cellular Physiology, 235(4), 3329-3339. Galadari, S., Rahman, A., Pallichankandy, S., Thayyullathil, F. (2017). Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radical Biology and Medicine, 104, 144-164. Goodman, A. I., Choudhury, M., da Silva, J.-L., Schwartzman, M. L., Abraham, N. G. (1997). Overexpression of the heme oxygenase gene in renal cell carcinoma. Proceedings of the Society for Experimental Biology and Medicine, 214(1), 54-75. Han, D., Williams, E., Cadenas, E. (2001). Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. The Biochemical journal, 353(Pt 2), 411-416. Han, P., Zhang, W., Kang, L., Ma, Y., Fu, L., Jia, L., Guo, Q. (2017). Clinical evidence of exercise benefits for stroke. In J. Xiao (Ed.), exercise for cardiovascular disease prevention and treatment: From molecular to clinical, part 2 (pp. 131-151). Singapore: Springer Singapore. Hassannia, B., Wiernicki, B., Ingold, I., Qu, F., Van Herck, S., Tyurina, Y. Y., Bayır, H., Abhari, B. A., Angeli, J., Choi, S. M., Meul, E., Heyninck, K., Declerck, K., Chirumamilla, C. S., Lahtela-Kakkonen, M., Van Camp, G., Krysko, D. V., Ekert, P. G., Fulda, S., De Geest, B. G., Vanden Berghe, T. (2018).. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. The Journal of Clinical Investigation, 128(8), 3341-3355. Hojman, P., Dethlefsen, C., Brandt, C., Hansen, J., Pedersen, L., Pedersen, B. K. (2011). Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. American Journal of Physiology-Endocrinology and Metabolism, 301(3), E504-E510. Huang, C. W., Chang, Y. H., Lee, H. H., Wu, J. Y., Huang, J. X., Chung, Y. H., Hsu, S. T., Chow, L. P., Wei, K. C., Huang, F. T. (2020). Irisin, an exercise myokine, potently suppresses tumor proliferation, invasion, and growth in glioma. The FASEB Journal, 34(7), 9678-9693. Holland, E. C. (2000). Glioblastoma multiforme: The terminator. Proceedings of the National Academy of Sciences, 97(12), 6242. Jiang, L., Kon, N., Li, T., Wang, S. J., Su, T., Hibshoosh, H., Baer, R., Gu, W. (2015). Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 520(7545), 57-62. Kang, R., Kroemer, G., Tang, D. (2019). The tumor suppressor protein p53 and the ferroptosis network. Free Radical Biology and Medicine, 133, 162-168. Ko. F. H. (2019). Investigation of the effects of irisin on prostate cancer cells. (Unpublish master dissertation), National Taiwan University Kaspar, J. W., Niture, S. K., Jaiswal, A. K. (2009). Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free radical biology medicine, 47(9), 1304–1309. Kwon, M.-Y., Park, E., Lee, S.-J., Chung, S. W. (2015). Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget, 6(27), 24393-24403. Li, H., Zhang, Y., Wang, F., Donelan, W., Zona, M. C., Li, S., Reeves, W., Ding, Y., Tang, D., Yang, L. (2019). Effects of irisin on the differentiation and browning of human visceral white adipocytes. American journal of translational research, 11(12), 7410-7421. Lee, H. H. (2015). Study the effects of irisin on human glioblastoma cell line, U-87 MG. (Unpublish master dissertation), National Taiwan University Lin, Y. H. (2018). Study the effect and the mechanism of yeast-produced irisin on human glioblastoma cell lines. (Unpublish master dissertation), National Taiwan University Liang, J. F., Wang, H. K., Xiao, H., Li, N., Cheng, C. X., Zhao, Y. Z., Ma, Y. B., Gao, J. Z., Bai, R. B., Zheng, H. X. (2010). Relationship and prognostic significance of SPARC and VEGF protein expression in colon cancer. Journal of Experimental Clinical Cancer Research, 29(1), 71. Lu, B., Chen, X. B., Ying, M. D., He, Q. J., Cao, J., Yang, B. (2018). The role of ferroptosis in cancer development and treatment response. Frontiers in pharmacology, 8, 992-992. Ma, S., Henson, E. S., Chen, Y., Gibson, S. B. (2016). Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Disease, 7(7), e2307-e2307. Manole, E., Ceafalan, L. C., Popescu, B. O., Dumitru, C., Bastian, A. E. (2018). Myokines as possible therapeutic targets in cancer cachexia. Journal of Immunology Research, 2018, 8260742. Mattson, M. P. (2012). Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell metabolism, 16(6), 706-722. McTiernan, A. (2008). Mechanisms linking physical activity with cancer. Nature Reviews Cancer, 8(3), 205-211. Moore, S. C., Lee, I. M., Weiderpass, E., Campbell, P. T., Sampson, J. N., Kitahara, C. M., Keadle, S. K., Arem, H., Berrington de Gonzalez, A., Hartge, P., Adami, H. O., Blair, C. K., Borch, K. B., Boyd, E., Check, D. P., Fournier, A., Freedman, N. D., Gunter, M., Johannson, M., Khaw, K. T., … Patel, A. V. (2016). Association of Leisure-Time Physical Activity With Risk of 26 Types of Cancer in 1.44 Million Adults. JAMA Internal Medicine, 176(6), 816-825. Nitti, M., Piras, S., Marinari, U. M., Moretta, L., Pronzato, M. A., Furfaro, A. L. (2017). HO-1 induction in cancer progression: A matter of cell adaptation. Antioxidants (Basel, Switzerland), 6(2), 29 Papanikolaou, G., Pantopoulos, K. (2005). Iron metabolism and toxicity. Toxicology and Applied Pharmacology, 202(2), 199-211. Philip, M., Rowley, D. A., Schreiber, H. (2004). Inflammation as a tumor promoter in cancer induction. Seminars in Cancer Biology, 14(6), 433-439. Philips, A., Henshaw, D. L., Lamburn, G., O'Carroll, M. J. (2018). Brain tumours: Rise in glioblastoma multiforme incidence in england 1995-2015 Suggests an Adverse Environmental or Lifestyle Factor. Journal of environmental and public health, 2018, 7910754-7910754. Qiao, X., Nie, Y., Ma, Y., Chen, Y., Cheng, R., Yin, W., Hu, Y., Xu, W., Xu, L. (2016). Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Scientific reports, 6, 18732-18732. Roh, J.-L., Kim, E. H., Jang, H. J., Park, J. Y., Shin, D. (2016). Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Cancer Letters, 381(1), 96-103. Ryter, S. W., Choi, A. M. K. (2009). Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. American journal of respiratory cell and molecular biology, 41(3), 251-260. Scott, K., Posmontier, B. (2017). Exercise interventions to reduce cancer-related fatigue and improve health-related quality of life in cancer patients. Holistic Nursing Practice, 31(2). Shao, L., Li, H., Chen, J., Song, H., Zhang, Y., Wu, F., Wang, W., Zhang, W., Wang, F., Li, H., Tang, D. (2017). Irisin suppresses the migration, proliferation, and invasion of lung cancer cells via inhibition of epithelial-to-mesenchymal transition. Biochemical and Biophysical Research Communications, 485(3), 598-605. Sheveleva, E. V., Landowski, T. H., Samulitis, B. K., Bartholomeusz, G., Powis, G., Dorr, R. T. (2012). Imexon induces an oxidative endoplasmic reticulum stress response in pancreatic cancer cells. Molecular Cancer Research, 10(3), 392. Sugimoto, R., Tanaka, Y., Noda, K., Kawamura, T., Toyoda, Y., Billiar, T. R., McCurry, K. R., Nakao, A. (2012). Preservation solution supplemented with biliverdin prevents lung cold ischaemia/reperfusion injury. European Journal of Cardio-Thoracic Surgery, 42(6), 1035-1041. Tan, Q., Wang, H., Hu, Y., Hu, M., Li, X., Aodengqimuge, Ma, Y., Wei, C., Song, L. (2015). Src/STAT3-dependent heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to doxorubicin by promoting autophagy. Cancer Science, 106(8), 1023-1032. Tsai, Y.-C., Wang, C.-W., Wen, B.-Y., Hsieh, P.-S., Lee, Y.-M., Yen, M.-H., Cheng, P.-Y. (2020). Involvement of the p62/Nrf2/HO-1 pathway in the browning effect of irisin in 3T3-L1 adipocytes. Molecular and Cellular Endocrinology, 110915. Vaughan, R. A., Gannon, N. P., Barberena, M. A., Garcia-Smith, R., Bisoffi, M., Mermier, C. M., Conn, C. A., Trujillo, K. A. (2014). Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes, Obesity and Metabolism, 16(8), 711-718. VУtek, L., Schwertner, H. A. (2007). The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases. In Advances in Clinical Chemistry (Vol. 43, pp. 1-57): Elsevier. Wrann, C. D. (2015). FNDC5/Irisin – Their role in the nervous system and as a mediator for beneficial effects of exercise on the brain. Brain Plasticity, 1, 55-61. Xie, C., Zhang, Y., Tran, T. D., Wang, H., Li, S., George, E. V., Zhuang, H., Zhang, P., Kandel, A., Lai, Y., Tang, D., Reeves, W. H., Cheng, H., Ding, Y., Yang, L. J. (2015). Irisin controls growth, intracellular Ca2+ signals, and mitochondrial thermogenesis in cardiomyoblasts. PLOS ONE, 10(8), e0136816. Yin, Y., Liu, Q., Wang, B., Chen, G., Xu, L., Zhou, H. (2012). Expression and function of heme oxygenase-1 in human gastric cancer. Experimental Biology and Medicine, 237(4), 362-371. Zhang, H. Y., Zhang, B. W., Zhang, Z. B., Deng, Q. J. (2020). Circular RNA TTBK2 regulates cell proliferation, invasion and ferroptosis via miR-761/ITGB8 axis in glioma. European review for medical and pharmacological sciences, 24(5), 2585-2600. Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y., Dong, W. (2016). ROS and ROS-mediated cellular signaling. Oxidative Medicine and Cellular Longevity, 2016, 4350965. Zhang, Y., Li, R., Meng, Y., Li, S., Donelan, W., Zhao, Y., Qi, L., Zhang, M., Wang, X., Cui, T., Yang, L. J., Tang, D. (2014). Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes, 63(2), 514-525. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76873 | - |
| dc.description.abstract | Irisin是一種新型的由運動誘導分泌出來的肌肉激素,其會促進脂肪細胞的褐化作用。本實驗室先前的研究發現,irisin會透過造成細胞週期停滯以減緩人類神經膠質母細胞瘤的增生能力。然而,其中的機制尚未闡明。另外,我們也發現irisin會誘導與 ROS 相關之酵素Modaw20的mRNA表現量。ROS的生成被發現會誘導細胞週期停滯以及癌細胞中的各種細胞死亡途徑。因此,本論文就irisin抑制神經膠質母細胞瘤之細胞增生能力的潛在機制去做探討。首先,我們純化人類irisin重組蛋白質去抑制U-87 MG細胞的增生能力,而N-乙醯半胱氨酸可以反轉irisin所誘導的抗增生作用。接著,我們發現irisin可誘導U-87 MG細胞發生氧化調節式細胞死亡。此外, Modaw20的蛋白質表現量在irisin處理後可被誘導。抑制U-87 MG細胞中Modaw20的基因表現可反轉irisin所誘導的抗增生能力。最後,我們找出可能參與在irisin誘導Modaw20表現量上游路徑之轉錄因子。總結,我們提議irisin在運動延緩癌症進程上扮演重要角色,且可作為治療癌症的新策略。 | zh_TW |
| dc.description.abstract | Irisin is a novel exercise-induced myokine and promotes browning of adipocytes. Previous studies of our laboratory found that irisin decreased cell proliferation of human glioblastoma cells by inducing cell cycle arrest. However, the underlying mechanism was unclear. In addition, we found that irisin induced mRNA levels of modaw20, which encodes Modaw20, an ROS-related enzyme. ROS generation is known to induce cell cycle arrest and cell death pathways in cancer cells. Hence, the research purpose of this thesis is to investigate the underlying mechanisms of the antiproliferative effect of irisin on glioblastoma cells. First, the purified recombinant human irisin protein inhibited cell proliferation of U-87 MG cells, and the antiproliferative effect was reversed by NAC, an ROS-scavenger. Next, irisin was found to induce oxidative regulated cell death in U-87 MG cells. Moreover, the protein level of Modaw20 was found to be induced after irisin treatment. Furthermore, knockdown of Modaw20 in U-87 MG cells rescued the inhibition of cell proliferation by irisin. Lastly, we found the possible transcription factor involved in the upstream pathway of Modaw20 induction via irisin. In conclusion, we proposed that irisin plays a vital role in exercise delaying cancer progression and it can be a novel strategy for cancer treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:39:08Z (GMT). No. of bitstreams: 1 U0001-1208202014554400.pdf: 1762751 bytes, checksum: c29fd1af9974d7e550473538d462ed29 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 謝辭-------------------------------------------------------------------------------i 中文摘要--------------------------------------------------------------------------ii Abstract-------------------------------------------------------------------------iii Abbreviations---------------------------------------------------------------------iv Table of contents------------------------------------------------------------------v Chapter 1 Introduction----------------------------------------------------------1 1.1. Exercise and cancer--------------------------------------------------------1 1.2. Exercise-induced myokine---------------------------------------------------1 1.3. Irisin---------------------------------------------------------------------2 1.3.1. Characteristics and function of irisin-------------------------------------2 1.3.2. The role of irisin in cancer-----------------------------------------------4 1.4. Glioblastoma---------------------------------------------------------------4 1.5. Reactive oxygen species in cancer therapy----------------------------------5 1.6. Oxidative regulated cell death---------------------------------------------7 1.7. Modaw20--------------------------------------------------------------------8 1.8. Research purpose----------------------------------------------------------10 Chapter 2 Materials and Methods---------------------------------------------13 2.1. Recombinant protein preparation-------------------------------------------13 2.1.1. E.coli BL21(DE3) expression system----------------------------------------13 2.1.2. Protein induction---------------------------------------------------------13 2.1.3. Protein purification and condensation-------------------------------------13 2.1.4. Endotoxin removal and quantification--------------------------------------14 2.1.5. Protein quantification----------------------------------------------------15 2.2. Cell culture--------------------------------------------------------------16 2.3. Cell proliferation analysis-----------------------------------------------16 2.4. Flow cytometry analysis---------------------------------------------------16 2.5. Cellular protein extraction-----------------------------------------------17 2.6. Electrophoresis and western blotting--------------------------------------18 2.7. RNA interference----------------------------------------------------------19 2.8. Statistical analysis------------------------------------------------------19 Chapter 3 Results-----------------------------------------------------------20 3.1. Preparation of the recombinant human irisin protein-----------------------20 3.2. Irisin inhibited cell proliferation of U-87 MG cells----------------------20 3.3. NAC reversed the antiproliferative effect of irisin on U-87 MG cells------21 3.4. Irisin induced oxidative regulated cell death in U-87 MG cells------------21 3.5. Irisin significantly induced the protein expression of Modaw20---------22 3.6. The role of Modaw20 in irisin-reduced cell proliferation---------------23 3.7. The possible transcription factor involved in the induction of Modaw20 affceted by irisin.--24 Chapter 4 Discussion------------------------------------------------------26 4.1. The role of ROS regulated by irisin-------------------------------------26 4.2. The possible mechanism of irisin inducing oxidative regulated cell death in U-87 MG cells-28 4.3. The role of Modaw20 in cancer cells---------------------------------------29 4.4. The possible mechanism of irisin inducing the expression of Modaw20----30 Chapter 5 Summary and future prospects--------------------------------------32 Chapter 6 Reference list----------------------------------------------------34 Figures---------------------------------------------------------------------------40 Figures 1. The purified recombinant human irisin----------------------------------41 Figures 2. Irisin reduced cell proliferation of U-87 MG cells---------------------42 Figures 3. NAC reversed the antiproliferative effect of irisin on U-87 MG cells 43 Figures 4. Irisin induced oxidative regulated cell death in U-87 MG cells---------44 Figures 5. Irisin induced the protein expression of Modaw20 in U-87 cells---------46 Figures 6. The effects of irisin on cell proliferation of Modaw20 knockdown U-87 MG cells-48 Figures 7. The protein levels of Modaw20 in Nrf2-knockdown U-87 MG cells---------50 Figures 8. The proposed model of the anti-proliferative effect of irisin on U-87 MG cells-51 Appendixes------------------------------------------------------------------------52 1. Antibodies---------------------------------------------------------------------53 2. The Silencer ® Select siRNA duplex (Ambion) sequences--------------------------53 | |
| dc.language.iso | en | |
| dc.subject | 神經膠質母細胞瘤 | zh_TW |
| dc.subject | 肌肉激素 | zh_TW |
| dc.subject | irisin | zh_TW |
| dc.subject | 增生能力 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | oxidative stress | en |
| dc.subject | Glioblastoma | en |
| dc.subject | myokine | en |
| dc.subject | irisin | en |
| dc.subject | cell proliferation | en |
| dc.title | Irisin對人類神經膠質母細胞瘤的影響及其機制之研究 | zh_TW |
| dc.title | Studies of the Molecular Mechanisms of Exercise-Induced Irisin on Human Glioblastoma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周綠蘋(Lu-Ping Chow),廖憶純(Yi-Chun Liao),陳彥榮(Yan-Rong Chen) | |
| dc.subject.keyword | 神經膠質母細胞瘤,肌肉激素,irisin,增生能力,氧化壓力, | zh_TW |
| dc.subject.keyword | Glioblastoma,myokine,irisin,cell proliferation,oxidative stress, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU202003094 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-13 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1208202014554400.pdf 未授權公開取用 | 1.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
