Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76858
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇南維(Nan-Wei Su)
dc.contributor.authorPen-Jui Chien
dc.contributor.author戚本叡zh_TW
dc.date.accessioned2021-07-10T21:38:48Z-
dc.date.available2021-07-10T21:38:48Z-
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citation莊清榮、游勝傑 (2008). 流體中的最佳守門員-微過濾與超過濾.《科學發展》,429期,14 ~ 19頁.
方廷方 (2014) 利用Caco-2細胞體外試驗評估Genistein磷酸酯衍生物之吸收。國立臺灣大學農業化學研究所碩士學位論文。
吳博元 (2014) 大豆中 genistein, daidzein, genistin 及 daidzin 之分離程序及以 Bacillus subtilis BCRC 80517 進行生物轉換之研究。國立臺灣大學農業化學研究所碩士學位論文。
羅文韵 (2015).由 Bacillus subtilis BCRC 80517 生物轉換發酵液回收金雀異黃酮磷酸酯衍生物之研究。國立臺灣大學生化科技系碩士論文。
許宸 (2015) 枯草桿菌 BCRC 80517 對大豆異黃酮生物轉換之研究。國立臺灣大學農業化學系碩士論文。
張又權 (2017) 苯並吡喃酮類化合物磷酸化酵素基質特異性之研究。國立臺灣大學農業化學系碩士論文。
郭功浩 (2017) 金雀異黃酮磷酸酯之製備與回收之研究。國立臺灣大學農業化學系碩士論文。
劉原伯 (2019) 經由微生物轉化程序生產橙皮素磷酸酯之研究。國立臺灣大學生化科技系碩士論文。
Akal, Z. Ü., L. Alpsoy and A. Baykal (2016). Superparamagnetic iron oxide conjugated with folic acid and carboxylated quercetin for chemotherapy applications. Ceramics International 42(7): 9065-9072.
Alarcón, J., J. Alderete, C. Escobar, R. Araya and C. L. Cespedes (2013). Aspergillus niger catalyzes the synthesis of flavonoids from chalcones. Biocatalysis and Biotransformation 31(4): 160-167.
Avignone-Rossa (1992). Bacillus thuringiensis growth, sporulation and δ-endotoxin production in oxygen limited and non-limited cultures. Journal of Microbiology and Biotechnology 8(3): 301-304.
Barot, M., M. Bagui, M. R Gokulgandhi and A. K Mitra (2012). Prodrug strategies in ocular drug delivery. Medicinal Chemistry 8(4): 753-768.
Cao, H., X. Chen, A. R. Jassbi and J. Xiao (2015). Microbial biotransformation of bioactive flavonoids. Biotechnology Advances 33(1): 214-223.
Cho, K. M., J. H. Lee, H. D. Yun, B. Y. Ahn, H. Kim and W. T. Seo (2011). Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90. Journal of Food Composition and Analysis 24(3): 402-410.
Cooper, C., G. Fernstrom, S. J. I. Miller and E. Chemistry (1944). Performance of agitated gas-liquid contactors. Biotechnology and Bioprocess Engineering 36(6): 504-509.
Demmig‐Adams, B. and L. McCauley (2005). Breast cancer, estrogen, soy genistein, and other dietary factors. Nutrition Food Science 35(1): 35-42.
Erlejman, A. G., S. V. Verstraeten, C. G. Fraga and P. I. Oteiza (2009). The Interaction of Flavonoids with Membranes: Potential Determinant of Flavonoid Antioxidant Effects. Free Radical Research 38(12): 1311-1320.
Flora K, Rosen H and B. K. (1998). Milk thistle (Silybum marianum) for the therapy of liver disease. The American Journal of Gastroenterology 93: 139-143.
Furfine, Eric S.,(2004). Preclinical pharmacology and pharmacokinetics of GW433908, a water-soluble prodrug of the human immunodeficiency virus protease inhibitor amprenavir. Antimicrobial agents and chemotherapy 48.3 (2004): 791-798.
Haddad, Y., D. Vallerand, A. Brault and P. S. Haddad (2011). Antioxidant and hepatoprotective effects of silibinin in a rat model of nonalcoholic steatohepatitis.' Evid Based Complement Alternat Med 2011: nep164.
Hu, Y., C. Ge, W. Yuan, R. Zhu, W. Zhang, L. Du and J. Xue (2010). Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. Journal of the Science of Food and Agriculture 90(7): 1194-1202.
Ibrahim, A. R. (2005). Biotransformation of Chrysin and Apigenin by Cunninghamella elegans. Chemical and Pharmaceutical Bulletin (Tokyo) 53(6): 671-673.
Jiménez-Márquez, F., J. Vázquez, J. Úbeda and J. L. Sánchez-Rojas (2016). Temperature dependence of grape must refractive index and its application to winemaking monitoring. Sensors and Actuators B: Chemical 225: 121-127.
Kostrzewa-Susłow, E., J. Dmochowska-Gładysz, A. Białońska, Z. Ciunik and W. Rymowicz (2006). Microbial transformations of flavanone and 6-hydroxyflavanone by Aspergillus niger strains. Journal of Molecular Catalysis B: Enzymatic 39(1-4): 18-23.
Kostrzewa-Suslow, E., J. Dmochowska-Gladysz, T. Janeczko, K. Sroda, K. Michalak and A. Palko (2005). Microbial Transformations of 6- and 7-Methoxyflavones in Aspergillus niger and Penicillium chermesinum Cultures. Zeitschrift fur Naturforschung C 67(7): 411-417.
Kostrzewa-Suslow, E. and T. Janeczko (2012). Microbial transformations of 7-methoxyflavanone. Molecules 17(12): 14810-14820.
Kuo. and K. T. Lee (2007). Cloning, Expression, and Characterization of Two β-Glucosidases from Isoflavone Glycoside-Hydrolyzing Bacillus subtilis natto. Journal of Agricultural and Food Chemistry 56(1): 119-125.
Kuo., R. Y. Wu and K. T. Lee (2012). A process for high-efficiency isoflavone deglycosylation using Bacillus subtilis natto NTU-18. Applied Microbiology and Biotechnology 94(5): 1181-1188.
Landis, M. S. (2013). Physicochemical property trends of marketed prodrugs. Therapeutic delivery 4(2): 225-237.
Lentini, A., C. Forni, B. Provenzano and S. Beninati (2007). Enhancement of transglutaminase activity and polyamine depletion in B16-F10 melanoma cells by flavonoids naringenin and hesperitin correlate to reduction of the in vivo metastatic potential. Amino Acids 32(1): 95-100.
Parhiz, H., A. Roohbakhsh, F. Soltani, R. Rezaee and M. Iranshahi (2015). Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res 29(3): 323-331.
Patel, D., S. Shukla and S. Gupta (2007). Apigenin and cancer chemoprevention: Progress, potential and promise. International Journal of Oncology 30: 233-245.
Rautio, J. and H. Kumpulainen (2008). Prodrugs: design and clinical applications. Nature Reviews Drug Discovery 7: 255-270.
Rautio, J., H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Jarvinen and J. Savolainen (2008). Prodrugs: design and clinical applications. Nature Reviews Drug Discovery 7(3): 255-270.
Reis, R. V. and A. Zydney (2001). Membrane separations in biotechnology. Current Opinion in Biotechnology 12(2): 208-211.
Romano, B., E. Pagano, V. Montanaro, A. L. Fortunato, N. Milic and F. Borrelli (2013). Novel insights into the pharmacology of flavonoids. Phytotherapy Research 27(11): 1588-1596.
Roohbakhsh, A., H. Parhiz, F. Soltani, R. Rezaee and M. Iranshahi (2015). Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sciences 124: 64-74.
Sakanashi, Y., K. Oyama, H. Matsui, T. B. Oyama, T. M. Oyama, Y. Nishimura, H. Sakai and Y. Oyama (2008). Possible use of quercetin, an antioxidant, for protection of cells suffering from overload of intracellular Ca2+: A model experiment. Life Sciences 83(5-6): 164-169.
Sargent, M. G. (1975). Control of cell length in Bacillus subtilis. Journal of bacteriology 123(1): 7-19.
Sesso, H. D., S. Liu, J. M. Gaziano and J. E. Buring (2003). Dietary lycopene, tomato-based food products and cardiovascular disease in women. The Journal of nutrition 133(7): 2336-2341.
Setchell, K. D. and A. Cassidy (1999). Dietary isoflavones: biological effects and relevance to human health. The Journal of nutrition 129(3): 758-767.
Stella, V. J. and K. W. Nti-Addae (2007). Prodrug strategies to overcome poor water solubility. Advanced Drug Delivery Reviews 59(7): 677-694.
Sugihara, N., T. Arakawa, M. Ohnishi and K. Furuno (1999). Anti-and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with α-linolenic acid. Free Radical Biology and Medicine 27(11): 1313-1323.
Takahiro Suzuki, T. Y., Shoichi Shimizu (1990). Phenomenological Background and Some Preliminary Trials of Automated Substrate Supply in pH-Stat Modal Fed-Batch Culture Using a Setpoint of High Limit.pdf. Journal of Bioscience and Bioengineering 69.5 (1990): 292-297.
Thilakarathna, S. H. and H. P. Rupasinghe (2013). Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5(9): 3367-3387.
Thingstad, T. and R. Lignell (1997). Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquatic Microbial Ecology 13(1): 19-27.
Urtti, A. (2006). Challenges and obstacles of ocular pharmacokinetics and drug delivery. Advanced Drug Delivery Reviews 58(11): 1131-1135.
Vanags, J., M. Rychtera, S. Ferzik, M. Vishkins and U. Viesturs (2007). Oxygen and Temperature Control during the Cultivation of Microorganisms using Substrate Feeding. Engineering in Life Sciences 7(3): 247-252.
Vesna, T., C. Jelena, P. Mihalj and P. Jovan (2011). Isoflavone content and composition in soybean. Soybean-Biochemistry, Chemistry and Physiology.: In Tech.
Vitale, D. C., C. Piazza, B. Melilli, F. Drago and S. Salomone (2013). Isoflavones: estrogenic activity, biological effect and bioavailability. Eur J Drug Metab Pharmacokinet 38(1): 15-25.
Wang, H.-j. and P. A. Murphy (1994). Isoflavone Content in Commercial Soybean Foods. Journal of Agricultural and Food Chemistry 42: 1666-1673.
Wei, Q.-K., T.-R. Chen and J.-T. Chen (2008). Use of Bacillus subtilis to enrich isoflavone aglycones in fermented natto. Journal of the Science of Food and Agriculture 88(6): 1007-1011.
Wu, C. H. and C. C. Chou (2009). Enhancement of aglycone, vitamin K2 and superoxide dismutase activity of black soybean through fermentation with Bacillus subtilis BCRC 14715 at different temperatures. Journal of Agricultural and Food Chemistry 57(22): 10695-10700.
Yao, H. M., Y.-C. Tian, M. O. Tadé, H. M. J. C. E. Ang and P. P. Intensification (2001). Variations and modelling of oxygen demand in amino acid production. Chemical Engineering and Processing 40(4): 401-409.
Yuanwan Yin, Yancheng Xu, Hongxia Ma and X. Tian (2017). Hesperetin ameliorates cardiac inflammation and cardiac fibrosis in streptozotocin-induced diabetic rats by inhibiting NF-κB signaling pathway. Biomedical Research 28: 223-229.
Zawiska, J. B., J. Wojciecsak and A. B.O. (2013). 'Prodrugs : A challenge for the drug development. Pharmacological Reports 65: 1-14.

dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76858-
dc.description.abstract橙皮素(hesperetin)為類黃酮化合物,常見於柑橘類果實中,屬於植物次級代謝物,具有預防心血管疾病、提升免疫力、抗氧化等生理活性。然而橙皮素的水溶性不佳,生物可利用率(bioavailability)極低,使其在應用上受到許多限制。本研究室先前篩選出Bacillus subtilis BCRC 80517菌株中具有類黃酮磷酸酯合成酶(flavonoid phosphate synthetase) 可將類黃酮磷酸酯化以增加其水溶性,進而增加其生物可利用率,本研究以此為基礎,利用5-L發酵槽進行橙皮素生物轉換的探討及建立下游回收橙皮素磷酸酯最適之程序。
實驗分為兩部分,第一部分為利用5 L通氣攪拌式發酵槽生產hesperetin 7-O-phosphate (H7P) 與hesperetin 3’-O-phosphate (H3’P),合稱為HPs,結果顯示,最佳化生產條件為接種10%種菌,菌體生長至OD600 = 1.0批次饋入hesperetin 20 g/L,於37 oC、pH 7.0、450 rpm、1 vvm (air)、0.02 (s-1) 體積氧氣質傳係數 (k¬La),並以氨水調控pH,可於發酵時間31 h,達到81%的轉換率,生成橙皮素磷酸酯20.3 g/L。第二部分為建立發酵液回收HPs之最適化程序。結果顯示,發酵液經過高速離心去除菌體,將上清液濃縮至HPs 200 mM,滴入6.7 M之CaCl2(aq),使 hesperetin phosphate calcium salt (HP-Ca2+) 沉澱,得到HP-Ca2+之純度及回收率為53% (w/w)與85%。此外欲增加HP-Ca2+純度,將HP-Ca2+粉末懸浮於1:10 (w/v) 40%酒精攪拌洗滌2小時,得到HP-Ca2+之純度及回收率為58% (w/w)與90%。最後,為了使HP-Ca2+回溶於水後完全澄清,將酒精洗滌烘乾後之HP-Ca2+粉末回溶於水,過濾去除不溶物,取上清液進行凍乾,最終產物HP-Ca2+之純度為70.0% (w/w)。
zh_TW
dc.description.abstractHesperetin (Hes), a flavanone with numerous physiological properties such as reducing cardiovascular disease and antioxidant, is the predominant flavonoid in lemons and oranges. However, the application of Hes is restricted by its low water solubility and poor bioavailability. In our previous studies, we found a unique enzyme, namely flavonoid phosphate synthetase, from B. subtilis BCRC 80517, could phosphorylate hesperetin to generate two highly water-soluble hesperetin phosphate derivatives. This study aimed to produce two hesperetin phosphate derivatives (HPs) through a 5-L aerated stirred-tank bioreactor and develop a feasible process for HPs recovery from fermentation broth. The results showed that the optimal condition for biotransformation process was that inoculated 10% of the seed culture, and feeding hesperetin (20 g/L) at OD600 1.0. The biotransformation process was performed at 37oC, pH 7.0, 450 rpm, 1.0 vvm (air), 0.02 (s-1) volume oxygen mass transfer coefficient (kLa) for 31 h. The main products were hesperetin 7-O-phosphate (H7P) and hesperetin 3'-O-phosphate (H3'P). The total content of HPs in the harvested fermentation broth was 20.3 g/L, and the conversion rate was 81%. The process for HPs recovery was described as follows. First of all, the harvested broth was centrifuged and then passed through a microfiltration system to remove the biomass, the permeate was concentrated to 200 mM of HPs and precipitated by adding CaCl2(aq), to obtain the HP-Ca2+ crude products. The crude products was washed with 40% (w/v) EtOH and then resuspended in water to remove the inpurities. Consequently, the supernatant was lyophilized to obtain HP-Ca2+ powder as the final product with around 70% (w/w) purity.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:38:48Z (GMT). No. of bitstreams: 1
U0001-1308202013071500.pdf: 4065940 bytes, checksum: 506067383072753865312e593d7bd279 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄
致謝…………………………………………………………………………………….Ⅰ
中文摘要……………………………………………………………………………Ⅱ
Abstract…………………………………………………………………………Ⅲ
縮寫對照表……………………………………………………………………ⅩⅢ
目錄……………………………………………………………………………………Ⅳ
圖目錄 ……………………………………………………………………………Ⅸ
表目錄………………………………………………………………………………ⅩⅡ
第一章、前言........................................................................1
第二章、文獻整理 …………………………………………………………………….2
第一節 類黃酮 …………………………………………………………………...2
1.類黃酮簡介 ………………………………………………………………..2
2.類黃酮結構與生理活性 …………………………………………………..2
3.類黃酮之生物可利用率 ………………………………………………..…5
3-1 BCS分類系統 …………………………………………………..…5
3-2類黃酮於人體之代謝與吸收 ……………………………………...5
第二節 橙皮素之微生物轉換 ………………………………………………….13
1.類黃酮之微生物轉換 ……………………………………………………13
2.橙皮素之微生物轉換 ……………………………………………………14
第三節 前驅藥物 …………………………………………………………….…15
1.前驅藥物定義與介紹 ……………………………………………………15
2.磷酸酯前驅藥物 …………………………………………………………15
第四節 生物工程技術 ……………………………………………………….…20
1.生物工程 …………………………………………………………………20
2.發酵槽 ……………………………………………………………………20
3.發酵培養策略 ……………………………………………………………20
3-1 批次式(batch)發酵培養 …………………………………………21
3-2 饋料批次式(fed batch)發酵培養 ……………………………..…22
3-3連續式(continuous)發酵培養 ……………………………………22
4.影響發酵過程之參數 ……………………………………………………23
4-1 體積溶氧質量傳遞係數(kLa) ………………………………….23
4-2 溶氧傳遞速率(OTR) ……………………………………………..23
5.發酵槽調控 ………………………………………………………………24
5-1 溫度的調控 ………………………………………………………24
5-2 DO-stat …………………………………………………………….25
5-3 pH-stat ……………………………………………..………………26
6.發酵液的菌體分離技術 …………………………………………………26
6-1 離心 ………………………………………………………………26
6-2 過濾 ………………………………………………………………26
7.發酵液產物分離與純化 …………………………………………………28
7-1 鹽類沉澱法 ………………………………………………………28
第三章 材料與方法 ……………………………………………….…………………29
第一節 實驗大綱 ………………………………………………………….……29
第二節 材料與方法 …………………………………………………….………30
1. 菌株 ………………………………………………………………..……30
2. 橙皮素 …………………………………………………………..………30
3. 培養基 ……………………………………………………………..……31
第三節 實驗方法 ……………………………………………………………….33
1. 利用5-L發酵槽生產橙皮素磷酸酯 …………………………………..33
1-1 菌種之培養 ………………………………………………………33
1-2發酵槽安裝與配置 ……………………………………………….33
2.以饋料式(fed-batch)發酵培養策略生產橙皮素 ………………………..34
2-1多次性饋入碳源發酵培養策略 ………………………………….34
2-2二次性饋入碳源發酵培養策略 ………………………………….34
2-3不同基質饋料策略對hesperetin之轉換效率影響 ……………..35
2-4不同種菌培養時間對hesperetin之轉換效率影響 ……………..35
3.限制性基質探討 …………………………………………………………35
3-1不同濃度氮源對hesperetin之轉換效率影響 …………………..35
3-2不同磷酸鹽濃度對hesperetin之轉換效率影響 ………………..35
4. 發酵生產之分析方法 …………………………………………………..36
4-1 橙皮素衍生物之萃取 ……………………………………………36
4-2 以半製備級高效液相層析儀純化橙皮素磷酸酯衍生物 ………36
4-3 半製備級高效液相層析儀分離橙皮素衍生物之條件 …………36
4-4 半製備級高效液相層析儀分離之橙皮素衍生物標準品配製 …36
4-5 高效液相層析儀分析橙皮素之條件及分法 ……………………37
4-6 B. subtilis BCRC 80517對橙皮素之生物轉換 ………………….37
4-7總醣測定-酚硫酸法 ………………………………………………38
4-8 銨離子檢測 ………………………………………………………38
4-9 菌體濃度檢測方法 ………………………………………………38
5.自發酵液中回收hesperetin phosphate之程序 ………………………….39
5-1 橙皮素之生物轉換 ………………………………………………39
5-2以微過濾膜進行濃縮 …………………………………………….39
5-3濃縮濾出液 ………………………………………...……………..39
5-4利用酸沈澱與溶解度差異使產物析出 ……………….…………39
5-5 Counterion對於鹽類型態橙皮素磷酸酯物理性質之影響 ….39
5-6 鈣沉澱溶液pH之調整 …………………………………………40
5-7 粗HP-Ca2+純化 …………………………………………………40
5-8 HP-Ca2+精製 …………………………………………………….40
5-9 不同鹽類型態之橙皮素磷酸酯溶解度測試 …………………40
6.統計分析 …………………………………………………………………40
第四章 結果與討論 ………………………………………………………………….42
第一節 5-L 通氣攪拌式發酵槽參數計算 ……………………………………..42
1.藉由 kLa 求得發酵槽最適之操作攪拌速率與通氣量 ……………….42
1-1雷諾數 ( Reynolds number, NRe ) ……………………………….42
1-2 動力數( Power number, Np) ……………………………………..43
1-3未通氣攪拌所需的動力(Pm) ……………………………………43
1-4實際攪拌動力相關係數(fc) ……………………………………..43
1-5實際攪拌所需的動力(Pma*) …………………………………...43
1-6發酵槽空氣體積流速(Qg) ……………………………………….43
1-7通氣數無因次項(Na) …………………………………………….44
1-8福祿數(Froude number, NFr) …………………………………44
1-9通氣與未通氣所需動力之校正係數 ……………………………44
1-10通氣攪拌所需之動力(Pg) ……………………………………44
1-11表面氣體流速 (superficial gas voleocity) ………………………44
1-12體積溶氧質量傳遞係數 (kLa) ………………………………...44
第二節 以饋料式(fed-batch)發酵培養策略生產Hesperetin …………………45
2.1多次性饋入碳源發酵培養策略 ……………………………………….45
2.2二次性饋入碳源發酵培養策略 ……………………………………….47
第三節 最適初始培養基探討 ………………………………………………….50
3.1氮源濃度 ……………………………………………………………….50
3.2磷酸鹽濃度 …………………………………………………………….51
第四節 最適基質饋料發酵策略之探討 ……………………………………….55
1.基質饋料策略對hesperetin之轉換效率影響 …………………………55
2.饋料時間對菌體轉換hesperetin之影響 ………………………………58
第五節 探討至發酵液中回收橙皮素磷酸酯程序 …………………………….61
1.以微過濾膜進行發酵液除菌 ……………………………………………63
2.不同濃縮倍率濾出液之酸沈澱效率 ……………………………………64
3.不同鹽類型式對於橙皮素磷酸酯物理性質之影響 ……………………65
4.不同CaCl2添加比例對橙皮素磷酸酯衍生物沉澱之影響 …………….66
5.不同pH對橙皮素磷酸酯衍生物沉澱之影響 ………………………….67
6.不同酒精濃度洗滌對於橙皮素磷酸酯之影響 …………………………68
7. HP-Ca2+精製 …………………………………………………………….68
8. HP-Ca2+溶解度測試 …………………………………………………….69
第五章 結論 ………………………………………………………………………….70
第六章 參考文獻 …………………………………………………………………….71
附錄 …………………………………………………………………………………76
dc.language.isozh-TW
dc.subject鈣鹽製備zh_TW
dc.subject發酵槽zh_TW
dc.subject枯草桿菌zh_TW
dc.subject生物轉化zh_TW
dc.subject橙皮素磷酸酯衍生物zh_TW
dc.subjecthesperetin phosphate derivativesen
dc.subjectbioreactoren
dc.subjectcalcium salten
dc.subjectBacillus subtilisen
dc.subjectbiotransformationen
dc.title藉由微生物轉化生產橙皮素磷酸酯衍生物之研究
zh_TW
dc.titleStudies on the Production of Hesperetin Phosphate Derivatives by Microbial Transformation
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李敏雄(Min-Hsiung Li),陳錦樹(Chin-Shu Chen),賴進此(Chin-Tzu Lai),胡紹揚(Shao-Yang Hu)
dc.subject.keyword發酵槽,枯草桿菌,生物轉化,橙皮素磷酸酯衍生物,鈣鹽製備,zh_TW
dc.subject.keywordbioreactor,Bacillus subtilis,biotransformation,hesperetin phosphate derivatives,calcium salt,en
dc.relation.page78
dc.identifier.doi10.6342/NTU202003228
dc.rights.note未授權
dc.date.accepted2020-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
U0001-1308202013071500.pdf
  未授權公開取用
3.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved