請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76853完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱家瑩(Chia-Ying Chu) | |
| dc.contributor.author | Jing-Jie Syu | en |
| dc.contributor.author | 許靖婕 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:38:39Z | - |
| dc.date.available | 2021-07-10T21:38:39Z | - |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | Aboobaker, A.A., Cowles, M.W., Omuro, K.C., Stanley, B.N., Quintanilla, C.G., and Zayas, R.M. (2014). COE Loss-of-Function Analysis Reveals a Genetic Program Underlying Maintenance and Regeneration of the Nervous System in Planarians. PLoS Genetics 10, e1004746. Agata, K., Soejima, Y., Kato, K., Kobayashi, C., Umesono, Y., and Watanabe, K. (1998). Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers. Zoological Science 15, 433-440. Audhya, A., Hyndman, F., McLeod, I.X., Maddox, A.S., Yates, J.R., Desai, A., and Oegema, K. (2005). A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans. The Journal of cell biology 171, 267-279. Baguna, J., and Slack, J.M.W (1981). Planarian neoblasts. Nature 290, 14-15. Brown, D.D.R., and Pearson, B.J. (2017). A Brain Unfixed: Unlimited Neurogenesis and Regeneration of the Adult Planarian Nervous System. Frontiers in Neuroscience 11, 289. Cebria, F., Guo, T., Jopek, J., and Newmark, P.A. (2007). Regeneration and maintenance of the planarian midline is regulated by a slit orthologue. Developmental biology 307, 394-406. Chuma, S., and Nakano, T. (2012). piRNA and spermatogenesis in mice. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 368, 20110338. COWARD, S.J. (1974). Chromatoid bodies in somatic cells of the planarian: observations on their behavior during mitosis. The Anatomical Record 180:533–545 180, 533-646. Deochand, M.E., Birkholz, T.R., and Beane, W.S. (2016). Temporal regulation of planarian eye regeneration. Regeneration 3, 209-221. Dupont, S., and Thorndyke, M.C. (2006). Growth or differentiation? Adaptive regeneration in the brittlestar Amphiura filiformis. The Journal of experimental biology 209, 3873-3881. Emili, E., Esteve Pallarès, M., Romero, R., and Cebrià, F. (2019). Smed-egfr-4 is required for planarian eye regeneration. The International Journal of Developmental Biology 63, 9-15. Franco, C.F., Soares, R., Pires, E., Santos, R., and Coelho, A.V. (2012). Radial nerve cord protein phosphorylation dynamics during starfish arm tip wound healing events. Electrophoresis 33, 3764-3778. Gentile, L., Cebria, F., and Bartscherer, K. (2011). The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Disease models mechanisms 4, 12-19. Guedelhoefer, O.C.t., and Sanchez Alvarado, A. (2012). Planarian immobilization, partial irradiation, and tissue transplantation. Journal of Visualized Experiments 66, e4015. Hayashi, T., and Agata, K. (2012). A unique FACS method to isolate stem cells in planarian. Methods in molecular biology 879, 29-37. Higuchi, S., Hayashi, T., Hori, I., Shibata, N., Sakamoto, H., and Agata, K. (2007). Characterization and categorization of fluorescence activated cell sorted planarian stem cells by ultrastructural analysis. Development, growth differentiation 49, 571-581. Hirakata, S., and Siomi, M.C. (2016). piRNA biogenesis in the germline: From transcription of piRNA genomic sources to piRNA maturation. Biochimica et biophysica acta 1859, 82-92. Huang, J.H., Ku, W.C., Chen, Y.C., Chang, Y.L., and Chu, C.Y. (2017). Dual mechanisms regulate the nucleocytoplasmic localization of human DDX6. Scientific reports 7, 42853. Inoue, T., Hoshino, H., Yamashita, T., Shimoyama, S., and Agata, K. (2015). Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function. Zoological Letters 1, 7. Inoue, T., Kumamoto, H., Okamoto, K., Umesono, Y., Sakai, M., Alvarado, A.S., and Agata, K. (2004). Morphological and Functional Recovery of the Planarian Photosensing System during Head Regeneration. Zoological Science 21, 275-283. Jia, Y., Viswakarma, N., Crawford, S.E., Sarkar, J., Sambasiva Rao, M., Karpus, W.J., Kanwar, Y.S., Zhu, Y.-J., and Reddy, J.K. (2012). Early embryonic lethality of mice with disrupted transcription cofactor PIMT/NCOA6IP/Tgs1 gene. Mechanisms of Development 129, 193-207. Joven, A., Elewa, A., and Simon, A. (2019). Model systems for regeneration: salamanders. Development 146, dev167700. Kashima, M., Kumagai, N., Agata, K., and Shibata, N. (2016). Heterogeneity of chromatoid bodies in adult pluripotent stem cells of planarian Dugesia japonica. Development, Growth Differentiation 58, 225-237. Kobayashi, C., Saito, Y., Ogawa, K., and Agata, K. (2007). Wnt signaling is required for antero-posterior patterning of the planarian brain. Developmental biology 306, 714-724. Lapan, S.W., and Reddien, P.W. (2011). dlx and sp6-9 Control optic cup regeneration in a prototypic eye. PLoS genetics 7, e1002226. Lapan, Sylvain W., and Reddien, Peter W. (2012). Transcriptome Analysis of the Planarian Eye Identifies ovo as a Specific Regulator of Eye Regeneration. Cell Reports 2, 294-307. Linder, P., and Jankowsky, E. (2011). From unwinding to clamping - the DEAD box RNA helicase family. Nature reviews. Molecular cell biology 12, 505-516. Marz, M., Seebeck, F., and Bartscherer, K. (2013). A Pitx transcription factor controls the establishment and maintenance of the serotonergic lineage in planarians. Development 140, 4499-4509. Meikar, O., Vagin, V.V., Chalmel, F., Sostar, K., Lardenois, A., Hammell, M., Jin, Y., Da Ros, M., Wasik, K.A., Toppari, J., et al. (2014). An atlas of chromatoid body components. RNA 20, 483-495. Michael Ladomery, E.W.a.J.S. (1997). Xp54, the Xenopus homologue of human RNA helicase p54, is an integral component of stored mRNP particles in oocytes. Nucleic Acids Research 25, 965–973. Molina, M.D., Saló, E., and Cebrià, F. (2007). The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians. Developmental Biology 311, 79-94. Molinaro, A.M., and Pearson, B.J. (2016). In silico lineage tracing through single cell transcriptomics identifies a neural stem cell population in planarians. Genome Biology 17, 87. MORGAN, T.H. (1901). REGENERATION AND LIABILITY TO INJURY. Science 14, 235-248. Navarro, R.E., and Blackwell, T.K. (2005). Requirement for P granules and meiosis for accumulation of the germline RNA helicase CGH-1. Genesis 42, 172-180. Newmark, P.A., Reddien, P.W., Cebria, F., and Sanchez Alvarado, A. (2003). Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proceedings of the National Academy of Sciences of the United States of America 100 Suppl 1, 11861-11865. Nicklas, S., Okawa, S., Hillje, A.L., Gonzalez-Cano, L., Del Sol, A., and Schwamborn, J.C. (2015). The RNA helicase DDX6 regulates cell-fate specification in neural stem cells via miRNAs. Nucleic acids research 43, 2638-2654. Nishimura, K., Kitamura, Y., Umesono, Y., Takeuchi, K., Takata, K., Taniguchi, T., and Agata, K. (2008). Identification of glutamic acid decarboxylase gene and distribution of GABAergic nervous system in the planarian Dugesia japonica. Neuroscience 153, 1103-1114. Nolte, H., Holper, S., Housley, M.P., Islam, S., Piller, T., Konzer, A., Stainier, D.Y., Braun, T., and Kruger, M. (2015). Dynamics of zebrafish fin regeneration using a pulsed SILAC approach. Proteomics 15, 739-751. Okamoto, K., Takeuchi, K., and Agata, K. (2005). Neural projections in planarian brain revealed by fluorescent dye tracing. Zoological Science 22, 535-546. Paskin, T.R., Jellies, J., Bacher, J., and Beane, W.S. (2014). Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength. PLoS One 9, e114708. Pearson, B.J., Eisenhoffer, G.T., Gurley, K.A., Rink, J.C., Miller, D.E., and Sanchez Alvarado, A. (2009). Formaldehyde-based whole-mount in situ hybridization method for planarians. Developmental dynamics: an official publication of the American Association of Anatomists 238, 443-450. Pellettieri, J., Fitzgerald, P., Watanabe, S., Mancuso, J., Green, D.R., and Sánchez Alvarado, A. (2010). Cell death and tissue remodeling in planarian regeneration. Developmental Biology 338, 76-85. Reddien, P.W. (2013). Specialized progenitors and regeneration. Development 140, 951-957. Reddien, P.W., Bermange, A.L., Kicza, A.M., and Sanchez Alvarado, A. (2007). BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development 134, 4043-4051. Reddien, P.W., and Sanchez Alvarado, A. (2004). Fundamentals of planarian regeneration. Annual review of cell and developmental biology 20, 725-757. Reuter, H., März, M., Vogg, Matthias C., Eccles, D., Grífol-Boldú, L., Wehner, D., Owlarn, S., Adell, T., Weidinger, G., and Bartscherer, K. (2015). β-Catenin-Dependent Control of Positional Information along the AP Body Axis in Planarians Involves a Teashirt Family Member. Cell Reports 10, 253-265. Roberts-Galbraith, R.H., Brubacher, J.L., and Newmark, P.A. (2016). A functional genomics screen in planarians reveals regulators of whole-brain regeneration. eLife 5, e17002. Roberts-Galbraith, R.H., and Newmark, P.A. (2015). On the organ trail: insights into organ regeneration in the planarian. Current opinion in genetics development 32, 37-46. Ross, K.G., Currie, K.W., Pearson, B.J., and Zayas, R.M. (2017). Nervous system development and regeneration in freshwater planarians. Wiley interdisciplinary reviews. Developmental biology 6, 10.1002/wdev.266. Rouhana, L., Shibata, N., Nishimura, O., and Agata, K. (2010). Different requirements for conserved post-transcriptional regulators in planarian regeneration and stem cell maintenance. Developmental Biology 341, 429-443. Rouhana, L., Weiss, J.A., Forsthoefel, D.J., Lee, H., King, R.S., Inoue, T., Shibata, N., Agata, K., and Newmark, P.A. (2013). RNA interference by feeding in vitro-synthesized double-stranded RNA to planarians: methodology and dynamics. Developmental dynamics: an official publication of the American Association of Anatomists242, 718-730. Rouhana, L., Weiss, J.A., King, R.S., and Newmark, P.A. (2014). PIWI homologs mediate histone H4 mRNA localization to planarian chromatoid bodies. Development 141, 2592-2601. Salvetti, A., Rossi, L., Bonuccelli, L., Lena, A., Pugliesi, C., Rainaldi, G., Evangelista, M., and Gremigni, V. (2009). Adult stem cell plasticity: neoblast repopulation in non-lethally irradiated planarians. Developmental biology 328, 305-314. Scimone, M.L., Kravarik, Kellie M., Lapan, Sylvain W., and Reddien, Peter W. (2014). Neoblast Specialization in Regeneration of the Planarian Schmidtea mediterranea. Stem Cell Reports 3, 339-352. Shimoyama, S., Inoue, Takeshi, Kashima, Makoto, and Agata, Kiyokazu (2016). Multiple Neuropeptide-Coding Genes Involved in Planarian Pharynx Extension. Zoological Science 33, 311–319. Thorndyke, M.C., Chen, W.C., Beesley, P.W., and Patruno, M. (2001). Molecular approach to echinoderm regeneration. Microscopy research and technique 55, 474-485. Tran, T.A., and Gentile, L. (2019). A lineage CLOUD for neoblasts. Seminars in Cell Developmental Biology 87, 22-29. Tu, K.C., Pearson, B.J., and Alvarado, A.S. (2012). TORC1 is required to balance cell proliferation and cell death in planarians. Developmental Biology 365, 458-469. Umesono, Y., and Agata, K. (2009). Evolution and regeneration of the planarian central nervous system. Development, Growth Differentiation 51, 185-195. Wagner, D.E., Ho, J.J., and Reddien, P.W. (2012). Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell 10, 299-311. Wagner, D.E., Wang, I.E., and Reddien, P.W. (2011). Clonogenic Neoblasts Are Pluripotent Adult Stem Cells That Underlie Planarian Regeneration. Science 332, 811-816. Wang, Y., Arribas-Layton, M., Chen, Y., Lykke-Andersen, J., and Sen, G.L. (2015). DDX6 Orchestrates Mammalian Progenitor Function through the mRNA Degradation and Translation Pathways. Molecular cell 60, 118-130. Wang, Y.-H. (2016). Functional study of the planarian RNA helicase DDX6, DjCBC-1. Unpublished Master Thesis, National Taiwan University, Taipei. Wenemoser, D., Lapan, S.W., Wilkinson, A.W., Bell, G.W., and Reddien, P.W. (2012). A molecular wound response program associated with regeneration initiation in planarians. Genes development 26, 988-1002. Wenemoser, D., and Reddien, P.W. (2010). Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Developmental biology 344, 979-991. Wurtzel, O., Cote, L.E., Poirier, A., Satija, R., Regev, A., and Reddien, P.W. (2015). A Generic and Cell-Type-Specific Wound Response Precedes Regeneration in Planarians. Developmental cell 35, 632-645. Yoshida-Kashikawa, M., Shibata, N., Takechi, K., and Agata, K. (2007). DjCBC-1, a conserved DEAD box RNA helicase of the RCK/p54/Me31B family, is a component of RNA-protein complexes in planarian stem cells and neurons. Developmental Dynamics 236, 3436-3450. Zampedri, C., Tinoco-Cuellar, M., Carrillo-Rosas, S., Diaz-Tellez, A., Ramos-Balderas, J.L., Pelegri, F., and Maldonado, E. (2016). Zebrafish P54 RNA helicases are cytoplasmic granule residents that are required for development and stress resilience. Biology open 5, 1473-1484. Zeng, A., Li, H., Guo, L., Gao, X., McKinney, S., Wang, Y., Yu, Z., Park, J., Semerad, C., Ross, E., et al. (2018). Prospectively Isolated Tetraspanin(+) Neoblasts Are Adult Pluripotent Stem Cells Underlying Planaria Regeneration. Cell 173, 1593-1608 e1520. Zhu, S.J., Hallows, S.E., Currie, K.W., Xu, C.J., and Pearson, B.J. (2015). A mex3 homolog is required for differentiation during planarian stem cell lineage development. eLife, 4, e07025. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76853 | - |
| dc.description.abstract | 生物藉由再生的過程以長回失去的組織,或更新體內老化細胞來維持個體原 本正常功能。扁形動物中的渦蟲具有強大的再生能力,利用體內廣布的多功能成體 幹細胞(neoblasts),在受傷時增生並分化成所有類型的細胞來修復失去的組織。 許多基因參與成體幹細胞的增生與分化,這些基因都需要在轉錄或後轉錄層級精 確地被調控,以維持成體幹細胞正常功能。在 DEAD-box RNA 解旋酶家族的成員 中,DDX6 的同源蛋白於不同真核生物中都具有高度保守性。過去的研究指出, DDX6 透過降解 mRNA 和抑制轉譯的方式調控哺乳類上皮幹細胞及神經幹細胞。 先前研究顯示,渦蟲的 DDX6 同源基因 DjCBC-1 高度表現在成體幹細胞及神經系 統,以 RNAi 方式減弱 DjCBC-1 的表現會降低渦蟲再生時的存活率、改變渦蟲腦 部發育與功能。本研究論文以高度專一性的抗 DjCBC-1 抗體驗證 DjCBC-1 蛋白的 渦蟲全身性分佈,尤其高度表現於腦及再生組織中,與先前以原位雜合偵測 mRNA 的結果相似。此外 DjCBC-1 在細胞內分布於細胞核與細胞質聚集點。利用此抗體 進行免疫沈澱,成功純化分離 DjCBC-1 的 RNA-蛋白複合體,分析其中的 RNA 組 成,顯示 DjCBC-1 結合並調控專一表現於 neoblast 的 mRNA,藉此影響成體幹細 胞的數量與分化。 | zh_TW |
| dc.description.abstract | Regeneration is a process of regrowing the missing body parts or renewing aging cells to preserve the normal functions of an organism. Regeneration in planarians requires the somatic stem cells, named neoblasts, which proliferate and differentiate into all types of cells. Many genes involved in regeneration are regulated transcriptionally or post- transcriptionally. DEAD-box proteins are one of the post-transcriptional regulators. DDX6 is a highly conserved DEAD-box protein in eukaryotes. Studies showed that DDX6 regulates differentiation of epidermal and neural stem cells in mammals, by regulating mRNA degradation and/or translational repression. In planarian, the DDX6 ortholog, DjCBC-1, is highly expressed in neoblasts and neurons. Depletion of DjCBC- 1 decreased the survival rate, perturbed the brain structure, and delayed the formation of eyespots during regeneration. Long-term depletion of DjCBC-1 by RNAi also abolished the negative phototaxis of planarian. Here, I examined the expression of DjCBC-1 at the protein level. DjCBC-1 protein is expressed ubiquitously and is highly expressed in the brain and regenerating tissue. This finding is consistent with previous results, which were observed using whole-mount in situ hybridization (WISH). DjCBC-1 is localized to the nucleus and cytoplasm foci at the subcellular level. The depletion of DjCBC-1 increased the number of neoblasts. Finally, using an antibody specifically recognizing DjCBC-1, I immuno-precipitated DjCBC-1 RNA-protein complex and pulled down the neoblast- specific RNAs. My results suggested the function of DjCBC-1 in regulating target mRNA levels and participating in the maintenance of neoblasts. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:38:39Z (GMT). No. of bitstreams: 1 U0001-1308202015483800.pdf: 3005609 bytes, checksum: eeb5b13b5a560fd799218b051a7c7d7b (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii Abstract iv Contents v 1. Introduction 1 1.1 Regeneration in planarian 1 1.2 Neoblasts in planarian regeneration 3 1.3 Planarian nervous system and behavior 5 1.4 DDX6 protein and homolog in planarian 7 2. Materials and Methods 10 2.1 Animals 10 2.2 Immunofluorescence (IF) staining 10 2.3 Western Blot 11 2.4 RNA isolation and cDNA preparation 11 2.5 Quantitative reverse-transcription PCR (RT-qPCR) 12 2.6 Fluorescence-activated cell sorting (FACS) 12 2.7 Synthesis and purification of digoxigenin (DIG)-labeled RNA probes and double-strand RNA 13 2.8 dsRNA-mediated RNA interference (RNAi) experiment 14 2.9 Whole-mount in situ hybridization (WISH) 14 2.10 Immunoprecipitation 16 3. Results 17 3.1 Generation and functional characterization of a highly specific polyclonal anti-DjCBC-1 antibody. 17 3.2 DjCBC-1 was highly expressed in the brain and assembled around the nucleus. 18 3.3 DjCBC-1 was highly expressed in regenerating tissue of planarian. 18 3.4 DjCBC-1 was highly expressed in isolated mitotic neoblasts (X1) and neoblasts / progenitor cell populations (X2) of planarian. 19 3.5 Depletion of Djcbc-1 increased the number of mitotic cells. 20 3.6 Depletion of Djcbc-1 increased the expression level of cNeoblasts maker genes. 21 3.7 DjCBC-1 associated the mRNA of tgs-1, a neoblast-specific transcription factor. 22 3.8 Depletion of Djcbc-1 increased the average level of tgs-1 in each neoblast, without changing the expression pattern of tgs-1+ cells. 23 3.9 DjCBC-1 and Tgs-1 co-regulate the cell cycle of neoblasts. 23 3.10 Depletion of Djcbc-1 delayed the proliferating response of neoblasts during regeneration. 24 3.11 The DjCBC-1 protein binds to mex3-1 mRNA. 25 3.12 Depletion of Djcbc-1 perturbed the tissue homeostasis of eyespots and optic chiasm. 26 3.13 Depletion of Djcbc-1 increased the expression level of the differentiated neuron marker genes after Djcbc-1 RNAi. 27 4. Discussion 27 4.1 Summary and significance 28 4.2 The polyclonal anti-DjCBC-1 antibody can specifically pull down DjCBC-1 protein. 28 4.3 DjCBC-1 is required for cell differentiation and regulate cell cycle. 29 4.4 DjCBC-1 associated and regulated mex3-1 which is required for mediating cell fated to different lineages. 31 4.5 Depletion of Djcbc-1 affect the second mitotic proliferating response of neoblasts after missing tissue and during regeneration. 31 4.6 The DjCBC-1 protein is highly expressed in the brain, neoblasts, and blastema. 32 4.7 DjCBC-1 is required for the brain and the optic nervous system homeostasis. 33 4.8 Perspectives 34 5. Figures 36 Figure 1. The customized anti-DjCBC-1 antibody specifically recognized DjCBC-1 protein. 37 Figure 2. DjCBC-1 was expressed in intact planarian and highly expressed in the brain. 39 Figure 3. The DjCBC-1 was expressed in the cytoplasm surrounding the nucleus of the epidermal cells. 40 Figure 4. DjCBC-1 was highly expressed in regenerating tissue of planarian. 42 Figure 5. DjCBC-1 was highly expressed in FACS-isolated X1 (mitotic neoblasts) and X2 (non-mitotic neoblast and progenitor cell populations) population from the body of planarian. 44 Figure 6. Depletion of Djcbc-1 increased the mitotic cell number. 47 Figure 7. Depletion of Djcbc-1 increased the expression level of cNeoblasts marker genes. 49 Figure 8. The mRNA of cNeoblast genes were associated with and regulated by DjCBC-1. 51 Figure 9. DjCBC-1 and Tgs-1 might co-regulate cell cycle. 53 Figure 10. Depletion of Djcbc-1 affected the bimodal mitotic response at wound sites during regeneration. 56 Figure 11. The mRNA of RNA binding protein (mex3-1) was associated and regulated with DjCBC-1. 57 Figure 12. Depletion of Djcbc-1 perturbed the structure of optic never and impaired the maintenance of head homeostasis. 59 Figure 13. The expression levels of differentiated neuron marker genes was affected after Djcbc-1 depletion. 60 Figure 14. Schematic showing function of DjCBC-1 in homeostasis of planarian neoblasts and regeneration. 61 6. Appendix 62 7. References 63 | |
| dc.language.iso | en | |
| dc.subject | 再生 | zh_TW |
| dc.subject | 渦蟲 | zh_TW |
| dc.subject | 組織恆定性 | zh_TW |
| dc.subject | DjCBC-1 | zh_TW |
| dc.subject | DDX6 | zh_TW |
| dc.subject | DEAD-box核糖核酸解旋酶 | zh_TW |
| dc.subject | DjCBC-1 | en |
| dc.subject | DEAD-box helicase 6 | en |
| dc.subject | DDX6 | en |
| dc.subject | planarian | en |
| dc.subject | homeostasis | en |
| dc.subject | regeneration | en |
| dc.title | 探討 DjCBC-1 蛋白於渦蟲神經系統與成體幹細胞恆定性之調控功能 | zh_TW |
| dc.title | Deciphering the regulatory function of DjCBC-1 in homeostasis of planarian neoblasts and nervous system | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭典翰(Dian-Han Kuo),周銘翊(Ming-Yi Chou) | |
| dc.subject.keyword | DEAD-box核糖核酸解旋酶,DDX6,DjCBC-1,組織恆定性,再生,渦蟲, | zh_TW |
| dc.subject.keyword | DEAD-box helicase 6,DDX6,DjCBC-1,homeostasis,regeneration,planarian, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU202003280 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1308202015483800.pdf 未授權公開取用 | 2.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
