Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76836
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林敬哲(Jing-Jer Lin)
dc.contributor.authorPeng-Yu Fuen
dc.contributor.author傅芃瑀zh_TW
dc.date.accessioned2021-07-10T21:38:12Z-
dc.date.available2021-07-10T21:38:12Z-
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation1. Baumann, P., and Cech, T.R. (2001). Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171-1175.
2. Bilaud, T., Brun, C., Ancelin, K., Koering, C.E., Laroche, T., and Gilson, E. (1997). Telomeric localization of TRF2, a novel human telobox protein. Nat Genet 17, 236-239.
3. Blackburn, E.H. (1990). Telomeres: structure and synthesis. J Biol Chem 265, 5919-5921.
4. Chandra, A., Hughes, T.R., Nugent, C.I., and Lundblad, V. (2001). Cdc13 both positively and negatively regulates telomere replication. Genes Dev 15, 404-414.
5. Chen, H., Xue, J., Churikov, D., Hass, E.P., Shi, S., Lemon, L.D., Luciano, P., Bertuch, A.A., Zappulla, D.C., Geli, V., et al. (2018). Structural Insights into Yeast Telomerase Recruitment to Telomeres. Cell 172, 331-343 e313.
6. Chen, Y.F., Lu, C.Y., Lin, Y.C., Yu, T.Y., Chang, C.P., Li, J.R., Li, H.W., and Lin, J.J. (2016). Modulation of yeast telomerase activity by Cdc13 and Est1 in vitro. Sci Rep 6, 34104.
7. Cohn, M., and Blackburn, E.H. (1995). Telomerase in yeast. Science 269, 396-400.
8. de Bruin, D., Kantrow, S.M., Liberatore, R.A., and Zakian, V.A. (2000). Telomere folding is required for the stable maintenance of telomere position effects in yeast. Mol Cell Biol 20, 7991-8000.
9. de Lange, T. (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19, 2100-2110.
10. DeZwaan, D.C., and Freeman, B.C. (2009). The conserved Est1 protein stimulates telomerase DNA extension activity. Proc Natl Acad Sci U S A 106, 17337-17342.
11. Diede, S.J., and Gottschling, D.E. (1999). Telomerase-Mediated Telomere Addition In Vivo Requires DNA Primase and DNA Polymerases α and δ. Cell 99, 723-733.
12. Evans, S.K., and Lundblad, V. (1999). Est1 and Cdc13 as comediators of telomerase access. Science 286, 117-120.
13. Flynn, R.L., and Zou, L. (2010). Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Crit Rev Biochem Mol Biol 45, 266-275.
14. Ge, Y., Wu, Z., Chen, H., Zhong, Q., Shi, S., Li, G., Wu, J., and Lei, M. (2020). Structural insights into telomere protection and homeostasis regulation by yeast CST complex. Nat Struct Mol Biol 27, 752-762.
15. Giraud-Panis, M.J., Pisano, S., Poulet, A., Le Du, M.H., and Gilson, E. (2010). Structural identity of telomeric complexes. FEBS Lett 584, 3785-3799.
16. Gottschling, D.E., Aparicio, O.M., Billington, B.L., and Zakian, V.A. (1990). Position effect at S. cerevisiae telomeres: Reversible repression of Pol II transcription. Cell 63, 751-762.
17. Grandin, N., Damon, C., and Charbonneau, M. (2001). Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J 20, 1173-1183.
18. Grandin, N., Reed, S.I., and Charbonneau, M. (1997). Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev 11, 512-527.
19. Greider, C.W., and Blackburn, E.H. (1987). The telomere terminal transferase of tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51, 887-898.
20. Griffith, J.D., Comeau, L., Rosenfield, S., Stansel, R.M., Bianchi, A., Moss, H., and de Lange, T. (1999). Mammalian Telomeres End in a Large Duplex Loop. Cell 97, 503-514.
21. Hang, L.E., Liu, X., Cheung, I., Yang, Y., and Zhao, X. (2011). SUMOylation regulates telomere length homeostasis by targeting Cdc13. Nat Struct Mol Biol 18, 920-926.
22. Houghtaling, B.R., Cuttonaro, L., Chang, W., and Smith, S. (2004). A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol 14, 1621-1631.
23. Hughes, T.R., Weilbaecher, R.G., Walterscheid, M., and Lundblad, V. (2000). Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein. Proc Natl Acad Sci U S A 97, 6457-6462.
24. Larrivee, M., LeBel, C., and Wellinger, R.J. (2004). The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Gene Dev 18, 1391-1396.
25. Li, J.R., Yu, T.Y., Chien, I.C., Lu, C.Y., Lin, J.J., and Li, H.W. (2014). Pif1 regulates telomere length by preferentially removing telomerase from long telomere ends. Nucleic Acids Res 42, 8527-8536.
26. Li, S., Makovets, S., Matsuguchi, T., Blethrow, J.D., Shokat, K.M., and Blackburn, E.H. (2009). Cdk1-dependent phosphorylation of Cdc13 coordinates telomere elongation during cell-cycle progression. Cell 136, 50-61.
27. Lim, C.J., Barbour, A.T., Zaug, A.J., Goodrich, K.J., McKay, A.E., Wuttke, D.S., and Cech, T.R. (2020). The structure of human CST reveals a decameric assembly bound to telomeric DNA. Science 368, 1081-1085.
28. Lin, J.-J., and Zakian, V.A. (1995). An in vitro assay for saccharomyces telomerase requires EST1. Cell 81, 1127-1135.
29. Lin, J.J., and Zakian, V.A. (1996). The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci U S A 93, 13760-13765.
30. Lingner, J., Cech, T.R., Hughes, T.R., and Lundblad, V. (1997). Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc Natl Acad Sci U S A 94, 11190-11195.
31. Liu, D., O'Connor, M.S., Qin, J., and Songyang, Z. (2004). Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J Biol Chem 279, 51338-51342.
32. Lundblad, V., and Szostak, J.W. (1989). A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633-643.
33. Marcand, S., Brevet, V., Mann, C., and Gilson, E. (2000). Cell cycle restriction of telomere elongation. Current Biology 10, 487-490.
34. Mason, M., and Skordalakes, E. (2010). Insights into Cdc13 dependent telomere length regulation. Aging (Albany NY) 2, 731-734.
35. McClintock, B. (1939). The behavior in successive nuclear divisions of a chromosome broken at meiosis. P Natl Acad Sci USA 25, 405-416.
36. McClintock, B. (1941). The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics 26, 234-282.
37. Meyne, J., Ratliff, R.L., and Moyzis, R.K. (1989). Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci U S A 86, 7049-7053.
38. Mitchell, M.T., Smith, J.S., Mason, M., Harper, S., Speicher, D.W., Johnson, F.B., and Skordalakes, E. (2010). Cdc13 N-terminal dimerization, DNA binding, and telomere length regulation. Mol Cell Biol 30, 5325-5334.
39. Mitton-Fry, R.M., Anderson, E.M., Theobald, D.L., Glustrom, L.W., and Wuttke, D.S. (2004). Structural basis for telomeric single-stranded DNA recognition by yeast Cdc13. J Mol Biol 338, 241-255.
40. Muller, H.J. (1938). The remaking of chromosomes. Collecting Net 1938; 13:181-198.
41. Murzin, A.G. (1993). OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12, 861-867.
42. Nugent, C.I., Hughes, T.R., Lue, N.F., and Lundblad, V. (1996). Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249-252.
43. O'Connor, M.S., Safari, A., Xin, H., Liu, D., and Songyang, Z. (2006). A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc Natl Acad Sci U S A 103, 11874-11879.
44. Olovnikov, A.M. (1973). A theory of marginotomy. Journal of Theoretical Biology 41, 181-190.
45. Puglisi, A., Bianchi, A., Lemmens, L., Damay, P., and Shore, D. (2008). Distinct roles for yeast Stn1 in telomere capping and telomerase inhibition. EMBO J 27, 2328-2339.
46. Qi, H.Y., and Zakian, V.A. (2000). The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated Est1 protein. Gene Dev 14, 1777-1788.
47. Sandell, L. (1993). Loss of a yeast telomere: Arrest, recovery, and chromosome loss. Cell 75, 729-739.
48. Seto, A.G., Livengood, A.J., Tzfati, Y., Blackburn, E.H., and Cech, T.R. (2002). A bulged stem tethers Est1p to telomerase RNA in budding yeast. Genes Dev 16, 2800-2812.
49. Shampay, J., Szostak, J.W., and Blackburn, E.H. (1984). DNA sequences of telomeres maintained in yeast. Nature 310, 154-157.
50. Smith, J.R., and Pereira-Smith, O.M. (1996). Replicative senescence: implications for in vivo aging and tumor suppression. Science 273, 63-67.
51. Steiner, B.R., Hidaka, K., and Futcher, B. (1996). Association of the Est1 protein with telomerase activity in yeast. Proc Natl Acad Sci U S A 93, 2817-2821.
52. Sun, J., Yang, Y., Wan, K., Mao, N., Yu, T.Y., Lin, Y.C., DeZwaan, D.C., Freeman, B.C., Lin, J.J., Lue, N.F., et al. (2011). Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase alpha. Cell Res 21, 258-274.
53. Taggart, A.K., Teng, S.C., and Zakian, V.A. (2002). Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297, 1023-1026.
54. Virta-Pearlman, V., Morris, D.K., and Lundblad, V. (1996). Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev 10, 3094-3104.
55. Wang, F., Podell, E.R., Zaug, A.J., Yang, Y., Baciu, P., Cech, T.R., and Lei, M. (2007). The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445, 506-510.
56. Wang, S.S., and Zakian, V.A. (1990). Sequencing of Saccharomyces telomeres cloned using T4 DNA polymerase reveals two domains. Mol Cell Biol 10, 4415-4419.
57. Watson, J.D. (1972). Origin of concatemeric T7 DNA. Nat New Biol 239, 197-201.
58. Weinert, T.A., and Hartwell, L.H. (1993). Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics 134, 63-80.
59. Wu, Y., and Zakian, V.A. (2011). The telomeric Cdc13 protein interacts directly with the telomerase subunit Est1 to bring it to telomeric DNA ends in vitro. Proc Natl Acad Sci U S A 108, 20362-20369.
60. Ye, J.Z., Donigian, J.R., van Overbeek, M., Loayza, D., Luo, Y., Krutchinsky, A.N., Chait, B.T., and de Lange, T. (2004). TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J Biol Chem 279, 47264-47271.
61. Yin, H., Landick, R., and Gelles, J. (1994). Tethered particle motion method for studying transcript elongation by a single RNA polymerase molecule. Biophys. J. 67, 2468-2478.
62. Yu, E.Y., Sun, J., Lei, M., and Lue, N.F. (2012). Analyses of Candida Cdc13 orthologues revealed a novel OB fold dimer arrangement, dimerization-assisted DNA binding, and substantial structural differences between Cdc13 and RPA70. Mol Cell Biol 32, 186-198.
63. Zakian, V.A. (1995). Telomeres: beginning to understand the end. Science 270, 1601-1607.
64. Zappulla, D.C., and Cech, T.R. (2004). Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc Natl Acad Sci U S A 101, 10024-10029.
65. Zhong, Z., Shiue, L., Kaplan, S., and de Lange, T. (1992). A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol Cell Biol 12, 4834-4843.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76836-
dc.description.abstractSaccharomyces cerevisiae的端粒由TG1-3的重複DNA序列所組成,並帶有3’端的單股突出,而Cdc13可以結合至這樣單股TG1-3序列的DNA,避免染色體分解或被誤認為DNA斷裂。Cdc13也能透過和Est1交互作用來調控端粒酶的活性。為了瞭解詳細的調控機制,我們應用了單分子栓球試驗來進行分析,藉由單分子能夠觀測單一蛋白與DNA之間交互作用動態變化的特性,我們可以觀測Cdc13作用到端粒DNA受質上的動態變化。而我們發現當Cdc13結合到受質DNA後,會使受質DNA長度變短,同時觀察小球布朗運動值隨時間變化的關係圖,可以發現這些變化會停留在特定值且不同數值間能觀察到動態變化,而將這些這些特定布朗運動值換算成DNA長度,能得到Cdc13和DNA受質的不同構型間的DNA長度差值約等於70個鹼基對長,這些結果顯示了Cdc13能夠造成很大的構型變化,然而這些不同構型之間變化的調控機制尚未明瞭,因此我的論文第一部分是要分析Cdc13縮短DNA受質的詳細過程,像是反應過程是否需要多個Cdc13參與,而結果看來這樣的過程不需要多個Cdc13參與,而論文的第二部分則是要探討Est1是否會影響Cdc13結合DNA的能力或者Est1是否會影響Cdc13造成DNA受質縮短的能力,而結果顯示Est1會使Cdc13結合到DNA受質上的能力降低,但不會影響與DNA形成二級結構的Cdc13結合在DNA受質上的能力。zh_TW
dc.description.abstractThe telomeres of Saccharomyces cerevisiae consist of TG1-3 repetitive DNA sequences with a 3’ single strand overhang. Cdc13 binds to the single-strand TG1-3 DNA to prevent telomeres from degradation and from being recognized as DNA damages. Cdc13 also interacts with Est1 to regulate telomerase activity. To understand the detail regulatory mechanism, we applied single molecular analysis, the tethered particles motion (TPM) assays, to monitor the dynamic interaction between Cdc13 and DNA substrate. We found that the DNA length was shortened upon binding by Cdc13. Significantly, time tracing experiments found that DNA length was dynamically changed in a stepwise manner with each step equal to ~70 bps. The results suggested that Cdc13 caused a large and distinct conformational change on DNA. However, the mechanism of how Cdc13 shortens DNA is unclear. Here I analyzed whether telomere shortening requires multiple molecules of Cdc13. The results implicated that multiple molecules of Cdc13 was not required to induce DNA shortening by Cdc13. I also tested whether Est1 affected the binding and shortening of DNA by Cdc13. The results showed that Est1 decreased the binding of Cdc13 to telomeric DNA, however, Est1 did not affect the binding of Cdc13 in the form of shortened DNA.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:38:12Z (GMT). No. of bitstreams: 1
U0001-1408202015114500.pdf: 3768952 bytes, checksum: 5661700bb49b659abb74911f9ab758d4 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝辭 i
中文摘要 iv
Abstract v
目錄 vi
表目錄 vii
圖目錄 vii
附錄 viii
前言 1
材料與方法 7
結果 25
討論 36
參考文獻 43
附表 50
附圖 58
附錄 74
dc.language.isozh-TW
dc.subject端粒zh_TW
dc.subjectEst1zh_TW
dc.subject單分子栓球實驗zh_TW
dc.subjectCdc13zh_TW
dc.subject端粒酶zh_TW
dc.subjectSingle-molecule assayen
dc.subjectTelomereen
dc.subjectTelomeraseen
dc.subjectCdc13en
dc.subjectEst1en
dc.subjectTether particle motionen
dc.title運用單分子實驗探討端粒結合蛋白Cdc13及Est1在端粒上的交互作用zh_TW
dc.titleInvestigate the interaction of Cdc13 and Est1 on telomeres by single molecule experimentsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李弘文(Hung-Wen Li),詹迺立(Nei -Li Chan)
dc.subject.keyword端粒,端粒酶,Cdc13,Est1,單分子栓球實驗,zh_TW
dc.subject.keywordTelomere,Telomerase,Cdc13,Est1,Tether particle motion,Single-molecule assay,en
dc.relation.page79
dc.identifier.doi10.6342/NTU202003425
dc.rights.note未授權
dc.date.accepted2020-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
U0001-1408202015114500.pdf
  未授權公開取用
3.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved