請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76832完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅凱尹(Kai-Yin Lo) | |
| dc.contributor.author | Yu-Cheng Sung | en |
| dc.contributor.author | 宋育徵 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:38:07Z | - |
| dc.date.available | 2021-07-10T21:38:07Z | - |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-14 | |
| dc.identifier.citation | Badura, M., S. Braunstein, J. Zavadil, and R.J. Schneider. 2012. DNA damage and eIF4G1 in breast cancer cells reprogram translation for survival and DNA repair mRNAs. Proceedings of the National Academy of Sciences of the United States of America. 109:18767-18772. Bally, M., J. Hughes, and G. Cesareni. 1988. SnR30: a new, essential small nuclear RNA from Saccharomyces cerevisiae. Nucleic acids research. 16:5291-5303. Bassler, J., and E. Hurt. 2019. Eukaryotic Ribosome Assembly. Annual review of biochemistry. 88:281-306. Bassler, J., M. Kallas, B. Pertschy, C. Ulbrich, M. Thoms, and E. Hurt. 2010. The AAA-ATPase Rea1 drives removal of biogenesis factors during multiple stages of 60S ribosome assembly. Mol Cell. 38:712-721. Bogengruber, E., P. Briza, E. Doppler, H. Wimmer, L. Koller, F. Fasiolo, B. Senger, J.H. Hegemann, and M. Breitenbach. 2003. Functional analysis in yeast of the Brix protein superfamily involved in the biogenesis of ribosomes. FEMS yeast research. 3:35-43. Contreras, V., M.A. Richardson, E. Hao, and B.D. Keiper. 2008. Depletion of the cap-associated isoform of translation factor eIF4G induces germline apoptosis in C. elegans. Cell death and differentiation. 15:1232-1242. Eisenhaber, F., C. Wechselberger, and G. Kreil. 2001. The Brix domain protein family -- a key to the ribosomal biogenesis pathway? Trends in biochemical sciences. 26:345-347. Fumagalli, S., A. Di Cara, A. Neb-Gulati, F. Natt, S. Schwemberger, J. Hall, G.F. Babcock, R. Bernardi, P.P. Pandolfi, and G. Thomas. 2009. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nature cell biology. 11:501-508. Gallie, D.R., and K.S. Browning. 2001. eIF4G functionally differs from eIFiso4G in promoting internal initiation, cap-independent translation, and translation of structured mRNAs. The Journal of biological chemistry. 276:36951-36960. Goyer, C., M. Altmann, H.S. Lee, A. Blanc, M. Deshmukh, J.L. Woolford, Jr., H. Trachsel, and N. Sonenberg. 1993. TIF4631 and TIF4632: two yeast genes encoding the high-molecular-weight subunits of the cap-binding protein complex (eukaryotic initiation factor 4F) contain an RNA recognition motif-like sequence and carry out an essential function. Molecular and cellular biology. 13:4860-4874. Gradi, A., H. Imataka, Y.V. Svitkin, E. Rom, B. Raught, S. Morino, and N. Sonenberg. 1998. A novel functional human eukaryotic translation initiation factor 4G. Molecular and cellular biology. 18:334-342. Greber, B.J., D. Boehringer, C. Montellese, and N. Ban. 2012. Cryo-EM structures of Arx1 and maturation factors Rei1 and Jjj1 bound to the 60S ribosomal subunit. Nature structural molecular biology. 19:1228. Henras, A.K., C. Plisson-Chastang, M.F. O'Donohue, A. Chakraborty, and P.E. Gleizes. 2015. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley interdisciplinary reviews. RNA. 6:225-242. Henras, A.K., J. Soudet, M. Gerus, S. Lebaron, M. Caizergues-Ferrer, A. Mougin, and Y. Henry. 2008. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cellular and molecular life sciences : CMLS. 65:2334-2359. Hung, N.-J., and A.W. Johnson. 2006. Nuclear recycling of the pre-60S ribosomal subunit-associated factor Arx1 depends on Rei1 in Saccharomyces cerevisiae. Molecular and cellular biology. 26:3718-3727. Imataka, H., A. Gradi, and N. Sonenberg. 1998. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. The EMBO journal. 17:7480-7489. Imataka, H., and N. Sonenberg. 1997. Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Molecular and cellular biology. 17:6940-6947. Jarmolowski, A., J. Zagorski, H.V. Li, and M.J. Fournier. 1990. Identification of essential elements in U14 RNA of Saccharomyces cerevisiae. The EMBO journal. 9:4503-4509. Kafasla, P., J.D. Barrass, E. Thompson, M. Fromont-Racine, A. Jacquier, J.D. Beggs, and J. Lewis. 2009. Interaction of yeast eIF4G with spliceosome components: implications in pre-mRNA processing events. RNA biology. 6:563-574. Kaser, A., E. Bogengruber, M. Hallegger, E. Doppler, G. Lepperdinger, M. Jantsch, M. Breitenbach, and G. Kreil. 2001. Brix from xenopus laevis and brx1p from yeast define a new family of proteins involved in the biogenesis of large ribosomal subunits. Biological chemistry. 382:1637-1647. Kater, L., M. Thoms, C. Barrio-Garcia, J. Cheng, S. Ismail, Y.L. Ahmed, G. Bange, D. Kressler, O. Berninghausen, I. Sinning, E. Hurt, and R. Beckmann. 2017. Visualizing the Assembly Pathway of Nucleolar Pre-60S Ribosomes. Cell. 171:1599-1610.e1514. Keel, S.B., R.T. Doty, Z. Yang, J.G. Quigley, J. Chen, S. Knoblaugh, P.D. Kingsley, I. De Domenico, M.B. Vaughn, J. Kaplan, J. Palis, and J.L. Abkowitz. 2008. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science (New York, N.Y.). 319:825-828. Khoshnevis, S., X. Liu, M.D. Dattolo, and K. Karbstein. 2019. Rrp5 establishes a checkpoint for 60S assembly during 40S maturation. RNA (New York, N.Y.). 25:1164-1176. Klinge, S., and J.L. Woolford, Jr. 2019. Ribosome assembly coming into focus. Nature reviews. Molecular cell biology. 20:116-131. Kressler, D., E. Hurt, and J. Bassler. 2010. Driving ribosome assembly. Biochimica et biophysica acta. 1803:673-683. Kressler, D., P. Linder, and J. de La Cruz. 1999. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Molecular and cellular biology. 19:7897-7912. Kressler, D., D. Roser, B. Pertschy, and E. Hurt. 2008. The AAA ATPase Rix7 powers progression of ribosome biogenesis by stripping Nsa1 from pre-60S particles. The Journal of cell biology. 181:935-944. Lamphear, B.J., R. Kirchweger, T. Skern, and R.E. Rhoads. 1995. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. The Journal of biological chemistry. 270:21975-21983. Li, Z., I. Lee, E. Moradi, N.-J. Hung, A.W. Johnson, and E.M. Marcotte. 2009. Rational extension of the ribosome biogenesis pathway using network-guided genetics. PLoS biology. 7:e1000213. Lo, K.-Y., Z. Li, C. Bussiere, S. Bresson, E.M. Marcotte, and A.W. Johnson. 2010. Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. Molecular cell. 39:196-208. Mader, S., H. Lee, A. Pause, and N. Sonenberg. 1995. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Molecular and cellular biology. 15:4990-4997. McGowan, K.A., J.Z. Li, C.Y. Park, V. Beaudry, H.K. Tabor, A.J. Sabnis, W. Zhang, H. Fuchs, M.H. de Angelis, R.M. Myers, L.D. Attardi, and G.S. Barsh. 2008. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nature genetics. 40:963-970. McKendrick, L., E. Thompson, J. Ferreira, S.J. Morley, and J.D. Lewis. 2001. Interaction of eukaryotic translation initiation factor 4G with the nuclear cap-binding complex provides a link between nuclear and cytoplasmic functions of the m(7) guanosine cap. Molecular and cellular biology. 21:3632-3641. Meyer, A.E., N.-J. Hung, P. Yang, A.W. Johnson, and E.A. Craig. 2007. The specialized cytosolic J-protein, Jjj1, functions in 60S ribosomal subunit biogenesis. Proceedings of the National Academy of Sciences. 104:1558-1563. Mills, E.W., and R. Green. 2017. Ribosomopathies: There's strength in numbers. Science (New York, N.Y.). 358. Narla, A., and B.L. Ebert. 2010. Ribosomopathies: human disorders of ribosome dysfunction. Blood. 115:3196-3205. Peña, C., E. Hurt, and V.G. Panse. 2017. Eukaryotic ribosome assembly, transport and quality control. Nature structural molecular biology. 24:689-699. Pratte, D., U. Singh, G. Murat, and D. Kressler. 2013. Mak5 and Ebp2 act together on early pre-60S particles and their reduced functionality bypasses the requirement for the essential pre-60S factor Nsa1. PloS one. 8:e82741. Pyronnet, S., H. Imataka, A.C. Gingras, R. Fukunaga, T. Hunter, and N. Sonenberg. 1999. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. The EMBO journal. 18:270-279. Rajyaguru, P., and R. Parker. 2012. RGG motif proteins: modulators of mRNA functional states. Cell cycle (Georgetown, Tex.). 11:2594-2599. Sanghai, Z.A., L. Miller, K.R. Molloy, J. Barandun, M. Hunziker, M. Chaker-Margot, J. Wang, B.T. Chait, and S. Klinge. 2018. Modular assembly of the nucleolar pre-60S ribosomal subunit. Nature. 556:126-129. Smith, E.D., M. Tsuchiya, L.A. Fox, N. Dang, D. Hu, E.O. Kerr, E.D. Johnston, B.N. Tchao, D.N. Pak, K.L. Welton, D.E. Promislow, J.H. Thomas, M. Kaeberlein, and B.K. Kennedy. 2008. Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome research. 18:564-570. Tschochner, H., and E. Hurt. 2003. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends in cell biology. 13:255-263. Warner, J.R. 1999. The economics of ribosome biosynthesis in yeast. Trends in biochemical sciences. 24:437-440. Weaver, R. 2008. Molecular biology. McGraw Hill Press, New York. Woolford, J.L., Jr., and S.J. Baserga. 2013. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics. 195:643-681. Yang, Y.-T., Y.-H. Ting, K.-J. Liang, and K.-Y. Lo. 2016. The roles of Puf6 and Loc1 in 60S biogenesis are interdependent, and both are required for efficient accommodation of Rpl43. Journal of Biological Chemistry. 291:19312-19323. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76832 | - |
| dc.description.abstract | eIF4G為真核生物中相當重要的轉譯起始因子,且能影響細胞的生長、發育,以及其壽命。除了在轉譯起始上所扮演的角色,eIF4G亦曾被報導能在細胞核中參與mRNA的裁切及降解。在本篇研究中,發現eIF4G具有參與60S核醣體生合成的功能。當eIF4G缺失時,發現pre-60S核醣體上27S rRNA的裁切,以及早期的組裝過程會受到阻礙。目前在eIF4G上已知的重要功能區域有PAB1、4E、4A,分別能與Pab1 (poly-A binding protein)、eIF4E、eIF4A進行結合。實驗中,以在啤酒酵母中表現量較大的eIF4G1為主要研究對象,將其各重要功能區域分別進行去除,發現位於eIF4G C端區域上的eIF4E binding region及eIF4A binding region為主要負責參與60S核醣體生合成的功能性區域,且能與核醣體輔助因子Ssf1進行結合。Ssf1為Brix 蛋白家族的其中一個成員,此家族中還包含了Ssf2、Brx1、Rpf1、Rpf2,以及Imp4,這些輔助因子皆擁有一段保守的Brix domain,並且都能參與核醣體生合成,實驗中也發現它們能與eIF4G有蛋白質以及基因上的交互作用。在eIF4G缺失的突變株中,Ssf1與60S核醣體的結合量會發生異常,且會更進一步的影響核醣體PET domain周圍Rpl31及Arx1的結合。本篇研究的結果說明eIF4G與60S核醣體的潛在關係,以及其在60S核醣體生合成上可能扮演的功能性角色。 | zh_TW |
| dc.description.abstract | eIF4G is an essential translation initiation factor and is important in controlling cell growth, development, and lifespan. Apart from its role in translation, eIF4G has also been shown to involve in degradation and splicing of mRNAs in the nucleus. In this study, eIF4G was shown to have additional functional role in 60S ribosome biogenesis. Under depletion of eIF4G, defects in 27S rRNA processing and assembly of pre-60S ribosome could be detected. Several important domains have been identified in eIF4G, like Pab1, 4E, 4A, to interacts with Pab1 (poly-A binding protein), eIF4E, and eIF4A, respectively. This study focused on eIF4G1 as it has higher expression in Saccharomyces cerevisiae compared to eIF4G2. The individual domain was mutated in eIF4G1 and found that eIF4E and eIF4A binding region on C fragment of eIF4G1 was important in 60S biogenesis and interaction with the transacting factor, Ssf1. Ssf1 was a member of Brix family protein, which also includes Ssf2, Brx1, Rpf1, Rpf2, and Imp4. These factors have a conserved Brix domain and are all involved in ribosome biogenesis. This study also showed strong genetic and protein interactions between eIF4G and Brix family protein. In eIF4G mutant, the binding of Ssf1 with 60S ribosome was incorrect and further altered the loading of Rpl31 and Arx1 at the PET (polypeptide exit tunnel) site. The results in this study showed how eIF4G associated with 60S subunits potentially and its potential functional role in ribosome biogenesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:38:07Z (GMT). No. of bitstreams: 1 U0001-1408202016413400.pdf: 4298131 bytes, checksum: d1953519ab4e0377987156ffa9cea66f (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 ix 第一章、前言 1 一、核醣體 1 二、核醣體生合成 1 1.rRNA前驅物及核醣蛋白的合成 1 2.rRNA前驅物的修飾、摺疊與裁切 2 3.核醣體的組裝 3 4.早期、中期、晚期的核醣體的組裝 4 5.PET domain的組裝 7 三、核醣體病變 (ribosomopathies) 7 四、研究的目標蛋白eIF4G (Eukaryotic translation initiation factor gamma) 8 1.轉譯起始因子eIF4G 8 2.eIF4G具有其他功能 9 3.eIF4G缺失時會造成核醣體60S次單元的生合成問題 9 4.eIF4G上已知的重要功能區域 10 5.eIF4G與Brix family之間的可能關係 11 第二章 研究動機 13 第三章、材料方法 14 1.菌株與質體 14 2.建構缺乏不同區域的突變 14 3.酵母菌轉型 15 4.生長測試 (Growth test) 15 5.螢光顯微鏡觀察 (Fluorescence microscopy) 15 6.免疫螢光染色 (Immunofluorescence microscopy) 15 7.用NaOH法萃取蛋白質 16 8.核醣體圖譜分析 (Polysome profile) 16 9.免疫沉澱法 (Immunoprecipitation, IP) 17 10.西方墨點法 (Western blotting) 18 11.北方墨點法 (Northern blotting) 19 12.蛋白質結合測試 (in vitro interaction) 19 第四章、實驗結果 21 一、eIF4G1 不同突變區域對轉譯起始或60S核醣體生合成的影響 21 二、eIF4G1不同突變區域對其在細胞內分布的影響 24 三、eIF4G1影響27S rRNA的裁切 24 四、eIF4G1透過其C端的片段與Ssf1結合 25 五、tif4631Δ改變Rrp15在酵母菌細胞內的分布位置及和60S核醣體的結合 27 六、tif4631Δ影響PET domain附近的Rpl31B和Arx1與60S核醣體的結合 28 七、eIF4G缺失可拯救GAL::RPF1酵母菌的生長 29 第五章、討論 31 一、eIF4G1藉由C端區域參與60S核醣體的生合成 31 二、eIF4G於60S核醣體生合成中參與的階段及對PET domain組裝的影響 31 第六章、結論 34 參考文獻 35 附錄 59 | |
| dc.language.iso | zh-TW | |
| dc.subject | 輔助因子 | zh_TW |
| dc.subject | 轉譯起始因子 | zh_TW |
| dc.subject | 功能性區域 | zh_TW |
| dc.subject | Brix 蛋白家族 | zh_TW |
| dc.subject | 核醣體生合成 | zh_TW |
| dc.subject | translation initiation factor | en |
| dc.subject | functional domains | en |
| dc.subject | Brix family proteins | en |
| dc.subject | transacting factors | en |
| dc.subject | ribosome biogenesis | en |
| dc.title | 啤酒酵母的轉譯起始因子eIF4G的突變及在60S核醣體生合成上影響的研究 | zh_TW |
| dc.title | Mutations of Translation Initiation Factor eIF4G and Study Their Effects on Ribosome Biogenesis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何孟樵(Meng-Chiao Ho),黃偉邦(Wei-Pang Huang),朱家瑩(Chia-Ying Chu),陳美瑜(Mei-Yu Chen) | |
| dc.subject.keyword | 核醣體生合成,轉譯起始因子,輔助因子,Brix 蛋白家族,功能性區域, | zh_TW |
| dc.subject.keyword | ribosome biogenesis,translation initiation factor,transacting factors,Brix family proteins,functional domains, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU202003452 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202016413400.pdf 未授權公開取用 | 4.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
