Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76850
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許麗卿(Lih-Ching Hsu)
dc.contributor.authorHao-Ning Huangen
dc.contributor.author黃皞甯zh_TW
dc.date.accessioned2021-07-10T21:38:34Z-
dc.date.available2021-07-10T21:38:34Z-
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citation1. National Comprehensive Cancer Network. Ovarian cancer. 2019.
https://www.nccn.org/patients/guidelines/content/PDF/ovarian-patient.pdf
2. Ovarian Cancer Research Alliance. Types of ovarian cancer.
https://ocrahope.org/patients/about-ovarian-cancer/types-ovarian-cancer/
3. Ministry of Health and Welfare. Statistics of caused of death. 2018.
https://www.mohw.gov.tw/cp-16-48057-1.html
4. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: ovarian cancer. 2020.2
https://www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf
5. Tutuska K., et al. Statin as anti-cancer therapy in autochthonous T-lymphomas expressing stabilized gain-of-function mutant p53 proteins. Cell Death Disease 2020, 11, 274.
6. Jong G. L., et al. Mutant p53 promotes ovarian cancer cell adhesion to mesothelial cells via integrin β4 and Akt signals. Scientific Reports 2015, 5, 12642.
7. Ying H. L., et al. The Akt inhibitor MK-2206 enhances the cytotoxicity of paclitaxel (Taxol) and cisplatin in ovarian cancer cells. Naunyn-Schmiedeberg's Archives of Pharmacology 2015, 388, 19-31.
8. Vergara D., et al. Resveratrol downregulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells. Molecular BioSystems 2012, 8, 1078-1087.
9. Mekhail T. M., et al. Paclitaxel in cancer therapy. Drug Evaluation 2002, 3(6), 755-766.
10. Bement W., et al. How Taxol/paclitaxel kills cancer cells. Molecular Biology of the Cell 2014, 25(18), 2677-2681.
11. Schiff P. B., et al. Taxol stabilizes microtubules in mouse fibroblast cells. PNAS 1980, 77(3), 1561-1565.
12. Wang L. G., et al. The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemother Pharmacol 1999, 44(5), 355-361.
13. Eisenhauer E. A., et al. European-Canadian randomized trial of paclitaxel in relapsed ovarian cancer. Journal of Clinical Oncology 1994, 12(12), 2654-2666.
14. Paclitaxel and docetaxel in breast and ovarian cancer. Drug and Therapeutics Bulletin 1997, 35(6), 43-46.
15. Mokhtari R. B., et al. Combination therapy in combating cancer. Oncotarget 2017, 8(23), 38022-38043.
16. Chong C. R., et al. New uses for old drugs. Nature 2007, 448(7154), 645-646.
17. Rudin C. M., et al. Phase 2 study of pemetrexed and itraconazole as second-line therapy for metastatic nonsquamous non-small-cell lung cancer. Journal of Thoracic Oncology 2013, 8(5), 619-623.
18. Yuan J., et al. Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets. Science 2011, 333(6043), 724-729.
19. Zhiyun Y., et al. Metformin and temozolomide act synergistically to inhibit growth of glioma cells and glioma stem cells in vitro and in vivo. Oncotarget 2015, 6(32), 32930-32943.
20. Csermely P., et al. The efficiency of multi-target drugs: the network approach might help drug design. Trends in Pharmacological Sciences 2005, 26(4), 178-182.
21. Sun W., et al. Drug combination therapy increases successful drug repositioning. Drug Discovery Today 2016, 21(7), 1189-1195.
22. Musacchio A. The molecular biology of spindle assembly checkpoint signaling dynamics. Current Biology 2015, 25(20), 1002-1018.
23. Lodish H., et al. Molecular cell biology (8th addition). 2016. W. H. Freeman and Company.
24. Hayward D., et al. Orchestration of the spindle assembly checkpoint by CDK1‐cyclin B1. FEBS Letters 2019, 593, 2889–2907.
25. Thompson S. L., et al. Mechanisms of chromosomal instability. Current Biology 2010, 20(6), 285-295.
26. McClelland S. E. Role of chromosomal instability in cancer progression. Endocrine-Related Cancer 2017, 24(9), 23-31.
27. Rutledge S. D., et al. Selective advantage of trisomic human cells cultured in non-standard conditions. Scientific Reports 2016, 6, 22828.
28. Barbaric I., et al. Time-lapse analysis of human embryonic stem cells reveals multiple bottlenecks restricting colony formation and their relief upon culture adaptation. Stem Cell Reports 2014, 3(1), 142-155.
29. Ganem N. J., et al. A mechanism linking extra centrosomes to chromosomal instability. Nature 2009, 460, 278-282.
30. Silk A. D., et al. Chromosome missegregation rate predicts whether aneuploidy will promote or suppress tumors. PNAS 2013, 110(44), 4134-4141.
31. Weaver B. A., et al. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 2007, 11(1), 25-36.
32. Birkbak N. J., et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Research 2011, 71(10), 3447-3452.
33. Roylance R., et al. Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiology, Biomarkers Prevention 2011, 20(10), 2183-2194.
34. Hanks S., et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nature Genetics 2004, 36, 1159–1161.
35. Matsuura S., et al. Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. American Journal of Medical Genetics Part A 2006, 140(4), 358-367.
36. Rodríguez E. D., et al. Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in vivo. PNAS 2008, 105(43), 16719-16724.
37. Janssen A., et al. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. PNAS 2009, 106(45), 19108-19113.
38. Zasadil L. M., et al. Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Science Translational Medicine 2014, 6(229), 229-243.
39. Bell G. I., et al. Molecular biology of mammalian glucose transporters. Diabetes Care 1990, 13(3), 198-208.
40. White J. R., et al. Apple trees to sodium glucose co-transporter inhibitors: a review of SGLT2 inhibition. Clinical Diabetes 2010, 28(1), 5-10.
41. Madunić I. V., et al. Sodium-glucose cotransporters: new targets of cancer therapy? Archives of Industrial Hygiene and Toxicology 2014, 6(229), 229-243.
42. Wright E. M., et al. Biology of human sodium glucose transporters. Physiology Reviews 2011, 91(2), 733-794.
43. Gorboulev V., et al. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 2012, 61(1), 187-196.
44. Zhou L., et al. Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT1). Journal of Cellular Biochemistry 2003, 90(2), 339-346.
45. Warburg O. On the origin of cancer cells. SCIENCE 1956, 123(3191), 309-314.
46. Heiden M. V., et al. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324(5930), 1029-1033.
47. Szablewski L. Expression of glucose transporters in cancers. BBA - Reviews on Cancer 2013, 1835(2), 164-169.
48. Scafoglio C., et al. Functional expression of sodium-glucose transporters in cancer. PNAS 2015, 112(30), 4111-4119.
49. Kaji K., et al. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. International Journal of Cancer 2018, 142(8), 1712-1722.
50. Häcker G. The morphology of apoptosis. Cell and Tissue Research 2000, 301, 5-17.
51. Saraste A., et al. Morphologic and biochemical hallmarks of apoptosis. Cardiovascular Research 2000, 45, 528-537.
52. Boatright K. M., et al. Mechanisms of caspase activation. Current Opinion in Cell Biology 2003. 15(6), 725-731.
53. Pistritto G., et al. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging 2016, 8(4), 603–619.
54. Danial N. N., et al. Cell Death: Critical Control Points. Cell 2004, 116(2), 205-219.
55. Dewson G., et al. o Trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3: groove interactions. Molecular Cell 2008, 30(3), 369-380.
56. Gavathiotis E., et al. BAX activation is initiated at a novel interaction site. Nature 2008, 455, 1076–1081.
57. Blackford A. N., et al. ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response. Molecular Cell 2017, 66(6), 801-817.
58. Carson C. T., et al. The Mre11 complex is required for ATM activation and the G2/M checkpoint. The EMBO Journal 2003, 22(24), 6610–6620.
59. Zou L., et al. Replication protein A-mediated recruitment and activation of Rad17 complexes. PNAS 2003, 100(24), 13827–13832.
60. Scully R., et al. Double strand break repair functions of histone H2AX. Mutation Research 2013, 750(0).
61. Ting C. C., et al. Drug combination studies and their synergy quantification
using the Chou-Talalay method. Cancer Research 2010, 70(2), 440–446.
62. Zhao L., et al. Evaluation of combination chemotherapy: integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clinical Cancer Research 2004, 10, 7994–8004.
63. Morgan D. O., et al. The cell cycle 2007. Oxford University Press.
64. Xihan G., et al. Biphasic regulation of spindle assembly checkpoint by low and high concentrations of resveratrol leads to the opposite effect on chromosomal instability. Mutation Research - Genetic Toxicology and Environmental Mutagenesis 2018, 825, 19-30.
65. Weaver R. L., et al. BubR1 alterations that reinforce mitotic surveillance act against aneuploidy and cancer. Elife 2016, 5, 16620.
66. Courtheoux T., et al. Aurora A kinase activity is required to maintain an active spindle assembly checkpoint during prometaphase. Cell Science 2018, 131.
67. Gurden M. D., et al. Aurora B prevents premature removal of spindle assembly checkpoint proteins from the kinetochore: a key role for Aurora B in mitosis. Oncotarget 2016, 9(28), 19525-19542.
68. Wei R., et al. Phosphorylation of the Ndc80 complex protein, HEC1, by Nek2 kinase modulates chromosome alignment and signaling of the spindle assembly checkpoint. Molecular Biology of the Cell 2011, 22(19), 3584-3594.
69. Demidenko Z. N., et al. Mechanism of G1-like arrest by low concentrations of paclitaxel: next cell cycle p53-dependent arrest with sub G1 DNA content mediated by prolonged mitosis. Oncogene 2008, 27(32), 4402-4410.
70. Man H. H., et al. Canagliflozin inhibits growth of hepatocellular carcinoma via blocking glucose-influx-induced β-catenin activation. Cell Death Disease 2019, 420.
71. James D. O., et al. Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Molecular Biology of the Cell 2012, 23(4), 567–576.
72. Poruchynsky M. S., et al. Microtubule-targeting agents augment the toxicity of DNA-damaging agents by disrupting intracellular trafficking of DNA repair proteins. PNAS 2015, 112(5), 1571-1576.
73. Manish K. P., et al. Synergistic effect of piperine and paclitaxel on cell fate via cyt-c, Bax/Bcl-2-caspase-3 pathway in ovarian adenocarcinomas SKOV-3 cells. European Journal of Pharmacology 2016, 791, 751-762.
74. Zhong J., et al. Canagliflozin inhibits p-gp function and early autophagy and improves the sensitivity to the antitumor effect of doxorubicin. Biochemical Pharmacology 2020, 175.
75. Jang S. H., et al. Kinetics of p-glycoprotein-mediated efflux of paclitaxel. Journal of Pharmacology and Experimental Therapeutics 2001, 298(3), 1236-42.
76. Chunyan D., et al. Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability--an implication in aneuploid human tumors. PLoS One 2013, 8(5).
77. W L., et al. BUBR1 phosphorylation is regulated during mitotic checkpoint activation. Cell Growth Differentiation 1999, 10(11), 769-775.
78. Yige G., et al. CENP-E–dependent BubR1 autophosphorylation enhances chromosome alignment and the mitotic checkpoint. Journal of Cell Biology 2012, 198(2), 205-217.
79. Stephen S., et al. Kinetochore localisation and phosphorylation of the mitotic checkpoint components Bub1 and BubR1 are differentially regulated by spindle events in human cells. Journal of Cell Science 2001, 114, 4385-4395.
80. Byung M. C., et al. Anti-apoptotic effect of phloretin on cisplatin-induced apoptosis in HEI-OC1 auditory cells. Pharmacological Reports 2011, 63(3), 708-16.
81. Villani L. A., et al. The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration. Molecular Metabolism 2016, 5(10), 1048-1056.
82. Tudrej P., et al. Establishment and characterization of the novel high-grade serous ovarian cancer cell line OVPA8. International Journal of Molecular Sciences 2018, 19(7), 2080.
83. Rajput S., et al. Inhibition of cyclin dependent kinase 9 by dinaciclib suppresses cyclin B1 expression and tumor growth in triple negative breast cancer. Oncotarget 2016, 7(35), 56864–56875.
84. Wang t. h., et al. Paclitaxel-Induced Cell Death. Cancer 2000, 88(11), 2619-28.
85. Sinha D., et al. Mitotic slippage: an old tale with a new twist. Cell Cycle 2019, 18(1): 7–15.
86. Rorà A. G., et al. The balance between mitotic death and mitotic slippage in acute leukemia: a new therapeutic window? Journal of Hematology Oncology 2019, 123.
87. Hayward D., et al. CDK1-CCNB1 creates a spindle checkpoint–permissive state by enabling MPS1 kinetochore localization. Journal of Cell Biology 2019. 218 (4), 1182–1199.
88. Morin V., et al. CDK-dependent potentiation of MPS1 kinase activity is essential to the mitotic checkpoint. Current Biology 2012, 22(4), 289-295.
89. Tatiana A. P., et al. MAD1-dependent recruitment of CDK1-CCNB1 to kinetochores promotes spindle checkpoint signaling. Journal of Cell Biology 2019, 218(4), 1108-1117.
90. Qiang C., et al. Cyclin B1 is localized to unattached kinetochores and contributes to efficient microtubule attachment and proper chromosome alignment during mitosis. Cell Research 2008, 18, 268–280.
91. Gong D., et al. The roles of cyclin A2, B1, and B2 in early and late mitotic events.
Molecular Biology of the Cell 2010, 21(18), 3149-3161.
92. Scaife R. M. G2 cell cycle arrest, down-regulation of cyclin B, and induction of mitotic catastrophe by the flavoprotein inhibitor diphenyleneiodonium. Molecular Cancer Therapeutics 2004, 3(10).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76850-
dc.description.abstract癌細胞攝取較多葡萄糖,儘管在有氧的環境下主要依賴來自糖解作用的能量而非氧化磷酸化,此現象稱為Warburg effect。因此在抗癌藥的開發中葡萄糖的轉運蛋白可能是具潛力的標的物。
我們發現傳統的化療藥微管抑制劑紫杉醇和鈉依賴型葡萄糖共同運輸蛋白抑制劑canagliflozin可以協同抑制ES-2卵巢癌細胞和HepG2肝癌細胞的生長。Canagliflozin顯著提升紫杉醇引起的凋亡作用,並產生較多的cleaved PARP, caspase-7和caspase-9,同時也減少Bcl-2和增加Bim的量。此外canagliflozin可顯著提升低濃度紫杉醇誘導產生的非整倍體細胞。在細胞週期蛋白的表現中,經24小時處理,cyclin B1, PLK1和phospho-histone H3在10 nM TX/30 M Cana合併處理後蛋白量降低,而這些蛋白除了PLK1外,其他都在48 h後提升。協同作用也可在紫杉醇和其他葡萄糖轉運蛋白抑制劑觀察到,包含第一型葡萄糖轉運蛋白抑制劑WZB117和另一種鈉依賴型葡萄糖共同運輸蛋白抑制劑dapagliflozin,而這些抑制劑皆可抑制第一型葡萄糖轉運蛋白的活性。此外,canagliflozin增加被紫杉醇引起的異常分裂細胞和具小核的細胞。DNA損壞程度也在合併處理後顯著提升,這可能是引起細胞凋亡的原因也可能是結果。Canagliflozin減少高濃度紫杉醇引起的cyclin B1表現和BUBR1磷酸化,這可能和spindle assembly checkpoint的去活化有關。另外,合併處理降低p70S6K和4EBP1的磷酸化以及c-myc的量。最後,canagliflozin也可和其他微管抑制劑vincristine和vinblastine在ES-2細胞中產生協同作用。總結,非整倍體細胞的產生、葡萄糖轉運蛋白抑制和DNA損傷可能是canagliflozin能加強紫杉醇導致細胞凋亡的原因,而我們這個發現有可能可以應用到臨床的癌症治療上。
zh_TW
dc.description.abstractCancer cells consume more glucose and rely on energy produced from glycolysis instead of the oxidative phosphorylation pathway even in the aerobic circumstance, and this phenomenon is called the Warburg effect. Hence, the glucose transporters responsible for importing glucose to cells would be potential targets for anticancer drug development.
Here we demonstrated that the traditional anti-tubulin chemotherapeautic drug, paclitaxel (TX), and the sodium dependent glucose cotransporter 2 (SGLT2) inhibitor, canagliflozin (Cana), can synergistically suppress the growth of an ovarian cancer cell line, ES-2, and a hepatocellular carcinoma cell line, HepG2. Canagliflozin augemented paclitaxel-induced apoptosis and increased the levels of cleaved PARP, caspase-7 and caspase-9. Because of increased cleaved caspase-9, we explored the intrinsic pathway and revealed downregulation of Bcl-2 and upregulation of Bim. Low concentration of paclitaxel elevated the population of aneuploid cells, and the combination treatment further enhanced this effect in a time dependent manner. In addition, cyclin B1, PLK1, and phospho-histone H3 (p-histone H3), were downregulated in the combination group (10 nM TX/30 M Cana) after 24 h treatment, and levels of cyclin B1 and p-histone H3 but not PLK1 were upregulated after 48 h treatment. The synergistic effect could be observed in the combination of paclitaxel and another SGLT2 inhibitor, dapagliflozin, and a GLUT1 inhibitor, WZB117, and these glucose inhibitors including canagliflozin could inhibit GLUT1 activity. Furthermore, canagliflozin increased paclitaxel-induced abnormal mitotic cells and accumulation of cells with fragmented nuclei. DNA damage was also observed which may lead to apoptosis or could be a consequence of DNA fragmentation following apoptosis. Canagliflozin could decrease the level of cyclin B1 and compromise the activity of spindle assembly checkpoint, which then reduced mitotic cells and p-BUBR1 induced by 1 M paclitaxel. The combination treatment also downregulated p-p70S6K, p-4EBP1 and c-myc which regulate cell growth and protein synthesis. Finally, the growth inhibitory effect of vinblastine and vincristine could also be enhanced by canagliflozin in ES-2 cells. Taken together, the induction of aneuploid cells, glucose inhibition and induction of DNA damage may eventually lead to apoptosis in ES-2 cells. These molecular changes may explain why canagliflozin could enhance paclitaxel-induced cytotoxicity and our findings may have clinical implications.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:38:34Z (GMT). No. of bitstreams: 1
U0001-1308202016185200.pdf: 11567878 bytes, checksum: fcc14dca05292659f0a6b4b46dff64b9 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents國立台灣大學碩士學位論文口試委員會審定書 i
誌謝 ii
List of abbreviations iii
中文摘要 v
Abstract vi
Contents viii
Aim of the study 1
Chapter 1: Introduction 2
1.1 Ovarian cancer 2
1.2 Cell lines of ovarian cancer cells 4
1.3 Paclitaxel 4
1.4 Drug reposition and combination therapy 5
1.5 Spindle assembly checkpoint (SAC) and anaphase-promoting complex
(APC) 6
1.6 Aneuploidy and paclitaxel 8
1.7 Glucose transporters in cancer cells 9
1.8 Apoptosis 11
1.9 DNA damage signaling 13
1.10 Mitosis 14
Chapter 2: Materials and Methods 19
2.1 Materials 19
2.2 Cell culture 19
2.3 Cell viability and combination index analysis 20
2.4 Colony formation assay 21
2.5 Propidium Iodide (PI) staining (cell cycle analysis) 21
2.6 Annexin V-FITC/PI double staining 22
2.7 Western blotting 22
2.8 2-NBDG uptake assay 24
2.9 Immunofluorescence staining 24
2.10 Comet assay 25
2.11 Tubulin in vivo assay 26
2.12 Determination of SAC activity 27
2.13 Data analysis 27
Chapter 3: Results 28
3.1 Screening for chemotherapy drugs that can synergize with canagliflozin against ES-2 cells 28
3.2 Inhibitory effects of paclitaxel and canagliflozin on cell growth and clonogenicity in ES-2 cells 29
3.3 Effect of canagliflozin combined with paclitaxel on cell apoptosis and apoptosis-related proteins in ES-2 cells 30
3.4 Effect of Canagliflozin combined with paclitaxel on cell cycle progression 31
3.5 Inhibitory effect of canagliflozin combined with paclitaxel on glucose uptake and the synergism of other glucose inhibitors with paclitaxel 33
3.6 The effect of canagliflozin combined with paclitaxel on microtubule and mitotic spindle formation in ES-2 cells 34
3.7 Induction of DNA damage by paclitaxel combined with canagliflozin 35
3.8 The effect of canagliflozin combined with paclitaxel on tubulin polymerization and expression of SAC related proteins. 36
3.9 Decreased cyclin B1 and compromised SAC by canagliflozin 37
3.10 The effect of canagliflozin combined with paclitaxel on the mTOR signaling pathway and MAPK pathway 39
3.11 The synergism of canagliflozin combined with tubulin depolymerizing drugs in ES-2 cells 40
Chapter 4: Discussion 66
4.1 The combination of paclitaxel and canagliflozin 66
4.2 The proteins related to cell cycle perturbed by paclitaxel and canagliflozin 67
4.3 The induction of aneuploid cells by paclitaxel 68
4.4 Chromosome instability induced by glucose deprivation 69
4.5 DNA damage and paclitaxel 71
4.6 The spindle assembly checkpoint (SAC) and CDK1/cyclin B1 72
4.7 Cyclin B1 depletion induces cells to exit or arrest in mitosis? 73
Chapter 5: Conclusion 74
Figures in introduction
Figure 1-1. Microtubule-kinetochore attachment 15
Figure 1-2. The spindle assembly checkpoint pathway 16
Figure 1-3. The extrinsic and intrinsic apoptosis pathway 17
Figure 1-4. Feedback loops regulating CDK1/cyclin B1 activation in early mitosis 18
Figures in results
Figure 1. Screening for chemotherapy drugs that can synergize with canagliflozin in
ES-2 cells 42
Figure 2. Inhibitory effects of TX and Cana on cell viability and clonogenic growth in
ES-2 cells and other cell lines 43
Figure 3. The induction of apoptosis by TX combined with Cana in ES-2 cells 45
Figure 4. Effect of Cana combined with TX on apoptosis-related proteins in ES-2
cells 47
Figure 5. Effect of Cana combined with TX on cell cycle progression in ES-2 cells 49
Figure 6. Effect of TX combined with Cana on cell cycle-related proteins in ES-2
cell 51
Figure 7. Inhibition of 2-NBDG uptake by glucose transporter inhibitors and the
synergistic anticancer activity of these inhibitors combined with TX in ES-2
cells 52
Figure 8. Cana combined with TX induced abnormal mitotic cells and aneuploidy in
ES-2 cells 54
Figure 9. Induction of DNA damage by Cana combined with TX in ES-2 cells. 57
Figure 10. The effect of Cana combined with TX on microtubule polymerization and proteins related to spindle assembly checkpoint in ES-2 cells 59
Figure 11. Downregulation of cyclin B1 by treatment with Cana may compromise
SAC in ES-2 cells 61
Figure 12. Downregulation of downstream proteins in the mTOR signaling pathway
by TX/Cana combination treatment and induction of MAPK signaling by Cana in ES-2 cells 63
Figure 13. The synergism of the tubulin depolymerizing drugs vinblastine (VB)
and vincristine (VC) combined with Cana in ES-2 cells 64
Figure in conclusion
Figure 14. Mechanisms of paclitaxel combined with canagliflozin in ES-2 cells 74
Tables
Table 1. Human ovarian cancer cell lines 4
Table 2. Major isoforms of GLUTs and their primary locations in human 10
dc.language.isoen
dc.subject細胞凋亡zh_TW
dc.subject紫杉醇zh_TW
dc.subjectcanagliflozinzh_TW
dc.subject鈉依賴型葡萄糖共同運輸蛋白抑制劑zh_TW
dc.subject非整倍體zh_TW
dc.subject染色體不穩定zh_TW
dc.subjectspindle assembly checkpointzh_TW
dc.subjectcanagliflozinen
dc.subjectapoptosisen
dc.subjectspindle assembly checkpointen
dc.subjectSGLT inhibitoren
dc.subjectpaclitaxelen
dc.subjectchromosome instabilityen
dc.subjectaneuploidyen
dc.title以第二型鈉-葡萄糖轉運蛋白抑制劑增強紫杉醇對卵巢癌細胞引起之細胞凋亡
zh_TW
dc.titleSensitization of ovarian cancer cells to paclitaxel-induced apoptosis by SGLT2 inhibitorsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顧記華(Jih-Hwa Guh),孔繁璐(Fan-Lu Kung)
dc.subject.keyword紫杉醇,canagliflozin,鈉依賴型葡萄糖共同運輸蛋白抑制劑,非整倍體,染色體不穩定,spindle assembly checkpoint,細胞凋亡,zh_TW
dc.subject.keywordpaclitaxel,canagliflozin,SGLT inhibitor,aneuploidy,chromosome instability,spindle assembly checkpoint,apoptosis,en
dc.relation.page80
dc.identifier.doi10.6342/NTU202003289
dc.rights.note未授權
dc.date.accepted2020-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
U0001-1308202016185200.pdf
  未授權公開取用
11.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved