請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76826完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅凱尹(Kai-Yin Lo) | |
| dc.contributor.author | Ning-Hsiang Hsu | en |
| dc.contributor.author | 許甯翔 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:38:00Z | - |
| dc.date.available | 2021-07-10T21:38:00Z | - |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-15 | |
| dc.identifier.citation | Al-Hadid, Q., Roy, K., Chanfreau, G., Clarke, S. G. (2016). Methylation of yeast ribosomal protein Rpl3 promotes translational elongation fidelity. RNA, 22(4), 489-498. doi:10.1261/rna.054569.115 Audhya, A., Emr, S. D. (2003). Regulation of PI4,5P2 synthesis by nuclear-cytoplasmic shuttling of the Mss4 lipid kinase. EMBO Journal, 22(16), 4223-4236. doi:10.1093/emboj/cdg397 Baßler, J., Paternoga, H., Holdermann, I., Thoms, M., Granneman, S., Barrio-Garcia, C., . . . Hurt, E. (2014). A network of assembly factors is involved in remodeling rRNA elements during preribosome maturation. Journal of Cell Biology, 207(4), 481-498. doi:10.1083/jcb.201408111 Bange, G., Murat, G., Sinning, I., Hurt, E., Kressler, D. (2013). New twist to nuclear import: When two travel together. Communicative Integrative Biology, 6(4), e24792. doi:10.4161/cib.24792 Barandun, J., Chaker-Margot, M., Hunziker, M., Molloy, K. R., Chait, B. T., Klinge, S. (2017). The complete structure of the small-subunit processome. Nature Structural Molecular Biology, 24(11), 944-953. doi:10.1038/nsmb.3472 Barrio-Garcia, C., Thoms, M., Flemming, D., Kater, L., Berninghausen, O., Baßler, J., . . . Hurt, E. (2016). Architecture of the Rix1–Rea1 checkpoint machinery during pre-60S-ribosome remodeling. Nature Structural Molecular Biology, 23(1), 37-44. doi:10.1038/nsmb.3132 Ben-Shem, A., Garreau de Loubresse, N., Melnikov, S., Jenner, L., Yusupova, G., Yusupov, M. (2011). The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution. Science, 334(6062), 1524-1529. doi:10.1126/science.1212642 Bradatsch, B., Leidig, C., Granneman, S., Gnädig, M., Tollervey, D., Böttcher, B., . . . Hurt, E. (2012). Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel. Nature Structural Molecular Biology, 19(12), 1234-1241. doi:10.1038/nsmb.2438 Bussiere, C., Hashem, Y., Arora, S., Frank, J., Johnson, A. W. (2012). Integrity of the P-site is probed during maturation of the 60S ribosomal subunit. Journal of Cell Biology, 197(6), 747-759. doi:10.1083/jcb.201112131 Calviño, F. R., Kharde, S., Ori, A., Hendricks, A., Wild, K., Kressler, D., . . . Sinning, I. (2015). Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site. Nature Communications, 6(1), 6510. doi:10.1038/ncomms7510 Calvino, F. R., Kharde, S., Ori, A., Hendricks, A., Wild, K., Kressler, D., . . . Sinning, I. (2015). Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site. Nat Commun, 6, 6510. doi:10.1038/ncomms7510 Chaker-Margot, M., Barandun, J., Hunziker, M., Klinge, S. (2017). Architecture of the yeast small subunit processome. Science, 355(6321). doi:10.1126/science.aal1880 Chaker-Margot, M., Hunziker, M., Barandun, J., Dill, B. D., Klinge, S. (2015). Stage-specific assembly events of the 6-MDa small-subunit processome initiate eukaryotic ribosome biogenesis. Nature Structural Molecular Biology, 22(11), 920-923. doi:10.1038/nsmb.3111 Cheng, J., Kellner, N., Berninghausen, O., Hurt, E., Beckmann, R. (2017). 3.2-Å-resolution structure of the 90S preribosome before A1 pre-rRNA cleavage. Nature Structural Molecular Biology, 24(11), 954-964. doi:10.1038/nsmb.3476 Dai, M. S., Zeng, S. X., Jin, Y., Sun, X. X., David, L., Lu, H. (2004). Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Molecular and Cellular Biology, 24(17), 7654-7668. doi:10.1128/mcb.24.17.7654-7668.2004 de la Cruz, J., Karbstein, K., Woolford, J. L., Jr. (2015). Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annual Review of Biochemistry, 84, 93-129. doi:10.1146/annurev-biochem-060614-033917 Dembowski, J. A., Ramesh, M., McManus, C. J., Woolford, J. L., Jr. (2013). Identification of the binding site of Rlp7 on assembling 60S ribosomal subunits in Saccharomyces cerevisiae. RNA, 19(12), 1639-1647. doi:10.1261/rna.041194.113 Desrivières, S., Cooke, F. T., Parker, P. J., Hall, M. N. (1998). MSS4, a phosphatidylinositol-4-phosphate 5-kinase required for organization of the actin cytoskeleton in Saccharomyces cerevisiae. Journal of Biological Chemistry, 273(25), 15787-15793. doi:10.1074/jbc.273.25.15787 Dutca, L. M., Gallagher, J. E., Baserga, S. J. (2011). The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing. Nucleic Acids Research, 39(12), 5164-5180. doi:10.1093/nar/gkr044 Ebert, B. L., Pretz, J., Bosco, J., Chang, C. Y., Tamayo, P., Galili, N., . . . Golub, T. R. (2008). Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature, 451(7176), 335-339. doi:10.1038/nature06494 Eisinger, D. P., Dick, F. A., Denke, E., Trumpower, B. L. (1997). SQT1, which encodes an essential WD domain protein of Saccharomyces cerevisiae, suppresses dominant-negative mutations of the ribosomal protein gene QSR1. Molecular and Cellular Biology, 17(9), 5146-5155. doi:10.1128/mcb.17.9.5146 El Hage, A., Koper, M., Kufel, J., Tollervey, D. (2008). Efficient termination of transcription by RNA polymerase I requires the 5' exonuclease Rat1 in yeast. Genes Development, 22(8), 1069-1081. doi:10.1101/gad.463708 Engel, C., Gubbey, T., Neyer, S., Sainsbury, S., Oberthuer, C., Baejen, C., . . . Cramer, P. (2017). Structural Basis of RNA Polymerase I Transcription Initiation. Cell, 169(1), 120-131.e122. doi:10.1016/j.cell.2017.03.003 Engel, C., Plitzko, J., Cramer, P. (2016). RNA polymerase I–Rrn3 complex at 4.8 Å resolution. Nature Communications, 7(1), 12129. doi:10.1038/ncomms12129 Faber, A. W., Vos, H. R., Vos, J. C., Raué, H. A. (2006). 5'-end formation of yeast 5.8SL rRNA is an endonucleolytic event. Biochemical and Biophysical Research Communications, 345(2), 796-802. doi:10.1016/j.bbrc.2006.04.166 Falk, S., Tants, J. N., Basquin, J., Thoms, M., Hurt, E., Sattler, M., Conti, E. (2017). Structural insights into the interaction of the nuclear exosome helicase Mtr4 with the preribosomal protein Nop53. RNA, 23(12), 1780-1787. doi:10.1261/rna.062901.117 Fatica, A., Oeffinger, M., Dlakić, M., Tollervey, D. (2003). Nob1p Is Required for Cleavage of the 3′ End of 18S rRNA. Molecular and Cellular Biology, 23(5), 1798. doi:10.1128/MCB.23.5.1798-1807.2003 Fromm, L., Falk, S., Flemming, D., Schuller, J. M., Thoms, M., Conti, E., Hurt, E. (2017). Reconstitution of the complete pathway of ITS2 processing at the pre-ribosome. Nature Communications, 8(1), 1787. doi:10.1038/s41467-017-01786-9 Fuentes, J. L., Datta, K., Sullivan, S. M., Walker, A., Maddock, J. R. (2007). In vivo functional characterization of the Saccharomyces cerevisiae 60S biogenesis GTPase Nog1. Molecular Genetics and Genomics, 278(1), 105-123. doi:10.1007/s00438-007-0233-1 Gadal, O., Strauss, D., Petfalski, E., Gleizes, P. E., Gas, N., Tollervey, D., Hurt, E. (2002). Rlp7p is associated with 60S preribosomes, restricted to the granular component of the nucleolus, and required for pre-rRNA processing. Journal of Cell Biology, 157(6), 941-951. doi:10.1083/jcb.200111039 Gamalinda, M., Ohmayer, U., Jakovljevic, J., Kumcuoglu, B., Woolford, J., Mbom, B., . . . Woolford, J. L., Jr. (2014). A hierarchical model for assembly of eukaryotic 60S ribosomal subunit domains. Genes Development, 28(2), 198-210. doi:10.1101/gad.228825.113 Gartmann, M., Blau, M., Armache, J. P., Mielke, T., Topf, M., Beckmann, R. (2010). Mechanism of eIF6-mediated inhibition of ribosomal subunit joining. Journal of Biological Chemistry, 285(20), 14848-14851. doi:10.1074/jbc.C109.096057 Gasse, L., Flemming, D., Hurt, E. (2015). Coordinated Ribosomal ITS2 RNA Processing by the Las1 Complex Integrating Endonuclease, Polynucleotide Kinase, and Exonuclease Activities. Molecular Cell, 60(5), 808-815. doi:10.1016/j.molcel.2015.10.021 Gavin, A.-C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., . . . Superti-Furga, G. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415(6868), 141-147. doi:10.1038/415141a Gazda, H. T., Zhong, R., Long, L., Niewiadomska, E., Lipton, J. M., Ploszynska, A., . . . Sieff, C. A. (2004). RNA and protein evidence for haplo-insufficiency in Diamond-Blackfan anaemia patients with RPS19 mutations. British Journal of Haematology, 127(1), 105-113. doi:10.1111/j.1365-2141.2004.05152.x Geerlings, T. H., Vos, J. C., Raué, H. A. (2000). The final step in the formation of 25S rRNA in Saccharomyces cerevisiae is performed by 5'-->3' exonucleases. RNA (New York, N.Y.), 6(12), 1698-1703. doi:10.1017/s1355838200001540 Granneman, S., Lin, C., Champion, E. A., Nandineni, M. R., Zorca, C., Baserga, S. J. (2006). The nucleolar protein Esf2 interacts directly with the DExD/H box RNA helicase, Dbp8, to stimulate ATP hydrolysis. Nucleic Acids Research, 34(10), 3189-3199. doi:10.1093/nar/gkl419 Greber, B. J., Boehringer, D., Montellese, C., Ban, N. (2012). Cryo-EM structures of Arx1 and maturation factors Rei1 and Jjj1 bound to the 60S ribosomal subunit. Nature Structural Molecular Biology, 19(12), 1228-1233. doi:10.1038/nsmb.2425 Hedges, J., West, M., Johnson, A. W. (2005). Release of the export adapter, Nmd3p, from the 60S ribosomal subunit requires Rpl10p and the cytoplasmic GTPase Lsg1p. EMBO Journal, 24(3), 567-579. doi:10.1038/sj.emboj.7600547 Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S.-L., . . . Tyers, M. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 415(6868), 180-183. doi:10.1038/415180a Holt, L. J., Tuch, B. B., Villén, J., Johnson, A. D., Gygi, S. P., Morgan, D. O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science (New York, N.Y.), 325(5948), 1682-1686. doi:10.1126/science.1172867 Holzer, S., Ban, N., Klinge, S. (2013). Crystal Structure of the Yeast Ribosomal Protein rpS3 in Complex with Its Chaperone Yar1. Journal of Molecular Biology, 425(22), 4154-4160. doi:https://doi.org/10.1016/j.jmb.2013.08.022 Holzer, S., Ban, N., Klinge, S. (2013). Crystal structure of the yeast ribosomal protein rpS3 in complex with its chaperone Yar1. Journal of Molecular Biology, 425(22), 4154-4160. doi:10.1016/j.jmb.2013.08.022 Hunziker, M., Barandun, J., Petfalski, E., Tan, D., Delan-Forino, C., Molloy, K. R., . . . Klinge, S. (2016). UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly. Nature Communications, 7(1), 12090. doi:10.1038/ncomms12090 Hurt, E., Hannus, S., Schmelzl, B., Lau, D., Tollervey, D., Simos, G. (1999). A novel in vivo assay reveals inhibition of ribosomal nuclear export in ran-cycle and nucleoporin mutants. The Journal of Cell Biology, 144(3), 389-401. doi:10.1083/jcb.144.3.389 Iouk, T. L., Aitchison, J. D., Maguire, S., Wozniak, R. W. (2001). Rrb1p, a yeast nuclear WD-repeat protein involved in the regulation of ribosome biosynthesis. Molecular and Cellular Biology, 21(4), 1260-1271. doi:10.1128/mcb.21.4.1260-1271.2001 Jakovljevic, J., Ohmayer, U., Gamalinda, M., Talkish, J., Alexander, L., Linnemann, J., . . . Woolford, J. L., Jr. (2012). Ribosomal proteins L7 and L8 function in concert with six A₃ assembly factors to propagate assembly of domains I and II of 25S rRNA in yeast 60S ribosomal subunits. RNA (New York, N.Y.), 18(10), 1805-1822. doi:10.1261/rna.032540.112 Keener, J., Josaitis, C. A., Dodd, J. A., Nomura, M. (1998). Reconstitution of yeast RNA polymerase I transcription in vitro from purified components. TATA-binding protein is not required for basal transcription. Journal of Biological Chemistry, 273(50), 33795-33802. doi:10.1074/jbc.273.50.33795 Klinge, S., Voigts-Hoffmann, F., Leibundgut, M., Ban, N. (2012). Atomic structures of the eukaryotic ribosome. Trends in Biochemical Sciences, 37(5), 189-198. doi:10.1016/j.tibs.2012.02.007 Koch, B., Mitterer, V., Niederhauser, J., Stanborough, T., Murat, G., Rechberger, G., . . . Pertschy, B. (2012). Yar1 protects the ribosomal protein Rps3 from aggregation. The Journal of biological chemistry, 287(26), 21806-21815. doi:10.1074/jbc.M112.365791 Kornprobst, M., Turk, M., Kellner, N., Cheng, J., Flemming, D., Koš-Braun, I., . . . Hurt, E. (2016). Architecture of the 90S Pre-ribosome: A Structural View on the Birth of the Eukaryotic Ribosome. Cell, 166(2), 380-393. doi:10.1016/j.cell.2016.06.014 Kos, M., Tollervey, D. (2005). The Putative RNA Helicase Dbp4p Is Required for Release of the U14 snoRNA from Preribosomes in Saccharomyces cerevisiae. Molecular Cell, 20(1), 53-64. doi:10.1016/j.molcel.2005.08.022 Kressler, D., Bange, G., Ogawa, Y., Stjepanovic, G., Bradatsch, B., Pratte, D., . . . Hurt, E. (2012). Synchronizing nuclear import of ribosomal proteins with ribosome assembly. Science, 338(6107), 666-671. doi:10.1126/science.1226960 Kressler, D., Bange, G., Ogawa, Y., Stjepanovic, G., Bradatsch, B., Pratte, D., . . . Hurt, E. (2012). Synchronizing nuclear import of ribosomal proteins with ribosome assembly. Science, 338(6107), 666-671. doi:10.1126/science.1226960 Krogan, N. J., Peng, W.-T., Cagney, G., Robinson, M. D., Haw, R., Zhong, G., . . . Greenblatt, J. F. (2004). High-Definition Macromolecular Composition of Yeast RNA-Processing Complexes. Molecular Cell, 13(2), 225-239. doi:https://doi.org/10.1016/S1097-2765(04)00003-6 Kufel, J., Dichtl, B., Tollervey, D. (1999). Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3' ETS but not the 5' ETS. RNA, 5(7), 909-917. doi:10.1017/s135583829999026x Lebaron, S., Schneider, C., van Nues, R. W., Swiatkowska, A., Walsh, D., Böttcher, B., . . . Tollervey, D. (2012). Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nature Structural Molecular Biology, 19(8), 744-753. doi:10.1038/nsmb.2308 Lebaron, S., Segerstolpe, A., French, S. L., Dudnakova, T., de Lima Alves, F., Granneman, S., . . . Tollervey, D. (2013). Rrp5 binding at multiple sites coordinates pre-rRNA processing and assembly. Molecular Cell, 52(5), 707-719. doi:10.1016/j.molcel.2013.10.017 Leidig, C., Thoms, M., Holdermann, I., Bradatsch, B., Berninghausen, O., Bange, G., . . . Beckmann, R. (2014). 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle. Nat Commun, 5, 3491. doi:10.1038/ncomms4491 Lhoest, J., Lobet, Y., Costers, E., Colson, C. (1984). Methylated proteins and amino acids in the ribosomes of Saccharomyces cerevisiae. European Journal of Biochemistry, 141(3), 585-590. doi:10.1111/j.1432-1033.1984.tb08233.x Li, Z., Lee, I., Moradi, E., Hung, N. J., Johnson, A. W., Marcotte, E. M. (2009). Rational extension of the ribosome biogenesis pathway using network-guided genetics. PLoS Biology, 7(10), e1000213. doi:10.1371/journal.pbio.1000213 Liang, W. Q., Fournier, M. J. (1995). U14 base-pairs with 18S rRNA: a novel snoRNA interaction required for rRNA processing. Genes Development, 9(19), 2433-2443. doi:10.1101/gad.9.19.2433 Lin, J., Lu, J., Feng, Y., Sun, M., Ye, K. (2013). An RNA-Binding Complex Involved in Ribosome Biogenesis Contains a Protein with Homology to tRNA CCA-Adding Enzyme. PLoS Biology, 11(10), e1001669. doi:10.1371/journal.pbio.1001669 Lo, K.-Y., Li, Z., Bussiere, C., Bresson, S., Marcotte, E. M., Johnson, A. W. (2010). Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. Molecular Cell, 39(2), 196-208. doi:10.1016/j.molcel.2010.06.018 Loar, J. W., Seiser, R. M., Sundberg, A. E., Sagerson, H. J., Ilias, N., Zobel-Thropp, P., . . . Lycan, D. E. (2004). Genetic and Biochemical Interactions Among Yar1, Ltv1 and RpS3 Define Novel Links Between Environmental Stress and Ribosome Biogenesis in lt;em gt;Saccharomyces cerevisiae lt;/em gt. Genetics, 168(4), 1877. doi:10.1534/genetics.104.032656 Lygerou, Z., Allmang, C., Tollervey, D., Séraphin, B. (1996). Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science, 272(5259), 268-270. doi:10.1126/science.272.5259.268 Marmier-Gourrier, N., Cléry, A., Schlotter, F., Senty-Ségault, V., Branlant, C. (2011). A second base pair interaction between U3 small nucleolar RNA and the 5′-ETS region is required for early cleavage of the yeast pre-ribosomal RNA. Nucleic Acids Research, 39(22), 9731-9745. doi:10.1093/nar/gkr675 Matsuo, Y., Granneman, S., Thoms, M., Manikas, R.-G., Tollervey, D., Hurt, E. (2014). Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export. Nature, 505(7481), 112-116. doi:10.1038/nature12731 Mitterer, V., Murat, G., Réty, S., Blaud, M., Delbos, L., Stanborough, T., . . . Pertschy, B. (2016). Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation. Nature Communications, 7(1), 10336. doi:10.1038/ncomms10336 Nerurkar, P., Altvater, M., Gerhardy, S., Schütz, S., Fischer, U., Weirich, C., Panse, V. G. (2015). Eukaryotic Ribosome Assembly and Nuclear Export. International Review of Cell and Molecular Biology, 319, 107-140. doi:10.1016/bs.ircmb.2015.07.002 Oeffinger, M., Zenklusen, D., Ferguson, A., Wei, K. E., El Hage, A., Tollervey, D., . . . Rout, M. P. (2009). Rrp17p is a eukaryotic exonuclease required for 5' end processing of Pre-60S ribosomal RNA. Molecular Cell, 36(5), 768-781. doi:10.1016/j.molcel.2009.11.011 Ohmayer, U., Gamalinda, M., Sauert, M., Ossowski, J., Pöll, G., Linnemann, J., . . . Milkereit, P. (2013). Studies on the assembly characteristics of large subunit ribosomal proteins in S. cerevisae. PloS One, 8(7), e68412. doi:10.1371/journal.pone.0068412 Pausch, P., Singh, U., Ahmed, Y. L., Pillet, B., Murat, G., Altegoer, F., . . . Kressler, D. (2015). Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones. Nat Commun, 6, 7494. doi:10.1038/ncomms8494 Peng, Z., Oldfield, C. J., Xue, B., Mizianty, M. J., Dunker, A. K., Kurgan, L., Uversky, V. N. (2014). A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome. Cellular and Molecular Life Sciences, 71(8), 1477-1504. doi:10.1007/s00018-013-1446-6 Peng, W. T., Robinson, M. D., Mnaimneh, S., Krogan, N. J., Cagney, G., Morris, Q., . . . Hughes, T. R. (2003). A panoramic view of yeast noncoding RNA processing. Cell, 113(7), 919-933. doi:10.1016/s0092-8674(03)00466-5 Pillon, M. C., Sobhany, M., Borgnia, M. J., Williams, J. G., Stanley, R. E. (2017). Grc3 programs the essential endoribonuclease Las1 for specific RNA cleavage. Proceedings of the National Academy of Sciences of the United States of America, 114(28), E5530-e5538. doi:10.1073/pnas.1703133114 Porras-Yakushi, T. R., Whitelegge, J. P., Miranda, T. B., Clarke, S. (2005). A novel SET domain methyltransferase modifies ribosomal protein Rpl23ab in yeast. Journal of Biological Chemistry, 280(41), 34590-34598. doi:10.1074/jbc.M507672200 Ruggero, D., Grisendi, S., Piazza, F., Rego, E., Mari, F., Rao, P. H., . . . Pandolfi, P. P. (2003). Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science, 299(5604), 259-262. doi:10.1126/science.1079447 Sahasranaman, A., Dembowski, J., Strahler, J., Andrews, P., Maddock, J., Woolford, J. L., Jr. (2011). Assembly of Saccharomyces cerevisiae 60S ribosomal subunits: role of factors required for 27S pre-rRNA processing. EMBO Journal, 30(19), 4020-4032. doi:10.1038/emboj.2011.338 Sardana, R., Liu, X., Granneman, S., Zhu, J., Gill, M., Papoulas, O., . . . Johnson, A. W. (2015). The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot. PLoS Biology, 13(2), e1002083. doi:10.1371/journal.pbio.1002083 Saveanu, C., Namane, A., Gleizes, P.-E., Lebreton, A., Rousselle, J.-C., Noaillac-Depeyre, J., . . . Fromont-Racine, M. (2003). Sequential Protein Association with Nascent 60S Ribosomal Particles. Molecular and Cellular Biology, 23(13), 4449. doi:10.1128/MCB.23.13.4449-4460.2003 Schütz, S., Fischer, U., Altvater, M., Nerurkar, P., Peña, C., Gerber, M., . . . Panse, V. G. (2014). A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly. eLife, 3, e03473. doi:10.7554/eLife.03473 Schaper, S., Fromont-Racine, M., Linder, P., de la Cruz, J., Namane, A., Yaniv, M. (2001). A yeast homolog of chromatin assembly factor 1 is involved in early ribosome assembly. Current Biology, 11(23), 1885-1890. doi:10.1016/s0960-9822(01)00584-x Sharma, S., Langhendries, J. L., Watzinger, P., Kötter, P., Entian, K. D., Lafontaine, D. L. (2015). Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Research, 43(4), 2242-2258. doi:10.1093/nar/gkv075 Sloan, K. E., Bohnsack, M. T. (2018). Unravelling the Mechanisms of RNA Helicase Regulation. Trends in Biochemical Sciences, 43(4), 237-250. doi:https://doi.org/10.1016/j.tibs.2018.02.001 Sá-Moura, B., Kornprobst, M., Kharde, S., Ahmed, Y. L., Stier, G., Kunze, R., . . . Hurt, E. (2017). Mpp10 represents a platform for the interaction of multiple factors within the 90S pre-ribosome. PloS One, 12(8), e0183272. doi:10.1371/journal.pone.0183272 Soltanieh, S., Lapensée, M., Dragon, F. (2014). Nucleolar proteins Bfr2 and Enp2 interact with DEAD-box RNA helicase Dbp4 in two different complexes. Nucleic Acids Research, 42(5), 3194-3206. doi:10.1093/nar/gkt1293 Stage-Zimmermann, T., Schmidt, U., Silver, P. A. (2000). Factors affecting nuclear export of the 60S ribosomal subunit in vivo. Molecular Biology of the Cell, 11(11), 3777-3789. doi:10.1091/mbc.11.11.3777 Strahl, T., Thorner, J. (2007). Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 1771(3), 353-404. doi:10.1016/j.bbalip.2007.01.015 Sun, Q., Zhu, X., Qi, J., An, W., Lan, P., Tan, D., . . . Ye, K. (2017). Molecular architecture of the 90S small subunit pre-ribosome. Elife, 6. doi:10.7554/eLife.22086 Tan, S., Kermasson, L., Hoslin, A., Jaako, P., Faille, A., Acevedo-Arozena, A., . . . Revy, P. (2019). EFL1 mutations impair eIF6 release to cause Shwachman-Diamond syndrome. Blood, 134(3), 277-290. doi:10.1182/blood.2018893404 Thomas, S. R., Keller, C. A., Szyk, A., Cannon, J. R., Laronde-Leblanc, N. A. (2011). Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Nucleic Acids Research, 39(6), 2445-2457. doi:10.1093/nar/gkq1131 Thoms, M., Thomson, E., Baßler, J., Gnädig, M., Griesel, S., Hurt, E. (2015). The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins. Cell, 162(5), 1029-1038. doi:10.1016/j.cell.2015.07.060 Thomson, E., Tollervey, D. (2010). The final step in 5.8S rRNA processing is cytoplasmic in Saccharomyces cerevisiae. Molecular and Cellular Biology, 30(4), 976-984. doi:10.1128/mcb.01359-09 Ting, Y. H., Lu, T. J., Johnson, A. W., Shie, J. T., Chen, B. R., Kumar, S. S., Lo, K. Y. (2017). Bcp1 Is the Nuclear Chaperone of Rpl23 in Saccharomyces cerevisiae. Journal of Biological Chemistry, 292(2), 585-596. doi:10.1074/jbc.M116.747634 Valenzuela, D. M., Chaudhuri, A., Maitra, U. (1982). Eukaryotic ribosomal subunit anti-association activity of calf liver is contained in a single polypeptide chain protein of Mr = 25,500 (eukaryotic initiation factor 6). Journal of Biological Chemistry, 257(13), 7712-7719. van Hoof, A., Staples, R. R., Baker, R. E., Parker, R. (2000). Function of the ski4p (Csl4p) and Ski7p proteins in 3'-to-5' degradation of mRNA. Molecular and Cellular Biology, 20(21), 8230-8243. doi:10.1128/mcb.20.21.8230-8243.2000 Venema, J., Tollervey, D. (1996). RRP5 is required for formation of both 18S and 5.8S rRNA in yeast. The EMBO journal, 15(20), 5701-5714. Venema, J., Vos, H. R., Faber, A. W., van Venrooij, W. J., Raué, H. A. (2000). Yeast Rrp9p is an evolutionarily conserved U3 snoRNP protein essential for early pre-rRNA processing cleavages and requires box C for its association. RNA, 6(11), 1660-1671. doi:10.1017/s1355838200001369 Warner, J. R. (1999). The economics of ribosome biosynthesis in yeast. Trends in Biochemical Sciences, 24(11), 437-440. doi:10.1016/s0968-0004(99)01460-7 Wegierski, T., Billy, E., Nasr, F., Filipowicz, W. (2001). Bms1p, a G-domain-containing protein, associates with Rcl1p and is required for 18S rRNA biogenesis in yeast. RNA, 7(9), 1254-1267. doi:10.1017/s1355838201012079 Weis, F., Giudice, E., Churcher, M., Jin, L., Hilcenko, C., Wong, C. C., . . . Warren, A. J. (2015). Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nature Structural Molecular Biology, 22(11), 914-919. doi:10.1038/nsmb.3112 Wells, G. R., Weichmann, F., Colvin, D., Sloan, K. E., Kudla, G., Tollervey, D., . . . Schneider, C. (2016). The PIN domain endonuclease Utp24 cleaves pre-ribosomal RNA at two coupled sites in yeast and humans. Nucleic Acids Research, 44(11), 5399-5409. doi:10.1093/nar/gkw213 West, M., Hedges, J. B., Chen, A., Johnson, A. W. (2005). Defining the order in which Nmd3p and Rpl10p load onto nascent 60S ribosomal subunits. Molecular and Cellular Biology, 25(9), 3802-3813. doi:10.1128/mcb.25.9.3802-3813.2005 Wu, S., Tutuncuoglu, B., Yan, K., Brown, H., Zhang, Y., Tan, D., . . . Gao, N. (2016). Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes. Nature, 534(7605), 133-137. doi:10.1038/nature17942 Wyler, E., Wandrey, F., Badertscher, L., Montellese, C., Alper, D., Kutay, U. (2014). The beta-isoform of the BRCA2 and CDKN1A(p21)-interacting protein (BCCIP) stabilizes nuclear RPL23/uL14. FEBS Letters, 588(20), 3685-3691. doi:10.1016/j.febslet.2014.08.013 Zhang, J., Harnpicharnchai, P., Jakovljevic, J., Tang, L., Guo, Y., Oeffinger, M., . . . Woolford, J. L., Jr. (2007). Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Development, 21(20), 2580-2592. doi:10.1101/gad.1569307 Zhang, L., Wu, C., Cai, G., Chen, S., Ye, K. (2016). Stepwise and dynamic assembly of the earliest precursors of small ribosomal subunits in yeast. Genes Development, 30(6), 718-732. doi:10.1101/gad.274688.115 Zhu, J., Liu, X., Anjos, M., Correll, C. C., Johnson, A. W. (2016). Utp14 Recruits and Activates the RNA Helicase Dhr1 To Undock U3 snoRNA from the Preribosome. Molecular and Cellular Biology, 36(6), 965-978. doi:10.1128/mcb.00773-15 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76826 | - |
| dc.description.abstract | 核醣體的功能為蛋白質轉譯。核糖體生合成需要耗費許多能量,而且糖體蛋白需要與 rRNA 進行組裝,會有較鬆散的延伸區域,所以細胞會以 dedicated chaperone 伴護核糖體蛋白,在實驗室前人的研究中發現酵母菌 Bcp1 蛋白是核糖體大次單元蛋白 Rpl23 的 dedicated chaperone,Bcp1 會在 Rpl23 入核後,將其從核轉運蛋白 (Karyopherin, Kap) 上釋放,但是其伴護及釋放機制仍不清楚,所以本篇研究從結構的部分下手,先解出 Bcp1 的結構,並且試圖分析 Bcp1- Rpl23 複合體的結構,接者以突變的方式,確認 Rpl23 以其環狀區域 41-52 號胺基酸進行交互作用,而且兩者是以疏水性交互作用力結合,透過兩者的交互作用 Bcp1 才能將 Rpl23 從 Karyopherin 上釋放。在 Rpl23 Lys106/Lys110 修飾的雙甲基化,有助於與 Tif6 結合。另一方面確定 Mss4 會透過 Bcp1 參與核糖體大次單元生合成。 | zh_TW |
| dc.description.abstract | The function of ribosome is protein translation. Ribosome biogenesis cost a lot of energy. While ribosomal proteins assemble with rRNAs, they evolve to have loose extenions. In consequence, cells use dedicated chaperones to protect ribosomal proteins. According to our previous study, yeast Bcp1 protein is the dedicated chaperone of large ribosomal subunit protein, Rpl23. Bcp1 could release Rpl23 from karyopherin (Kap), however, the mechanism behind the protection and release is still unknown. Therefore, this study attempts to determin the crystal structure of Bcp1 and analyze how Bcp1 intercats with Rpl23. From mutagenesis study, Rpl23 was found to use the interal loop, amino acid 41-52, to intercat with Bcp1. And this interaction was stabilized by hydrophobic interaction. Bcp1 could release Rpl23 from Kap through the direct interaction with Rpl23 but not with Kap. The dimethylations on Lys106/Ly110 of Rpl23 were found to enhance the binding with Tif6. In additional, Mss4 may involve in biogenesis of large ribosomal subunit through Bcp1. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:38:00Z (GMT). No. of bitstreams: 1 U0001-1408202023264900.pdf: 10758263 bytes, checksum: 9a5fa03f1e5425a157b476fab2ac420b (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i 中文摘要 ii Abstract iii 目錄 iv 圖目錄 vi 壹、前言 1 一、 核糖體生合成 1 二、 rRNA processing 1 三、 40S biogenesis 3 四、 60S biogenesis 5 五、 Dedicated chaperones of ribosomal proteins 7 六、 本研究相關的蛋白 10 貳、研究動機 12 參、材料方法 13 一、 菌株與質體 13 二、 質體建構 13 三、 轉型作用 (transformation) 13 四、 反向核酸聚和連鎖反應 (inverse PCR) 14 五、 親和層析管柱純化 15 六、 粒徑篩析層析法 (Size Exclusion Chromatography, SEC) 16 七、 免疫沉澱法 (Immunoprecipitation, IP) 16 八、 生長測試 17 九、 座式蒸氣擴散結晶 17 十、 體外蛋白質-蛋白質交互作用測試 17 十一、 多核糖體圖譜分析 18 十二、 超高速離心分離核糖體 (Cushion) 19 肆、結果 21 一、 Bcp1的純化及結晶條件 21 二、 Bcp1 與 Rpl23 複合體結構純化及分析 21 三、 Rpl23 以其環狀區域 (aa. 41-52) 與 Bcp1 結合 22 四、 Bcp1 對 Rpl23 結合區域及結合力分析 24 五、 rpl23 甲基化區域突變株的生長及結合測試 25 六、 Bcp1 利用和Rpl23的結合將 Rpl23 從 Karyopherin (Kap) 上釋放下來 26 七、 Bcp1 與 Mss4 會影響核糖體生合成 27 伍、討論 29 一、 探討 Rpl23 對 Bcp1 的結合點位 29 二、 探討 Bcp1 對 Rpl23 的結合點位 29 三、 探討 Rpl23甲基化可能的生理功能 30 四、 探討 Mss4 如何透過 Bcp1 調節核糖體生合成 31 陸、結論 33 柒、參考文獻 34 | |
| dc.language.iso | zh-TW | |
| dc.subject | 核糖體生合成 | zh_TW |
| dc.subject | dedicated chaperone | zh_TW |
| dc.subject | Rpl23 | zh_TW |
| dc.subject | 蛋白質結構 | zh_TW |
| dc.subject | Bcp1 | zh_TW |
| dc.subject | ribosome biogenesis | en |
| dc.subject | Rpl23 | en |
| dc.subject | Bcp1 | en |
| dc.subject | protein structure | en |
| dc.subject | dedicated chaperone | en |
| dc.title | 酵母菌 Bcp1 蛋白的結構研究 | zh_TW |
| dc.title | Structural study of yeast Bcp1 protein | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何孟樵(Meng-Chiao Ho),朱家瑩(Chia-Ying Chu),陳美瑜(Mei-Yu Chen) | |
| dc.contributor.oralexamcommittee-orcid | 何孟樵(0000-0002-5424-4524) | |
| dc.subject.keyword | 核糖體生合成,dedicated chaperone,蛋白質結構,Bcp1,Rpl23, | zh_TW |
| dc.subject.keyword | ribosome biogenesis,dedicated chaperone,protein structure,Bcp1,Rpl23, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU202003495 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202023264900.pdf 未授權公開取用 | 10.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
