請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76835完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘俊良(Chun-Liang Pan) | |
| dc.contributor.author | Shih-Hua Chou | en |
| dc.contributor.author | 周昰樺 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:38:11Z | - |
| dc.date.available | 2021-07-10T21:38:11Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | Alkema, M. J., Hunter-Ensor, M., Ringstad, N., Horvitz, H. R. (2005). Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron, 46, 247-260. Bargmann, C. I., Hartwieg, E., Horvitz, H. R. (1993). Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell, 74, 515-527. Becker, G., Seufert, J., Bogdahn, U., Reichmann, H., Reiners, K. (1995). Degeneration of substantia nigra in chronic Parkinson's disease visualized by transcranial color-coded real-time sonography. Neurology, 45, 182-184. Ben-Jonathan, N., Hnasko, R. (2001). Dopamine as a prolactin (PRL) inhibitor. Endocr Rev, 22, 724-763. Berridge, K. C., Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86, 646-664. Björklund, A., Dunnett, S. B. (2007). Dopamine neuron systems in the brain: an update. Trends Neurosci, 30, 194-202. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71-94. Bretscher, A. J., Busch, K. E., de Bono, M. (2008). A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 105, 8044-8049. Bromberg-Martin, E. S., Matsumoto, M., Hikosaka, O. (2010). Dopamine in motivational control: rewarding, aversive, and alerting. Neuron, 68, 815-834. Byrne, J. H., Hawkins, R. D. (2015). Nonassociative learning in invertebrates. Cold Spring Harb Perspect Biol, 7, a021675. Cermak, N., Yu, S. K., Clark, R., Huang, Y. C., Baskoylu, S. N., Flavell, S. W. (2020). Whole-organism behavioral profiling reveals a role for dopamine in state-dependent motor program coupling in C. elegans. eLife, 9, e57093. Chase, D. L., Pepper, J. S., Koelle, M. R. (2004). Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci, 7, 1096-1103. Christine, C. W., Aminoff, M. J. (2004). Clinical differentiation of parkinsonian syndromes: prognostic and therapeutic relevance. Am J Med, 117, 412-419. Colbert, H. A., Bargmann, C. I. (1995). Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans. Neuron, 14, 803-812. Cook, E. H., Jr., Stein, M. A., Krasowski, M. D., Cox, N. J., Olkon, D. M., Kieffer, J. E., Leventhal, B. L. (1995). Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet, 56, 993-998. de Jong, J. W., Afjei, S. A., Pollak Dorocic, I., Peck, J. R., Liu, C., Kim, C. K., Tian, L., Deisseroth, K., Lammel, S. (2019). A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron, 101, 133-151. Doitsidou, M., Flames, N., Topalidou, I., Abe, N., Felton, T., Remesal, L., Popovitchenko, T., Mann, R., Chalfie, M., Hobert, O. (2013). A combinatorial regulatory signature controls terminal differentiation of the dopaminergic nervous system in C. elegans. Genes Dev, 27, 1391-1405. Ezak, M. J., Ferkey, D. M. (2010). The C. elegans D2-like dopamine receptor DOP-3 decreases behavioral sensitivity to the olfactory stimulus 1-octanol. PLoS One, 5, e9487. Flames, N., Hobert, O. (2009). Gene regulatory logic of dopamine neuron differentiation. Nature, 458, 885-889. Flavell, S. W., Pokala, N., Macosko, E. Z., Albrecht, D. R., Larsch, J., Bargmann, C. I. (2013). Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell, 154, 1023-1035. Frank, M. J., Seeberger, L. C., O'Reilly R, C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306, 1940-1943. Guarraci, F. A., Kapp, B. S. (1999). An electrophysiological characterization of ventral tegmental area dopaminergic neurons during differential pavlovian fear conditioning in the awake rabbit. Behav Brain Res, 99, 169-179. Hawk, J. D., Calvo, A. C., Liu, P., Almoril-Porras, A., Aljobeh, A., Torruella-Suárez, M. L., Ren, I., Cook, N., Greenwood, J., Luo, L., Wang, Z. W., Samuel, A. D. T., Colón-Ramos, D. A. (2018). Integration of plasticity mechanisms within a single sensory neuron of C. elegans actuates a memory. Neuron, 97, 356-367. Hikida, T., Kimura, K., Wada, N., Funabiki, K., Nakanishi, S. (2010). Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron, 66, 896-907. Hills, T., Brockie, P. J., Maricq, A. V. (2004). Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans. J Neurosci, 24, 1217-1225. Jin, X., Pokala, N., Bargmann, C. I. (2016). Distinct circuits for the formation and retrieval of an imprinted olfactory memory. Cell, 164, 632-643. Juang, B. T., Gu, C., Starnes, L., Palladino, F., Goga, A., Kennedy, S., L'Etoile, N. D. (2013). Endogenous nuclear RNAi mediates behavioral adaptation to odor. Cell, 154, 1010-1022. Kenyon, C. J. (2010). The genetics of ageing. Nature, 464, 504-512. Kimura, K. D., Fujita, K., Katsura, I. (2010). Enhancement of odor avoidance regulated by dopamine signaling in Caenorhabditis elegans. J Neurosci, 30, 16365-16375. Koushika, S. P., Nonet, M. L. (2000). Sorting and transport in C. elegans: a model system with a sequenced genome. Curr Opin Cell Biol, 12, 517-523. Lints, R., Emmons, S. W. (1999). Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFβ family signaling pathway and a Hox gene. Development, 126, 5819-5831. Luo, S. X., Huang, E. J. (2016). Dopaminergic Neurons and Brain Reward Pathways: From Neurogenesis to Circuit Assembly. Am J Pathol, 186, 478-488. Lüscher, C., Ungless, M. A. (2006). The mechanistic classification of addictive drugs. PLoS Med, 3, e437. Matsumoto, M., Hikosaka, O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 459, 837-841. McDonald, P. W., Hardie, S. L., Jessen, T. N., Carvelli, L., Matthies, D. S., Blakely, R. D. (2007). Vigorous motor activity in Caenorhabditis elegans requires efficient clearance of dopamine mediated by synaptic localization of the dopamine transporter DAT-1. J Neurosci, 27, 14216-14227. McDonald, P. W., Jessen, T., Field, J. R., Blakely, R. D. (2006). Dopamine signaling architecture in Caenorhabditis elegans. Cell Mol Neurobiol, 26, 593-618. Mello, C. C., Kramer, J. M., Stinchcomb, D., Ambros, V. (1991). Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. Embo j, 10, 3959-3970. Melo, J. A., Ruvkun, G. (2012). Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell, 149, 452-466. Mori, I., Ohshima, Y. (1995). Neural regulation of thermotaxis in Caenorhabditis elegans. Nature, 376, 344-348. Nakano, S., Ikeda, M., Tsukada, Y., Fei, X., Suzuki, T., Niino, Y., Ahluwalia, R., Sano, A., Kondo, R., Ihara, K., Miyawaki, A., Hashimoto, K., Higashiyama, T., Mori, I. (2020). Presynaptic MAST kinase controls opposing postsynaptic responses to convey stimulus valence in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 117, 1638-1647. Nass, R., Hall, D. H., Miller, D. M., 3rd, Blakely, R. D. (2002, Mar 5). Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 99, 3264-3269. Omura, D. T., Clark, D. A., Samuel, A. D., Horvitz, H. R. (2012). Dopamine signaling is essential for precise rates of locomotion by C. elegans. PLoS One, 7, e38649. Pavlov, P. I. (2010). Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Ann Neurosci, 17, 136-141. Translated and republished by Ann Neurosci. Pokala, N., Liu, Q., Gordus, A., Bargmann, C. I. (2014). Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels. Proc Natl Acad Sci U S A, 111, 2770-2775. Rand, J. B., Duerr, J. S., Frisby, D. L. (1998). Using Caenorhabditis elegans to study vesicular transport. Methods Enzymol, 296, 529-547. Rengarajan, S., Yankura, K. A., Guillermin, M. L., Fung, W., Hallem, E. A. (2019). Feeding state sculpts a circuit for sensory valence in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 116, 1776-1781. Ringstad, N., Abe, N., Horvitz, H. R. (2009). Ligand-gated chloride channels are receptors for biogenic amines in C. elegans. Science, 325, 96-100. Saeki, S., Yamamoto, M., Iino, Y. (2001). Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. J Exp Biol, 204, 1757-1764. Sasakura, H., Mori, I. (2013). Behavioral plasticity, learning, and memory in C. elegans. Curr Opin Neurobiol, 23, 92-99. Sawin, E. R., Ranganathan, R., Horvitz, H. R. (2000). C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron, 26, 619-631. Schafer, W. R., Kenyon, C. J. (1995). A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature, 375, 73-78. Schultz, W. (2015). Neuronal reward and decision signals: from theories to data. Physiol Rev, 95, 853-951. Schultz, W. (2016). Dopamine reward prediction-error signalling: a two-component response. Nat Rev Neurosci, 17, 183-195. Schultz, W., Dayan, P., Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593-1599. Shen, W., Flajolet, M., Greengard, P., Surmeier, D. J. (2008). Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 321, 848-851. Sugiura, M., Fuke, S., Suo, S., Sasagawa, N., Van Tol, H. H., Ishiura, S. (2005). Characterization of a novel D2-like dopamine receptor with a truncated splice variant and a D1-like dopamine receptor unique to invertebrates from Caenorhabditis elegans. J Neurochem, 94, 1146-1157. Sulston, J., Dew, M., Brenner, S. (1975). Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol, 163, 215-226. Suo, S., Culotti, J. G., Van Tol, H. H. (2009). Dopamine counteracts octopamine signalling in a neural circuit mediating food response in C. elegans. Embo j, 28, 2437-2448. Suo, S., Kimura, Y., Van Tol, H. H. (2006). Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans. J Neurosci, 26, 10082-10090. Suo, S., Sasagawa, N., Ishiura, S. (2002). Identification of a dopamine receptor from Caenorhabditis elegans. Neurosci Lett, 319, 13-16. Suo, S., Sasagawa, N., Ishiura, S. (2003). Cloning and characterization of a Caenorhabditis elegans D2-like dopamine receptor. J Neurochem, 86, 869-878. Tanimoto, Y., Zheng, Y. G., Fei, X., Fujie, Y., Hashimoto, K., Kimura, K. D. (2016). In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans. Sci Rep, 6, 26297. Torayama, I., Ishihara, T., Katsura, I. (2007). Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone. J Neurosci, 27, 741-750. Tsunozaki, M., Chalasani, S. H., Bargmann, C. I. (2008). A behavioral switch: cGMP and PKC signaling in olfactory neurons reverses odor preference in C. elegans. Neuron, 59, 959-971. Volkow, N. D., Morales, M. (2015). The brain on drugs: from reward to addiction. Cell, 162, 712-725. Wang, D., Yu, Y., Li, Y., Wang, Y., Wang, D. (2014). Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C. elegans. PLoS One, 9, e115985. Watabe-Uchida, M., Eshel, N., Uchida, N. (2017). Neural circuitry of reward prediction error. Annu Rev Neurosci, 40, 373-394. Wise, R. A. (2004). Dopamine, learning and motivation. Nat Rev Neurosci, 5, 483-494. Xing, B., Li, Y. C., Gao, W. J. (2016). Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex. Brain Res, 1641, 217-233. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76835 | - |
| dc.description.abstract | 動物藉由學習過往的經驗來適應環境,且這樣的行為可塑性(behavioral plasticity)被認為是動物在環境中生存並最佳化適應性的方式。感受刺激的效價(valence)則可以藉由同時發生的獎勵或是處罰而改變,並且神經調節作用(neuromodulation)在這個制約學習中扮演重要的角色。然而,目前對於此過程的分子及神經迴路機制還未完全暸解。秀麗隱桿線蟲(Caenorhabditis elegans)以細菌為食。而這樣天生的食物偏好,在受到藉由藥理,或是遺傳上的操弄所造成的粒線體(mitocondria)或著其他重要的生理功能損傷時,會轉變為迴避行為。我們發現多巴胺(dopamine)對於此制約迴避細菌的行為是重要的。此角色與已知多巴胺在關於學習獎勵上的功能大相逕庭。我們的研究顯示當抑制多巴胺生合成及再吸收時,可削弱制約迴避細菌的行為,並且透過補充多巴胺可回復此現象。七種被認為是多巴胺的受器中,dop-3可能在此迴避行為中扮演角色。此外,在dop-1,dop-2,dop-3等多巴胺受器的雙突變株或三突變株也可看到迴避行為的減少,暗示這三個多巴胺受器具有重複的功能來傳遞迴避行為中的多巴胺訊號。我們的表現形態分析暗示這些多巴胺受器可能表現在多個神經元中。闡明多巴胺傳遞的神經迴路機制將有助於理解制約迴避行為中的神經基礎。 | zh_TW |
| dc.description.abstract | Animals adapt to the environment by learning from past experience, and this behavioral plasticity is thought to optimize fitness and survival of the animals in the natural habitat. The valence of sensory cues can be modified by concurrent reward or penalty, and neuromodulation plays a critical role in this conditioned learning, but the molecular and circuit mechanisms are incompletely understood. In Caenorhabditis elegans, innate preference for nutritious bacterial food can switch to aversion when mitochondrial or other core physiological functions are concurrently disrupted by genetic or pharmacologic manipulation. We find that dopamine is important for this conditioned bacterial avoidance, a role that is distinct from its well-established function in learning associated with rewards. We show that inhibiting dopamine synthesis or reuptake weakens conditioned avoidance behavior, which can be restored by supplement of dopamine. Among seven putative dopamine receptors, dop-3 may play a role in avoidance behavior. In addition, double or triple mutations of dop-1, dop-2 and dop-3 receptor genes diminish avoidance behavior, suggesting that these three dopamine receptor genes act redundantly to transmit dopamine signal for avoidance. Our expression analyses suggest that these receptors may be expressed in several neurons. Elucidation of the circuit mechanisms of dopaminergic transmission will provide important insight into the neural basis of aversive conditioned learning. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:38:11Z (GMT). No. of bitstreams: 1 U0001-1408202015452100.pdf: 5887865 bytes, checksum: 9cbfbd989dcefbb5239804bb1a2f4d67 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 I ACKNOWLEDGEMENT i 中文摘要 iii ABSTRACT iv CONTENTS vi Chapter 1 INTRODUCTION 1 1.1 Behavioral plasticity 1 1.2 Dopamine signaling modulates behaviors in mammals. 5 1.3 Dopamine signaling regulates behaviors in C. elegans. 7 Chapter 2 MATERIALS AND METHODS 10 2.1 C. elegans genetics 10 2.2 Molecular biology and germline transformation 11 2.3 Antimycin-induced bacterial avoidance 12 2.4 Locomotion assessment 13 2.5 Odorant chemotaxis assays 14 2.6 Dopamine pharmacology experiments 15 2.7 Microscopy for expression pattern analysis 15 2.8 Histamine supplementation 16 2.9 Statistical analyses 17 Chapter 3 RESULTS 18 3.1 Dopaminergic signaling is required for conditioned bacterial aversion 18 3.2 cat-2 acts in dopaminergic neurons to regulate bacterial aversion 20 3.3 Dopamine signaling may regulate bacterial aversion via modulating the response to bacteria 21 3.4 Multiple dopamine receptors are involved in conditioned bacterial aversion 22 3.5 Dopaminergic signaling regulates bacterial aversion via DOP-1, DOP-2, and DOP-3 dopamine receptors 23 3.6 The triple dop mutant displays locomotion defect 24 3.7 Expression patterns of DOP-1, DOP-2 and DOP-3 25 Chapter 4 DISCUSSION 27 Chapter 5 FIGURES 33 Figure 1. Mutants of dopamine signaling show reduced bacterial avoidance induced by mitochondrial insults. 33 Figure 2. Dopamine synthesis, secretion and recycle at presynaptic terminals. 35 Figure 3. Exogenous dopamine restores conditioned bacterial avoidance in the cat-2 mutant. 37 Figure 4. CAT-2 acts in dopaminergic neurons to promote bacterial avoidance under mitochondrial insults. 39 Figure 5. The cat-2 mutant shows normal locomotion on seeded plates. 41 Figure 6. dat-1 mutant shows normal in basal locomotion. 43 Figure 7. Dopamine receptor dop-3 may be involved in the bacterial avoidance under mitochondrial insults. 45 Figure 8. Dopamine receptors dop-1, dop-2, and dop-3 may play a redundant role in the bacterial avoidance under mitochondrial insults. 47 Figure 9. Exogenous dopamine fails to restore suppression of triple dopamine receptor mutant in the bacterial avoidance under mitochondrial insults. 49 Figure 10. Triple mutant of dopamine receptors shows defective locomotion on either seeded or unseeded plates. 51 Figure 11. Triple dopamine receptor mutant shows normal chemotaxis. 53 Figure 12. dop-1 is expressed in several neurons with known cell types. 55 Figure 13. dop-1 is expressed in unknown head neurons. 57 Figure 14. dop-2 is expressed in ventral ganglion neurons. 59 Figure 15. dop-3 is expressed in head neurons. 61 Chapter 6 REFERENCES 63 | |
| dc.language.iso | en | |
| dc.subject | 行為可塑性 | zh_TW |
| dc.subject | 迴避行為 | zh_TW |
| dc.subject | 粒線體損傷 | zh_TW |
| dc.subject | 多巴胺 | zh_TW |
| dc.subject | 秀麗隱桿線蟲 | zh_TW |
| dc.subject | Caenorhabditis elegans | en |
| dc.subject | behavioral plasticity | en |
| dc.subject | avoidance behavior | en |
| dc.subject | mitochondrial disruption | en |
| dc.subject | dopamine | en |
| dc.title | 線蟲制約迴避行為中的多巴胺神經調節作用 | zh_TW |
| dc.title | Dopaminergic Neuromodulation of C. elegans Conditioned Avoidance Behavior | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 薛雁冰(Yen-Ping Hsueh),陳示國(Shih-Kuo Chen) | |
| dc.subject.keyword | 秀麗隱桿線蟲,行為可塑性,迴避行為,粒線體損傷,多巴胺, | zh_TW |
| dc.subject.keyword | Caenorhabditis elegans,behavioral plasticity,avoidance behavior,mitochondrial disruption,dopamine, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU202003437 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202015452100.pdf 未授權公開取用 | 5.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
