請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76847完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林國儀(Kuo-I Lin) | |
| dc.contributor.author | Wei-Ju Huang | en |
| dc.contributor.author | 黃暐茹 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:38:28Z | - |
| dc.date.available | 2021-07-10T21:38:28Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-13 | |
| dc.identifier.citation | 1. Sieper, J., et al., Axial spondyloarthritis. Nat Rev Dis Primers, 2015. 1: p. 15013. 2. Taurog, J.D., A. Chhabra, and R.A. Colbert, Ankylosing Spondylitis and Axial Spondyloarthritis. N Engl J Med, 2016. 374(26): p. 2563-74. 3. Wang, C.R., et al., Rare occurrence of inflammatory bowel disease in a cohort of Han Chinese ankylosing spondylitis patients- a single institute study. Sci Rep, 2017. 7(1): p. 13165. 4. Molto, A. and E. Nikiphorou, Comorbidities in Spondyloarthritis. Front Med (Lausanne), 2018. 5: p. 62. 5. Ellinghaus, D., et al., Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet, 2016. 48(5): p. 510-8. 6. Sieper, J., et al., Comparison of two different dosages of celecoxib with diclofenac for the treatment of active ankylosing spondylitis: results of a 12-week randomised, double-blind, controlled study. Ann Rheum Dis, 2008. 67(3): p. 323-9. 7. Baeten, D., et al., Secukinumab, an Interleukin-17A Inhibitor, in Ankylosing Spondylitis. N Engl J Med, 2015. 373(26): p. 2534-48. 8. Molnar, C., et al., TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: results from the Swiss Clinical Quality Management cohort. Ann Rheum Dis, 2018. 77(1): p. 63-69. 9. Braun, J. and J. Sieper, Therapy of ankylosing spondylitis and other spondyloarthritides: established medical treatment, anti-TNF-alpha therapy and other novel approaches. Arthritis Res, 2002. 4(5): p. 307-21. 10. Wang, P., et al., Effects and safety of allogenic mesenchymal stem cell intravenous infusion in active ankylosing spondylitis patients who failed NSAIDs: a 20-week clinical trial. Cell Transplant, 2014. 23(10): p. 1293-303. 11. Lieberman, M.R., et al., TNF-inhibitor induced lupus in a patient treated with adalimumab for rheumatoid arthritis. Dermatol Online J, 2014. 21(2). 12. Nyboe Andersen, N., et al., Association between tumour necrosis factor-alpha inhibitors and risk of serious infections in people with inflammatory bowel disease: nationwide Danish cohort study. BMJ, 2015. 350: p. h2809. 13. van Oosten, B.W., et al., Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology, 1996. 47(6): p. 1531-4. 14. van Horssen, R., T.L. Ten Hagen, and A.M. Eggermont, TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist, 2006. 11(4): p. 397-408. 15. Kubiak, E.N., et al., Orthopaedic management of ankylosing spondylitis. J Am Acad Orthop Surg, 2005. 13(4): p. 267-78. 16. Kim, K.T., et al., Results of Corrective Osteotomy and Treatment Strategy for Ankylosing Spondylitis with Kyphotic Deformity. Clin Orthop Surg, 2015. 7(3): p. 330-6. 17. Zhernakova, A., S. Withoff, and C. Wijmenga, Clinical implications of shared genetics and pathogenesis in autoimmune diseases. Nat Rev Endocrinol, 2013. 9(11): p. 646-59. 18. Baraliakos, X., et al., High prevalence of anti-CD74 antibodies specific for the HLA class II-associated invariant chain peptide (CLIP) in patients with axial spondyloarthritis. Ann Rheum Dis, 2014. 73(6): p. 1079-82. 19. Baerlecken, N.T., et al., Autoantibodies against CD74 in spondyloarthritis. Ann Rheum Dis, 2014. 73(6): p. 1211-4. 20. Liu, Y., X. Liao, and G. Shi, Autoantibodies in Spondyloarthritis, Focusing on Anti-CD74 Antibodies. Front Immunol, 2019. 10: p. 5. 21. Wright, C., et al., Detection of multiple autoantibodies in patients with ankylosing spondylitis using nucleic acid programmable protein arrays. Mol Cell Proteomics, 2012. 11(2): p. M9 00384. 22. Ye, C., et al., Extracellular IL-37 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells via activation of the PI3K/AKT signaling pathway. Cell Death Dis, 2019. 10(10): p. 753. 23. Jacques, P., et al., Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann Rheum Dis, 2014. 73(2): p. 437-45. 24. van Tok, M.N., et al., Innate Immune Activation Can Trigger Experimental Spondyloarthritis in HLA-B27/Hubeta2m Transgenic Rats. Front Immunol, 2017. 8: p. 920. 25. Costello, M.E., et al., Microbes, the gut and ankylosing spondylitis. Arthritis Res Ther, 2013. 15(3): p. 214. 26. Busch, R., S. Kollnberger, and E.D. Mellins, HLA associations in inflammatory arthritis: emerging mechanisms and clinical implications. Nat Rev Rheumatol, 2019. 15(6): p. 364-381. 27. Quaden, D.H., L.M. De Winter, and V. Somers, Detection of novel diagnostic antibodies in ankylosing spondylitis: An overview. Autoimmun Rev, 2016. 15(8): p. 820-32. 28. Maki-Ikola, O., et al., IgA1 and IgA2 subclass antibodies against Klebsiella pneumoniae in the sera of patients with peripheral and axial types of ankylosing spondylitis. Ann Rheum Dis, 1995. 54(8): p. 631-5. 29. Atagunduz, P., et al., HLA-B27-restricted CD8+ T cell response to cartilage-derived self peptides in ankylosing spondylitis. Arthritis Rheum, 2005. 52(3): p. 892-901. 30. Schittenhelm, R.B., et al., Human Leukocyte Antigen (HLA) B27 Allotype-Specific Binding and Candidate Arthritogenic Peptides Revealed through Heuristic Clustering of Data-independent Acquisition Mass Spectrometry (DIA-MS) Data. Mol Cell Proteomics, 2016. 15(6): p. 1867-76. 31. Robinson, P.C., et al., ERAP2 is associated with ankylosing spondylitis in HLA-B27-positive and HLA-B27-negative patients. Ann Rheum Dis, 2015. 74(8): p. 1627-9. 32. Mear, J.P., et al., Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol, 1999. 163(12): p. 6665-70. 33. Colbert, R.A., T.M. Tran, and G. Layh-Schmitt, HLA-B27 misfolding and ankylosing spondylitis. Mol Immunol, 2014. 57(1): p. 44-51. 34. DeLay, M.L., et al., HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum, 2009. 60(9): p. 2633-43. 35. Beziat, V., et al., Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology. Immunology, 2017. 150(3): p. 248-264. 36. Appel, H., et al., Analysis of IL-17(+) cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res Ther, 2011. 13(3): p. R95. 37. Bowness, P., et al., Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J Immunol, 2011. 186(4): p. 2672-80. 38. Mei, Y., et al., Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin Rheumatol, 2011. 30(2): p. 269-73. 39. Kenna, T.J., et al., Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive gamma/delta T cells in patients with active ankylosing spondylitis. Arthritis Rheum, 2012. 64(5): p. 1420-9. 40. Reinhardt, A., et al., Interleukin-23-Dependent gamma/delta T Cells Produce Interleukin-17 and Accumulate in the Enthesis, Aortic Valve, and Ciliary Body in Mice. Arthritis Rheumatol, 2016. 68(10): p. 2476-86. 41. Reinhardt, A. and I. Prinz, Whodunit? The Contribution of Interleukin (IL)-17/IL-22-Producing gammadelta T Cells, alphabeta T Cells, and Innate Lymphoid Cells to the Pathogenesis of Spondyloarthritis. Front Immunol, 2018. 9: p. 885. 42. Venken, K., et al., RORgammat inhibition selectively targets IL-17 producing iNKT and gammadelta-T cells enriched in Spondyloarthritis patients. Nat Commun, 2019. 10(1): p. 9. 43. Patterson, S., et al., Human invariant NKT cells display alloreactivity instructed by invariant TCR-CD1d interaction and killer Ig receptors. J Immunol, 2008. 181(5): p. 3268-76. 44. Zhang, Z., et al., The Leukocyte Immunoglobulin-Like Receptor Family Member LILRB5 Binds to HLA-Class I Heavy Chains. PLoS One, 2015. 10(6): p. e0129063. 45. Kollnberger, S., et al., Interaction of HLA-B27 homodimers with KIR3DL1 and KIR3DL2, unlike HLA-B27 heterotrimers, is independent of the sequence of bound peptide. Eur J Immunol, 2007. 37(5): p. 1313-22. 46. Friedenstein, A. and A.I. Kuralesova, Osteogenic precursor cells of bone marrow in radiation chimeras. Transplantation, 1971. 12(2): p. 99-108. 47. Singer, N.G. and A.I. Caplan, Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol, 2011. 6: p. 457-78. 48. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7. 49. Leyendecker, A., Jr., et al., The Use of Human Mesenchymal Stem Cells as Therapeutic Agents for the in vivo Treatment of Immune-Related Diseases: A Systematic Review. Front Immunol, 2018. 9: p. 2056. 50. Yuan, X., T.M. Logan, and T. Ma, Metabolism in Human Mesenchymal Stromal Cells: A Missing Link Between hMSC Biomanufacturing and Therapy? Front Immunol, 2019. 10: p. 977. 51. Xie, Z., et al., Imbalance Between Bone Morphogenetic Protein 2 and Noggin Induces Abnormal Osteogenic Differentiation of Mesenchymal Stem Cells in Ankylosing Spondylitis. Arthritis Rheumatol, 2016. 68(2): p. 430-40. 52. Xie, Z., et al., MCP-1 triggers monocyte dysfunctions during abnormal osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis. J Mol Med (Berl), 2017. 95(2): p. 143-154. 53. Liu, W., et al., Abnormal inhibition of osteoclastogenesis by mesenchymal stem cells through the miR-4284/CXCL5 axis in ankylosing spondylitis. Cell Death Dis, 2019. 10(3): p. 188. 54. Liu, C.H., et al., HLA-B27-mediated activation of TNAP phosphatase promotes pathogenic syndesmophyte formation in ankylosing spondylitis. J Clin Invest, 2019. 129(12): p. 5357-5373. 55. van Tok, M.N., et al., Interleukin-17A Inhibition Diminishes Inflammation and New Bone Formation in Experimental Spondyloarthritis. Arthritis Rheumatol, 2019. 71(4): p. 612-625. 56. International Genetics of Ankylosing Spondylitis, C., et al., Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet, 2013. 45(7): p. 730-8. 57. Zeng, L., M.J. Lindstrom, and J.A. Smith, Ankylosing spondylitis macrophage production of higher levels of interleukin-23 in response to lipopolysaccharide without induction of a significant unfolded protein response. Arthritis Rheum, 2011. 63(12): p. 3807-17. 58. Sherlock, J.P., et al., IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8- entheseal resident T cells. Nat Med, 2012. 18(7): p. 1069-76. 59. Noordenbos, T., et al., Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum, 2012. 64(1): p. 99-109. 60. Baeten, D., et al., Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann Rheum Dis, 2018. 77(9): p. 1295-1302. 61. Braun, J., et al., Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum, 1995. 38(4): p. 499-505. 62. Osta, B., et al., Effects of Interleukin-17A on Osteogenic Differentiation of Isolated Human Mesenchymal Stem Cells. Front Immunol, 2014. 5: p. 425. 63. Jo, S., et al., Accelerated osteogenic differentiation of human bone-derived cells in ankylosing spondylitis. J Bone Miner Metab, 2018. 36(3): p. 307-313. 64. Wilson, A., et al., Multiplicity of Mesenchymal Stromal Cells: Finding the Right Route to Therapy. Front Immunol, 2019. 10: p. 1112. 65. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-7. 66. Manning, B.D. and A. Toker, AKT/PKB Signaling: Navigating the Network. Cell, 2017. 169(3): p. 381-405. 67. Franke, T.F., PI3K/Akt: getting it right matters. Oncogene, 2008. 27(50): p. 6473-88. 68. Fritsch, C., et al., Characterization of the novel and specific PI3Kalpha inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol Cancer Ther, 2014. 13(5): p. 1117-29. 69. Jackson, S.P., et al., PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat Med, 2005. 11(5): p. 507-14. 70. Evans, C.A., et al., Discovery of a Selective Phosphoinositide-3-Kinase (PI3K)-gamma Inhibitor (IPI-549) as an Immuno-Oncology Clinical Candidate. ACS Med Chem Lett, 2016. 7(9): p. 862-7. 71. Howe, H.S., et al., Transforming growth factor beta-1 and gene polymorphisms in oriental ankylosing spondylitis. Rheumatology (Oxford), 2005. 44(1): p. 51-4. 72. Wu, M., G. Chen, and Y.P. Li, TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res, 2016. 4: p. 16009. 73. Tang, C.H., et al., Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival. J Clin Invest, 2014. 124(6): p. 2585-98. 74. Liu, W., et al., Alpl prevents bone ageing sensitivity by specifically regulating senescence and differentiation in mesenchymal stem cells. Bone Res, 2018. 6: p. 27. 75. Cui, H., et al., Activating PIK3CA mutation promotes osteogenesis of bone marrow mesenchymal stem cells in macrodactyly. Cell Death Dis, 2020. 11(7): p. 505. 76. Mounayar, M., et al., PI3kalpha and STAT1 Interplay Regulates Human Mesenchymal Stem Cell Immune Polarization. Stem Cells, 2015. 33(6): p. 1892-901. 77. Kim, J.S., et al., Roles of PI3K pan-inhibitors and PI3K-delta inhibitors in allergic lung inflammation: a systematic review and meta-analysis. Sci Rep, 2020. 10(1): p. 7608. 78. Stark, A.K., et al., PI3K inhibitors in inflammation, autoimmunity and cancer. Curr Opin Pharmacol, 2015. 23: p. 82-91. 79. Zheng, G., et al., Enhanced osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis: a study based on a three-dimensional biomimetic environment. Cell Death Dis, 2019. 10(5): p. 350. 80. Simone, D., M.H. Al Mossawi, and P. Bowness, Progress in our understanding of the pathogenesis of ankylosing spondylitis. Rheumatology (Oxford), 2018. 57(suppl_6): p. vi4-vi9. 81. Li, X., et al., IL-6 Contributes to the Defective Osteogenesis of Bone Marrow Stromal Cells from the Vertebral Body of the Glucocorticoid-Induced Osteoporotic Mouse. PLoS One, 2016. 11(4): p. e0154677. 82. Bouffi, C., et al., IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PLoS One, 2010. 5(12): p. e14247. 83. Pricola, K.L., et al., Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem, 2009. 108(3): p. 577-88. 84. Polchert, D., et al., IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol, 2008. 38(6): p. 1745-55. 85. Schoenborn, J.R. and C.B. Wilson, Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol, 2007. 96: p. 41-101. 86. Yang, A., et al., IL-8 Enhances Therapeutic Effects of BMSCs on Bone Regeneration via CXCR2-Mediated PI3k/Akt Signaling Pathway. Cell Physiol Biochem, 2018. 48(1): p. 361-370. 87. Chen, G., C. Deng, and Y.P. Li, TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci, 2012. 8(2): p. 272-88. 88. Whyte, M.P., et al., Camurati-Engelmann disease: unique variant featuring a novel mutation in TGFbeta1 encoding transforming growth factor beta 1 and a missense change in TNFSF11 encoding RANK ligand. J Bone Miner Res, 2011. 26(5): p. 920-33. 89. Iwata, J., C. Parada, and Y. Chai, The mechanism of TGF-beta signaling during palate development. Oral Dis, 2011. 17(8): p. 733-44. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76847 | - |
| dc.description.abstract | 僵直性脊椎炎是一種自體發炎疾病,與人類白血球抗原-B27 (HLA-B27) 基因高度關聯,局部慢性發炎的脊椎會伴隨異常骨質新生,產生韌帶贅。但是在異常骨質新生與發炎之間的研究非常有限。間葉幹細胞具有分化成成骨細胞的能力,近幾年有研究發現從僵直性脊椎炎病人骨髓取出的間葉幹細胞硬骨分化的速度較正常人快。此外,我們實驗室也從病人的韌帶贅分離並培養出間葉幹細胞,並且找出間葉幹細胞致病的機制,其透過異常折疊的人類白血球抗原-B27,促進非專一性鹼性磷酸酶 (TNAP) 活化,進而導致異常的骨分化行為。抑制非專一性鹼性磷酸酶活性能夠在僵直性脊椎炎動物模式中減緩韌帶贅的產生。然而長期抑制非專一性鹼性磷酸酶可能會導致骨頭細胞無法正常鈣沉積,造成嚴重的副作用,因此,此研究期望能進一步找出僵直性脊椎炎間葉幹細胞加速骨分化的異常傳遞訊息路徑,並尋找能緩和異常骨化且副作用較小的藥物候選,來治療僵直性脊椎炎。我們分別利用高速藥物篩選平台以及磷酸化激酶表現陣列兩種策略來進行。本文建立 384 孔僵直性脊椎炎藥物篩選平台,並且用此在 2,464 個美國食品藥物管理局核可的藥物中找到 14 個潛力藥物。此外,在病灶區取出的間葉幹細胞中,發現細胞中磷脂酰肌醇-3激酶 (PI3K)訊息傳遞路徑在骨分化過程中異常活化,抑制磷脂酰肌醇-3激酶同時會造成剪接 X-box 結合蛋白 1 (sXBP1) 及非專一性鹼性磷酸酶表現量降低,並且減少乙型轉化生長因子 (TGFβ) 的釋放,最終減緩異常加速的硬骨分化。除此之外,我們還發現抑制乙型轉化生長因子受體活性,能有效地減緩病人細胞骨分化的速度。因此本文中,我們發現磷脂酰肌醇-3激酶的活化以及乙型轉化生長因子在病人的致病機制中扮演重要的角色,是僵直性脊椎炎異常骨質新生與發炎的關鍵之一。協同藥物篩選平台與磷脂酰肌醇-3激酶訊息傳遞路徑的揭示,期待本篇研究能提供僵直性脊椎炎的藥物研發一個新方向。 | zh_TW |
| dc.description.abstract | Ankylosing spondylitis (AS) is a HLA-B27 gene strongly associated auto-inflammatory disease, characterized by outgrowth of new bone called syndesmophyte and local chronic inflammation in axil skeleton. However, the relationship between immune responses and pathogenic osteogenesis remain largely unknown. Mesenchymal stem cells (MSCs) are osteoblast progenitors controlling new bone formation. Recent studies showed that MSCs derived from AS patients have higher osteogenic differentiation and enhanced mineralization potency as compared with MSCs derived from healthy donors. It has been demonstrated that MSCs derived from the enthesis of AS patients induced ER stress pathway through misfolded and unfolded HLA-B27 molecule, and further activated tissue non-specific alkaline phosphatase (TNAP), which caused the acceleration of osteogenesis differentiation. Treatment with TNAP inhibitors arrested osteogenesis in AS-derived MSCs and syndesmophyte formation in an AS animal model. Herein, we plan to discover new potential drugs besides TNAP inhibitors, as which may cause long-term side effects. We performed high throughput drug screening and phospho-kinase array screening to search drugs that can block osteogenesis, and abnormal kinase pathways in AS-derived MSCs. A 384-well-based drug screening workflow was established in this thesis and 14 potential drug candidates from 2,464 FDA approved drugs were preliminarily identified via high throughput drug screening platform. We also demonstrated that highly active PI3K signaling in AS MSCs accelerated osteogenic differentiation. Inhibition of PI3K signaling by selective PI3K isoform inhibitors down-regulated spliced-X-box binding protein-1 (sXBP1) and TNAP expression, decreased TGFβ secretion, and effectively ameliorated the abnormal osteogenic differentiation as compared with control MSCs. In addition, blocking TGFβ receptor I/II signaling significantly slowed down osteogenic differentiation of AS MSCs. In sum, we identified that abnormal PI3K signaling and TGFβproduction may play a key role in inflammatory regulation and pathogenic osteogenesis in AS. These findings may contribute to a new direction of drug development. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:38:28Z (GMT). No. of bitstreams: 1 U0001-1308202020175600.pdf: 14843974 bytes, checksum: 96ddbbfe037e427d3485540189c980e3 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 序言 ii 中文摘要 iii Abstract iv 1. Introduction 1 1.1. Ankylosing spondylitis (AS) 1 1.2. Treatment for AS 1 1.3. AS pathogenic pathway 2 1.4. The role of HLA-B*27 3 1.5. Mesenchymal stem cells (hMSCs) 4 1.6. Pathogenic pathways of AS hMSCs 5 1.7. Cytokines involved in AS pathogenesis 5 2. Specific Aims 8 3. Materials and Methods 9 3.1. Expansion of hMSCs in hypoxia culture 9 3.2. Flow cytometry 9 3.3. Osteogenic differentiation of hMSCs in normoxia 9 3.4. ARS staining and quantification of calcium deposition 10 3.5. hMSCs cultured under the treatment with TNAP inhibitor 10 3.6. High-throughput drug screening 10 3.7. Human Phospho-Kinase Array 11 3.8. Immunoblot analysis 12 3.9. Inhibition of AKT/PI3K/ER stress/TGFβ signaling pathway 13 3.10. Cell viability of inhibitors 13 3.11. ELISA 13 3.12. Cytokine array 14 3.13. Lentiviral transduction and siRNA transfection 14 4. Results 15 4.1. Characterization of hMSCs 15 4.2. Pre-test of high-throughput screening in 96-well-plates 15 4.3. Pre-test of high-throughput screening in 384-well plates 16 4.4. Pre-test of high-throughput screening in 384-well plates used in HTS facility 16 4.5. 2,464 FDA approved drugs were screened by high-throughput drugs screening in HTS facility 17 4.6. Identification of higher phosphorylation of AKT1/2/3 and Src in AS hMSCs during osteogenic induction by Human Phospho-Kinase Array 17 4.7. Validation of elevated phosphorylation of AKT1/2/3 in AS hMSCs 17 4.8. Identification of AKT activation in AS hMSCs osteogenic differentiation 18 4.9. The effects of AKT inhibitor or PI3K p110 inhibitor on cell viability of AS hMSCs 19 4.10. Specificity of PI3K isoforms related to aberrant AS hMSCs osteogenesis pathway 19 4.11. Abnormal osteogenesis differentiation in AS MSCs rescued by PI3K p110β/ blockade 19 4.12. PI3K may be the upstream regulator of sXBP1 and TNAP 20 4.13. Several cytokines are regulated by PI3K in AS hMSCs or control hMSCs 20 4.14. Abnormal osteogenesis differentiation in AS MSCs rescued by TGFβinhibition 21 4.15. The production of IL-6 and IL-8 may be regulated by HLA-B27 molecule in AS hMSCs 21 4.16. Identification of IRE1 inhibitor efficacy in A1 AS hMSCs under osteogenic differentiation 22 5. Discussion 23 6. Figures and legends 27 References 62 | |
| dc.language.iso | en | |
| dc.subject | 高速藥物篩選 | zh_TW |
| dc.subject | 僵直性脊椎炎 | zh_TW |
| dc.subject | 自體發炎疾病 | zh_TW |
| dc.subject | 間葉幹細胞 | zh_TW |
| dc.subject | 人類白血球抗原-B27 | zh_TW |
| dc.subject | 非專一性鹼性磷酸酶 | zh_TW |
| dc.subject | 磷脂酰肌醇-3激酶 | zh_TW |
| dc.subject | 乙型轉化生長因子 | zh_TW |
| dc.subject | High throughput drug screening | en |
| dc.subject | PI3K | en |
| dc.subject | ankylosing spondylitis | en |
| dc.subject | TGFβ | en |
| dc.subject | HLA-B27 | en |
| dc.subject | mesenchymal stem cells | en |
| dc.subject | autoinflammatory disease | en |
| dc.subject | TNAP | en |
| dc.title | 探討僵直性脊椎炎病人的間葉幹細胞異常骨化之機制 | zh_TW |
| dc.title | Study of the Osteogenesis Pathways in Mesenchymal Stem Cells of Ankylosing Spondylitis Patients | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李建國(Chien-Kuo Lee),徐立中(Li-Chung Hsu) | |
| dc.subject.keyword | 高速藥物篩選,僵直性脊椎炎,自體發炎疾病,間葉幹細胞,人類白血球抗原-B27,非專一性鹼性磷酸酶,磷脂酰肌醇-3激酶,乙型轉化生長因子, | zh_TW |
| dc.subject.keyword | High throughput drug screening,ankylosing spondylitis,autoinflammatory disease,mesenchymal stem cells,HLA-B27,TNAP,PI3K,TGFβ, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU202003318 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1308202020175600.pdf 未授權公開取用 | 14.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
