請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76834完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭如忠(Ru-Jong Jeng) | |
| dc.contributor.author | Hsin-Hui Chiu | en |
| dc.contributor.author | 邱馨慧 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:38:10Z | - |
| dc.date.available | 2021-07-10T21:38:10Z | - |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-14 | |
| dc.identifier.citation | 1. Zafar, S., Waterborne Epoxy Based Coating Materials. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) 2018, 50 (1), 133-154. 2. Galliano, F.; Landolt, D., Evaluation of Corrosion Protection Properties of Additives for Waterborne Epoxy Coatings on Steel. Progress in Organic Coatings 2002, 44 (3), 217-225. 3. Wegmann, A., Chemical Resistance of Waterborne Epoxy/Amine Coatings. Progress in Organic Coatings 1997, 32 (1-4), 231-239. 4. Ammar, S.; Ramesh, K.; Azman, N.; Vengadaesvaran, B.; Ramesh, S.; Arof, A. K., Comparison Studies on the Anticorrosion and Overall Performance of Solvent/Water Based Epoxy-copper Reinforced Composite Coatings. Materials Express 2016, 6 (5), 403-413. 5. Jin, F.-L.; Li, X.; Park, S.-J., Synthesis and Application of Epoxy Resins: A Review. Journal of Industrial and Engineering Chemistry 2015, 29, 1-11. 6. Lee, H.; Neville, K., Handbook of epoxy resins. 1967. 7. Brostow, W.; Cassidy, P. E.; Hagg, H.E.; Jaklewicz, M.; Montemartini, P. E., Fluoropolymer Addition to an Epoxy: Phase Inversion and Tribological Properties. Polymer 2001, 42 (19), 7971-7977. 8. Sulzbach, H.; Huver, T.; Thomas, H.-J.; Foglianisi, V., Self-dispersing, Hardenable Epoxy Resins, Processes for Producing the Same and Methods of Using the Same. US6410617B1: 2002. 9. Hernandez, E. D.; Bassett, A. W.; Sadler, J. M.; La Scala, J. J.; Stanzione III, J. F., Synthesis and Characterization of Bio-based Epoxy Resins Derived from Vanillyl Alcohol. ACS Sustainable Chemistry Engineering 2016, 4 (8), 4328-4339. 10. Pham, Ha Q.;Mark, M. J., Epoxy Resins in Elvers B., In Ullmann's Encyclopedia of Industrial Chemistry., Wiley-VCH, Weinheim, 2012b, vol. 13,pp 112-244 11. Ellis, B., Chemistry and technology of epoxy resins. Springer: 1993. 12. Roth, M.; Foll, J.; Wucherpfennig, S.; Huver, T.; Schmidt-Freytag, U.; Gand, A.; Regulski, T. W., Primer Compositions for Adhesive Bonding Systems. US20100151253A1: 2010. 13. Piechocki, C., Modified Polyoxyethylene Epoxy Resin Amphiphiles and Stable Aqueous Epoxy Dispersions Thereof. US5118729A: 1992. 14. Waddill, H. G., One Component Water Reduced Epoxy Adhesives. US4423170A: 1983. 15. Aggarwal, L.; Thapliyal, P.; Karade, S., Properties of Polymer-modified Mortars Using Epoxy and Acrylic Emulsions. Construction and Building Materials 2007, 21 (2), 379-383. 16. Walker, F. H.; Cook, M. I., Two-Component Waterborne Epoxy Coatings. ACS Publications: 1997. 17. Rufo, M.; Shah, D.; Raymond, W.; Walker, F. H.; Lohe, M.; Klippstein, A.; Cook, M., 2K Waterborne Epoxy Systems: Technology Overview and New Developments. Air Products and Chemicals, Inc. 2005. 18. Cook, M.; Walker, F.; Dubowik, D., Recent Developments inTwo-Pack Water-Based Epoxy Coatings. Surface Coatings International 1999, 82 (11), 528-535. 19. Zhaoying, Z.; Yuhui, H.; Bing, L.; Guangming, C., Studies on Particle Size of Waterborne Emulsions Derived from Epoxy Resin. European Polymer Journal 2001, 37 (6), 1207-1211. 20. Klein, D. H., Water-emulsifiable Epoxy Resin Composition. US5344856A: 1994. 21. Chu, S. C.; Spencer, A. T., Aqueous Coating Comprising Dispersible Epoxy Resin-Acid Polymer Ester and Diluent Polymer, and Method of Preparation. US4446258A: 1984. 22. Zhang, K.; Huang, C.; Fang, Q.; Lu, Q., Synthesis of a Self‐emulsifiable Waterborne Epoxy Curing Agent Based on Glycidyl Tertiary Carboxylic Ester and its Cure Characteristics. Journal of Applied Polymer Science 2017, 134 (6). 23. Yao, J.; Fang, Q.; Zhang, G.; Yang, C.; Niu, K., Effect of Hydrophilic-Hydrophobic Ratio in Self-emulsifying Amphiphilic Epoxy Sizing Agent on Interfacial Properties of Carbon Fibre/Epoxy Composites. Progress in Organic Coatings 2020, 143, 105621. 24. Huang, X. X.; Lu, Y. L.; Cai, Z. Q.; Wen, X. F.; Pi, P. H.; Cheng, J.; Yang, Z. R. In Mechanical Properties of Oil Filter Paper Impregnated by a Novel Waterborne Novolac Epoxy Emulsion, Advanced Materials Research, Trans Tech Publ: 2011; pp 229-233. 25. Yin, H.; Wan, Y.; Zhou, J.; Sun, D.; Li, B.; Ran, Q., Self-emulsified Waterborne Epoxy Hardener without Acid Neutralizers and its Emulsifying and Curing Properties. Pigment Resin Technology 2019. 26. Yang, Z.; Xu, Y.; Zhao, D.; Xu, M., Preparation of Waterborne Dispersions of Epoxy Resin by the Phase-inversion Emulsification Technique. 1. Experimental Study on the Phase-inversion Process. Colloid and Polymer Science 2000, 278 (12), 1164-1171. 27. Yang, Z.; Xu, Y.; Zhao, D.; Xu, M., Preparation of Waterborne Dispersions of Epoxy Resin by the Phase-inversion Emulsification Technique. 2. Theoretical consideration of the phase-inversion process. Colloid and Polymer Science 2000, 278 (11), 1103-1108. 28. Aravand, M. A.; Semsarzadeh, M. A. In Particle formation by emulsion inversion method: effect of the stirring speed on inversion and formation of spherical particles, Macromolecular symposia, Wiley Online Library: 2008; pp 141-147. 29. Semsarzadeh, M. A.; Aravand, M. A., Emulsion Phase Inversion of Epoxies with Non-ionic Block Emulsifiers: Effect of the Emulsifier Concentration on Inversion Phase and Formation of Spherical Particles. Iranian Polymer Journal 2007, 16 (10), 691-697. 30. Xu, J.; Jamieson, A. M.; Qutubuddin, S.; Gopalkrishnan, P. V.; Hudson, S. D., Catastrophic Emulsification of Epoxy Resin Using Pluronic Block Copolymers: Preinversion Behavior. Langmuir 2001, 17 (4), 1310-1313. 31. Wegmann, A.; Vogel, T., Novel Waterborne Amine Hardeners for Ambient Curing Epoxy Coatings. Surface coatings international 1998, 81 (7), 342-347. 32. Water Dispersible Epoxy Coatings. In Surface Coatings: Vol I-Raw Materials and Their Usage, Springer Netherlands: Dordrecht, 1983; pp 130-133. 33. Owen, S., Epoxy Resins—Water-Borne. In Surface Coatings: Volume 1 Raw Materials and Their Usage, Springer Netherlands: Dordrecht, 1993; pp 193-197. 34. Jackson, M.; Love, B.; Hebner, S., Effects of Environmental Exposure on Solvent-and water-based Epoxy Systems. Journal of Materials Science: Materials in Electronics 1999, 10 (1), 71-79. 35. Stojanović, I.; Juraga, I.; Alar, V., Influence of Drying Temperature on Protective Properties of Waterborne and Solventborne Epoxy Coatings. Int. J. Electrochem. Sci 2014, 9, 2507-2517. 36. BAUER, R.; EM, M. W., Epoxy Resins in Coatings. Paint and Coating Testing Manual 1995, 74. 37. García, M. C., Ionic-strength-responsive Polymers for Drug Delivery Applications. In Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Elsevier: 2019; pp 393-409. 38. Liu, H.; Lin, S.; Feng, Y.; Theato, P., CO2-responsive Polymer Materials. Polymer Chemistry 2017, 8 (1), 12-23. 39. Wei, M.; Gao, Y.; Li, X.; Serpe, M. J., Stimuli-responsive Polymers and their Applications. Polymer Chemistry 2017, 8 (1), 127-143. 40. Yu, Q.-W.; Ma, Q.; Feng, Y.-Q., Temperature-response Polymer Coating for In-tube Solid-phase Microextraction Coupled to High-performance Liquid Chromatography. Talanta 2011, 84 (4), 1019-1025. 41. Deirram, N.; Zhang, C.; Kermaniyan, S. S.; Johnston, A. P.; Such, G. K., pH‐responsive Polymer Nanoparticles for Drug Delivery. Macromolecular Rapid Communications 2019, 40 (10), 1800917. 42. Jochum, F. D.; Theato, P., Temperature-and Light-responsive Smart Polymer Materials. Chem. Soc. Rev. 2013, 42 (17), 7468-7483. 43. Darabi, A.; Jessop, P. G.; Cunningham, M. F., CO2-responsive Polymeric Materials: Synthesis, Self-assembly, and Functional Applications. Chem. Soc. Rev. 2016, 45 (15), 4391-4436. 44. Scott, L. M.; Robert, T.; Harjani, J. R.; Jessop, P. G., Designing The HeadbGroup of CO2-triggered Switchable Surfactants. RSC Advances 2012, 2 (11), 4925-4931. 45. Su, X.; Jessop, P. G.; Cunningham, M. F., Surfactant-Free Polymerization Forming Switchable Latexes That Can Be Aggregated and Redispersed by CO2 Removal and Then Readdition. Macromolecules 2012, 45 (2), 666-670. 46. Jessop, P. G.; Mercer, S. M.; Heldebrant, D. J., CO2-triggered Switchable Solvents, Surfactants, and Other Materials. Energy Environmental Science 2012, 5 (6), 7240-7253. 47. Ceschia, E.; Harjani, J. R.; Liang, C.; Ghoshouni, Z.; Andrea, T.; Brown, R. S.; Jessop, P. G., Switchable Anionic Surfactants for the Remediation of Oil-contaminated Sand by Soil Washing. RSC Advances 2014, 4 (9), 4638-4645. 48. Fowler, C. I.; Jessop, P. G.; Cunningham, M. F., Aryl Amidine and Tertiary Amine Switchable Surfactants and Their Application in the Emulsion Polymerization of Methyl Methacrylate. Macromolecules 2012, 45 (7), 2955-2962. 49. Wu, C.-H.; Huang, Y.-C.; Lai, T.-H.; Chiu, S.-H.; Uchibe, N.; Lin, H.-W.; Chiu, W.-Y.; Tung, S.-H.; Jeng, R.-J., Facile Synthesis Toward Self-dispersible Waterborne Comb-like Poly (hydroxyaminoethers). Polymer 2020, 122464. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76834 | - |
| dc.description.abstract | 本研究利用胺基上之活性氫對環氧基良好的反應性將3-二乙氨基丙胺(3-(Diethylamino)propylamine, 簡稱DEAPA)與環氧樹脂進行擴鏈改質,成功地將三級胺的結構導入環氧樹脂的分子鏈中使其具有酸觸發劑的響應性,因此可藉由離子化與去離子化的過程調控其親疏水性,我們將此特性應用到製備水性環氧樹脂上,成功地製備出具有良好穩定性的環氧樹脂乳液,並藉由選用易去除的酸觸發劑,使環氧樹脂乳液能回復到疏水狀態。此外,透過高分子結構設計製備親疏水鏈段較分明的環氧樹脂,並經由實驗結果證實新設計之水性環氧樹脂可同時具有優異的熱性質與乳液穩定性。在比較用不同的酸觸發劑或市售之界面活性劑來水性化環氧樹脂的實驗結果顯示,藉由外加界面活性劑來水性化環氧樹脂雖然能夠成功地製備出乳液,但容易使乳液的玻璃轉移溫度(Tg)降低,並且乳液穩定性也不佳。而使用酸觸發劑只需少量就可以成功製備穩定環氧樹脂乳液,並且不會降低環氧樹脂本身的Tg。後續將乳液塗覆於金屬表面可具有良好地黏著性,約17~18 N/mm2 ,而乳液塗覆薄膜之抗腐蝕性則與DEAPA的含量成反比。綜上所述,本實驗成功藉由高分子結構設計製備出穩定、具有高Tg的環氧樹脂乳液。
關鍵字:水性環氧樹脂、乳液、化學改質、酸響應高分子、高分子結構設計 | zh_TW |
| dc.description.abstract | In this study, amine-modified epoxy-based polymers were successfully synthesized. Epoxide groups can easily undergo ring opening reaction with active hydrogens on amines. In our work, epoxy resins were modified with 3-(diethylamino)propylamine (DEAPA) to introduce tertiary amine groups to the polymer chains. With tertiary amine groups, the epoxy polymers can respond to the addition of acids to form ionic complexes. In this system, hydrophilicity can be tuned by protonation or deprotonation process. With this property, epoxy emulsions with excellent stabilities were successfully prepared. Apart from that, by the addition of acids with low boiling points, the hydrophilic state could be reversed by removing the acids afterward. In terms of polymer structure design, we prepared epoxy polymers with distinct hydrophilic and hydrophobic segments. These epoxy polymers were capable of forming stable emulsion and have excellent thermal properties. When compared with the results of different acid-triggered surfactants, the epoxy polymers could be also emulsified by the commercial surfactants. However, these emulsions were not stable enough and their thermal properties were poorer by the addition of the commercial surfactants. On the other hand, the emulsions triggered by CO2 or acetic acid only required a small amount of acids to achieve excellent emulsion properties without decreasing the thermal properties of epoxy polymers significantly. Furthermore, these epoxy emulsions were applied for metal coatings. Excellent adhesion forces of about 17~18 N/mm2 were obtained. As for corrosion resistance, the less amine content the epoxy polymer has, the better the corrosion resistance is, depending on the content of DEAPA. To sum up, this research successfully developed a series of water-dispersible amine-modified epoxy polymers with polymer structure design, which exhibited great potential as adhesives and corrosion resistance coatings.
Keywords: Waterborne epoxy resins, Emulsions, Chemical modification, Acid-response polymers , Polymer structure design | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:38:10Z (GMT). No. of bitstreams: 1 U0001-1408202016055200.pdf: 6557268 bytes, checksum: f54f9c4f808a49a4b1a6a91f7b92578f (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 口試委員會審定書 i 誌謝. ii 摘要. iii Abstract iv 目錄. v 圖目錄 vii 表目錄 xi 壹、 緒論 1 貳、 文獻回顧 2 2.1 環氧樹脂介紹 2 2.2 環氧樹脂與活性氫反應 4 2.2.1 與醇類反應 4 2.2.2 與胺類反應 6 2.3 水性環氧樹脂的發展歷史 7 2.4 水性環氧樹脂的製備方式 9 2.4.1 機械法 9 2.4.2 化學改性法(自乳化法) 9 2.4.3 相反轉法 12 2.4.4 固化劑乳化法 14 2.5 水性環氧樹脂之優缺點與應用 14 2.6 刺激響應性高分子 15 2.7 研究動機 19 參、 實驗內容 22 3.1 藥品及溶劑 22 3.2 實驗儀器 24 3.3 實驗流程圖與分子命名 26 3.4 合成步驟 28 3.5 利用二氧化碳將環氧樹脂水性化的步驟 32 3.6 利用酸將環氧樹脂水性化的步驟 32 肆、 結果與討論 35 4.1 環氧樹脂聚合物之合成與鑑定 35 4.1.1 傅立葉轉換紅外線光譜(FTIR)分析 35 4.1.2 核磁共振光譜分析(1H-NMR分析) 37 4.1.3 凝膠滲透層析(GPC)分析 47 4.2 環氧樹脂聚合物之熱性質分析 48 4.2.1 熱重損失分析 (Thermogravimetric analysis, TGA) 48 4.2.2 差式掃描量熱儀 (Differential scanning calorimetry, DSC) 51 4.3 環氧樹脂聚合物乳液性質分析 57 4.3.1 粒徑尺寸與粒徑分布(Particle Size and Distribution) 57 4.3.2 表面電位 (Zeta potential) 64 4.3.3 黏度分析(Viscosity Analysis) 65 4.3.4 乳液之pH值分析 66 4.3.5 乳液之熱性質分析 67 4.3.6 穩定性分析( Stability Analysis ) 73 4.3.7 耐蝕性測試(Corrosion Resistance Test) 77 4.3.8 黏結力測試(Adhesion Force Test) 79 4.3.9 不同觸發劑間的比較 80 4.3.10 可逆聚集性及再分散性測試 80 伍、 結論 84 陸、 參考文獻 85 附錄. 89 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水性環氧樹脂 | zh_TW |
| dc.subject | 酸響應高分子 | zh_TW |
| dc.subject | 高分子結構設計 | zh_TW |
| dc.subject | 化學改質 | zh_TW |
| dc.subject | 乳液 | zh_TW |
| dc.subject | Acid-response polymers | en |
| dc.subject | Waterborne epoxy resins | en |
| dc.subject | Emulsions | en |
| dc.subject | Chemical modification | en |
| dc.subject | Polymer structure design | en |
| dc.title | 利用可去除之觸發劑製備高效能環氧樹脂乳液: 結構設計與應用 | zh_TW |
| dc.title | High Performance Epoxy Emulsions Prepared by Removable Triggers: Structural Design and Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱文英(Wen-Yen Chiu),童世煌(Shih-Huang Tung),林新惟(Hsin-Wei Lin),吳建欣(Chien-Hsin Wu) | |
| dc.subject.keyword | 水性環氧樹脂,乳液,化學改質,酸響應高分子,高分子結構設計, | zh_TW |
| dc.subject.keyword | Waterborne epoxy resins,Emulsions,Chemical modification,Acid-response polymers,Polymer structure design, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU202003444 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202016055200.pdf 未授權公開取用 | 6.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
