Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76867
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政鴻(Cheng-Hung Wu)
dc.contributor.authorKuan-Chen Leeen
dc.contributor.author李冠臻zh_TW
dc.date.accessioned2021-07-10T21:39:00Z-
dc.date.available2021-07-10T21:39:00Z-
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-13
dc.identifier.citation[1] Balaji, P., Srinivasan, D. (2010). Multi-agent system in urban traffic signal control. IEEE Computational Intelligence Magazine, 5(4), 43-51.
[2] Belouadah, H., Posner, M. E., Potts, C. N. (1992). Scheduling with release dates on a single machine to minimize total weighted completion time. Discrete applied mathematics, 36(3), 213-231.
[3] Briand, C., Ngueveu, S. U., Sucha, P. (2013). Solving a cooperative project scheduling with controllable processing times, self-interested agents and equal profit sharing. Paper presented at the Multidisciplinary International Scheduling Conference: Theory Applications, pages–8.
[4] Burke, P., Prosser, P. (1991). A distributed asynchronous system for predictive and reactive scheduling. Artificial Intelligence in Engineering, 6(3), 106-124.
[5] Chalkiadakis, G., Boutilier, C. (2003). Coordination in multiagent reinforcement learning: a Bayesian approach. Paper presented at the Proceedings of the second international joint conference on Autonomous agents and multiagent systems, Melbourne, Australia. https://doi.org/10.1145/860575.860689
[6] Chen, G., Yang, Z., He, H., Goh, K. M. (2005). Coordinating multiple agents via reinforcement learning. Autonomous Agents and Multi-Agent Systems, 10(3), 273-328.
[7] Choi, Y.-C., Ahn, H.-S. (2010). A survey on multi-agent reinforcement learning: Coordination problems. Paper presented at the Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications.
[8] Crosby, M., Rovatsos, M., Petrick, R. P. (2013). Automated agent decomposition for classical planning. Paper presented at the Twenty-Third International Conference on Automated Planning and Scheduling.
[9] Curiel, I., Potters, J., Prasad, R., Tijs, S., Veltman, B. (1993). Cooperation in one machine scheduling. Zeitschrift für Operations Research, 38(2), 113-129.
[10] Damba, A., Watanabe, S. (2007). Hierarchical control in a multiagent system. Paper presented at the Second International Conference on Innovative Computing, Informatio and Control (ICICIC 2007).
[11] Deshpande, S., Cagan, J. (2004). An agent based optimization approach to manufacturing process planning. J. Mech. Des., 126(1), 46-55.
[12] Guestrin, C., Koller, D., Parr, R. (2002). Multiagent planning with factored MDPs. Paper presented at the Advances in neural information processing systems.
[13] Holthaus, O., Rajendran, C. (1997). Efficient dispatching rules for scheduling in a job shop. International Journal of Production Economics, 48(1), 87-105.
[14] Kirkizlar, H. E. (2008). Performance improvements through flexible workforce. Georgia Institute of Technology,
[15] Lee, J.-Y., Kim, Y.-D. (2015). A branch and bound algorithm to minimize total tardiness of jobs in a two identical-parallel-machine scheduling problem with a machine availability constraint. Journal of the Operational Research Society, 66(9), 1542-1554.
[16] Liu, J.-S., Sycara, K. P. (1997). Coordination of multiple agents for production management. Annals of Operations Research, 75, 235-289.
[17] Min, L., Cheng, W. (1999). A genetic algorithm for minimizing the makespan in the case of scheduling identical parallel machines. Artificial Intelligence in Engineering, 13(4), 399-403.
[18] O'Brien, P. D., Nicol, R. C. (1998). FIPA—towards a standard for software agents. BT Technology Journal, 16(3), 51-59.
[19] Ottaway, T., Burns, J. (2000). An adaptive production control system utilizing agent technology. International Journal of Production Research, 38(4), 721-737.
[20] Proper, S., Tadepalli, P. (2009). Solving multiagent assignment markov decision processes. Paper presented at the Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems-Volume 1.
[21] Ramírez-Hernández, J. A., Fernandez, E. (2010). Optimization of preventive maintenance scheduling in semiconductor manufacturing models using a simulation-based approximate dynamic programming approach. Paper presented at the 49th IEEE Conference on Decision and Control (CDC).
[22] Ronconi, D. P., Powell, W. B. (2010). Minimizing total tardiness in a stochastic single machine scheduling problem using approximate dynamic programming. Journal of Scheduling, 13(6), 597-607.
[23] Schillo, M., Fischer, K. (2002). Holonic multiagent systems. Manufacturing Systems, 8(13), 538-550.
[24] Sha, D., Lin, H.-H. (2010). A multi-objective PSO for job-shop scheduling problems. Expert Systems with Applications, 37(2), 1065-1070.
[25] Van De Vijsel, M., Anderson, J. (2004). Coalition formation in multi-agent systems under real-world conditions. Proceedings of association for the advancement of artificial intelligence.
[26] Weichbold, J., Schiefermayr, K. (2006). The optimal control of a general tandem queue. Probability in the Engineering and Informational Sciences, 20(2), 307-327.
[27] Xiang, W., Lee, H. P. (2008). Ant colony intelligence in multi-agent dynamic manufacturing scheduling. Engineering Applications of Artificial Intelligence, 21(1), 73-85.
[28] Zhang, J., Wang, X. (2016). Multi-agent-based hierarchical collaborative scheduling in re-entrant manufacturing systems. International Journal of Production Research, 54(23), 7043-7059.
[29] 姚怡君. (2017). 考量機台損耗之非等效動態生產系統派工與保養. (碩士論文.)
[30] 孫巧儒. (2018). 具擴充性之多機台動態派工與預防保養方法.
[31] 蔡沂芯. (2019). 應用多智能體分解與合成之動態派工與保養方法.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76867-
dc.description.abstract本篇論文開發具泛用性的分散式多智能體動態派工與排程方法,預計應用在大型智慧製造系統中,針對系統狀態提出對應的動態派工與預保養決策。本研究將使用動態規劃結合馬可夫決策過程求解考慮了系統即時動態特性與未來動態特性的排程方法。同時,為了解決動態控制方法面臨的維度詛咒,本研究採取多智能體架構針對大型問題進行求解。透過拆解大系統、求子系統最佳解與整合子系統最佳解的流程,得到整個系統的較佳初始解。其中,本研究主軸在於多智能體間的合作與協調,透過虛擬分派機的作用,組合子系統的動態規劃收斂值並得出整個系統的成本估計值,以利未來進行全域最佳解的搜索。zh_TW
dc.description.abstractThis study presents a dynamic dispatching and scheduling method under the structure of distributed Multi-agent System. The method can be applied in large intelligence manufacturing system, making dynamic dispatching and preventive maintenance decisions according to the state of agent.
To generate the solution under reasonable time complexity, we work under Multi-agent System. By decomposing the problem into sub-problems and solving the sub-problems using dynamic programming and Markov Decision Process, we get the optimal solution of each agent. Finally, we develop an algorithm to coordinate the solution of sub-problems and get a good initial solution of the large system.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:39:00Z (GMT). No. of bitstreams: 1
U0001-1208202019472400.pdf: 3554539 bytes, checksum: 81985881c74fe4452ff73a3a704e4bfb (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目 錄
第1章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究流程 3
第2章 文獻回顧 4
2.1平行機台之生產系統管理 4
2.1.1 派工法則(Dispatching rule) 4
2.1.2 靜態最佳化方法(Optimization Based) 4
2.1.3 動態控制方法 (Dynamic Control method) 5
2.2多智能體系統Multi agent System 6
2.2.1 多智能體架構 6
2.2.2 多智能體系統於生產管理的應用 7
2.2.3 多智能體系統拆解 8
2.2.4 多智能體協調 8
2.2.5小結 10
第3章 研究問題描述與假設 11
3.1問題描述 11
3.2問題假設 11
3.3多智能體求解架構 13
3.3.1 Decomposition agent 13
3.3.2 Machine agent 17
3.3.3 Negotiation agent 21
3.3.4 Coordination agent 31
3.3.5 小結 32
第4章 系統模擬結果與數值分析 33
4.1 Negotiation Agent 效果分析 33
4.1.1實驗設計 33
4.1.2實驗結果 37
4.2 Coordination Agent 效果分析 39
4.2.1 實驗設計 39
4.2.2 實驗結果 41
4.3 多智能體整合效果分析 43
4.3.1 實驗設計 43
4.3.2實驗結果 46
4.3.3 實驗分析 49
4.4 多智能體架構解與最佳解比較 51
4.4.1時間複雜度 51
4.4.2 實驗設計 51
4.4.3 實驗結果 52
第5章 結論與未來研究方向 53
5.1 結論 53
5.2 未來研究方向 53
參考文獻 55

dc.language.isozh-TW
dc.subject預防保養zh_TW
dc.subject多智能體合作zh_TW
dc.subject啟發式演算法zh_TW
dc.subject動態派工zh_TW
dc.subject維度詛咒zh_TW
dc.subjectCurse of Dimensionalityen
dc.subjectPreventive maintenanceen
dc.subjectDynamic dispatchingen
dc.subjectHeuristic Algorithmen
dc.subjectMulti-agent cooperationen
dc.title大型生產系統之多智能體動態派工與預保養架構zh_TW
dc.titleA Multi-agent Framework for Dynamic Dispatching and Preventive Maintenance in Large Manufacturing Systems
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪一薰(I-Hsuan Hong),陳文智(Wen-Chih Chen)
dc.subject.keyword動態派工,預防保養,維度詛咒,多智能體合作,啟發式演算法,zh_TW
dc.subject.keywordDynamic dispatching,Preventive maintenance,Curse of Dimensionality,Multi-agent cooperation,Heuristic Algorithm,en
dc.relation.page57
dc.identifier.doi10.6342/NTU202003147
dc.rights.note未授權
dc.date.accepted2020-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1208202019472400.pdf
  未授權公開取用
3.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved