請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76825完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃天偉(Tian-Wei Huang) | |
| dc.contributor.author | Wen-Jie Lin | en |
| dc.contributor.author | 林文傑 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:37:59Z | - |
| dc.date.available | 2021-07-10T21:37:59Z | - |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-15 | |
| dc.identifier.citation | [1]ITU-R, Geneva, “Estimated spectrum bandwidth requirements for the future development of IMT-2000 and IMT-Advanced,” Switzerland, Rep. M.2078, 2006. [2]Qualcomm, “Future of 5G. Building a unified, more capable 5G air interface for the next decade and beyond.,” Mar. 2020, [Online] Available: https://www.qualcomm.com/media/documents/files/making-5g-nr-a-commercialreality. pdf [3]Groupe Speciale Mobile Association (GSMA), “5G Spectrum,” Mar. 2020 [Online] Available:https://www.gsma.com/spectrum/wp-content/uploads/2020/03/5GSpectrum- Positions.pdf [4]5G Fundamentals, Network Infrastructure, “The role of satellites in delivering 5G,” Jau. 2018, [Online] Available: https://www.rcrwireless.com/20180108/5g/the-roleof-satellites-in-delivering-5g-tag17-tag99 [5]T. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. Wong, J. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!,” in IEEE Access, vol.1, pp. 335–349, 2013. [6]Technological developments, 8K Super Hi-Vision/NHK 2016, [Online]. Available: http://www.nhk.or.jp/8k/tech/index_e.html [7]Broadcom, “Broadcom Announces Family of 5G WiFi Wave 2 Solutions for Enterprise Access Points and Cloud-Managed Wireless Networks,” Apr., 2015, [Online]. Available: http://zhtw.broadcom.com/press/release.php?id=s909400 [8]W. H. Lin, H. Y. Yang, J. H. Tsai, T. W. Huang, H. Wang, “1024-QAM high image rejection E-band sub-harmonic IQ modulator and transmitter in 65-nm CMOS process,” IEEE Trans. Microwave Theory Tech.,vol. 61, no. 11, pp. 3974-3985, Nov. 2013. [9]R. Liu, Y. Li, H. Chen and Z. Wang, “EVM estimation by analyzing transmitter imperfections mathematically and graphically,” Analog Integrated Circuits and Signal Processing,pp. 257-262, 2006. [10]J. Kim, W. Choi, Y. Park and Y. Kwon, “60GHz broadband image rejection using varactor tuning,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC),pp. 381-384, May 2010. [11]J. H. Tsai, “Design of 1.2-V broadband high data-rate MMW CMOS I/Q modulator and demodulator using modified gilbert-cell mixer,” IEEE Trans. Microwave Theory Tech.,vol. 59,no. 5, pp. 1350-1360, May 2011. [12]Y. H. Lin, J. L. Kuo, and H. Wang, “A 60-GHz sub-harmonic IQ modulator and demodulator using drain-body feedback technique,” 7thEuropean Microwave Integrated Circuits Conference (EuMIC), pp. 365-368, Oct. 2012. [13]C. A. Hsieh, Y. H. Lin, and H. Wang, “A miniature 52-66GHz sub-harmonic IQ demodulator with low LO power in 65-nm CMOS,” Asia-Pacific Microwave Conference (APMC), pp. 1199-1201, Nov. 2014. [14]J.-H. Tsai, T.-W. Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no.10, pp. 2075–2085, Oct. 2007. [15]J. Li, M. Li and W. Li, 'Satellite communication on the non-geostationary system and the geostationary system in the Fixed-satellite service,' 2019 28th Wireless and Optical Communications Conference (WOCC), Beijing, China, 2019, pp. 1-5. [16]D. Parker and D. C. Zimmermann, “Phased arrays—Part I: Theory and architectures,” IEEE Trans. Microwave Theory Tech, vol. 50, pp. 678–687, Mar. 2002. [17]X. Guan, H. Hashemi and A. Hajimiri, 'A fully integrated 24-GHz eight element phased-array receiver in silicon,' in IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2311-2320, Dec. 2004. [18]Groupe Speciale Mobile Association, “5G Spectrum GSMA Public Policy Position,” Jul. 2019, [Online]. Available: https://www.gsma.com/spectrum/wpcontent/ uploads/2019/08/spec_5g_positioning_web_07_19.pdf [19]A. Simonsson et al., 'Beamforming Gain Measured on a 5G Test-Bed,' in IEEE Vehicular Technology Conference (VTC Spring), 2017, pp. 1–5. [20]R. Wu et al., “A 42Gb/s 60GHz CMOS Transceiver for IEEE 802.11ay,” in IEEE Int Solid-State Circuits Conf., Feb. 2016, pp. 248–249. [21]P.-Y. Wu et al., “A Dual-Band Millimeter-Wave Direct-Conversion Transmitter With Quadrature Error Correction,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3118–3130, Dec. 2014. [22]S. Carpenter, et al.,” A D-Band 48-Gbit/s 64-QAM/QPSK Direct-Conversion I/Q Transceiver Chipset,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 4, pp. 1285– 1296, Apr. 2016. [23]Z.-M. Tsai, H.-C. Liao, Y.-H. Hsiao, and H.Wang, “V-band high data-rate I/Q modulator and demodulator with a power-locked loop LO source in 0.15- um GaAs pHEMT technology,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2670– 2684, Jul. 2013. [24]D. Zhao and P. Reynaert, “A 40 nm CMOS E-Band Transmitter With Compact and Symmetrical Layout Floor-Plans,” IEEE J. Solid-State Circuits, vol.50, no.11, pp. 2560-2571, Nov. 2015. [25]S. Shahramian et al., “A 70–100 GHz Direct-Conversion Transmitter and Receiver Phased Array Chipset Demonstrating 10 Gb/s Wireless Link,” IEEE J. Solid-State Circuits, vol.48, no.5, pp. 1113-1125, May 2013. [26]Anderson D. Smith et al., “Wafer-Scale Statistical Analysis of Graphene Field- Effect Transistors—Part II: Analysis of Device Properties,” on IEEE Trans. Electron Devices, vol. 64, no. 9, Sep. 2017. [27]L. Solano, L. Herrera and M. Pérez, “Monte Carlo–based Tolerance Study of an End-fed Resonant Slotted Waveguide Linear Array Antenna,” on Conf. Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), OCT. 2017, pp. 1–6. [28]S. Ang, C. Seah, and S. Chua, “A Monte-Carlo-Based Methodology for Determining the Fabrication Yield of Fibers for Lasers,” in Conf. Lasers and Electro-Optics Pacific Rim (CLEO-PR), Aug. 2017, pp. 1–4. [29]Y.-C. Tsai, J.-L. Kuo, J.-H. Tsai, K.-Y. Lin, and H. Wang, “A 50–70 GHz I/Q modulator with improved sideband suppression using HPF/LPF based quadrature power splitter,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2011, pp. 1–4. [30]P.-J. Peng, J.-C. Kao, and H. Wang, “A 57–66 GHz vector sum phase shifter with low phase/amplitude error using a wilkinson power divider with LHTL/RHTL elements,” in IEEE CSIC Symp. Dig., 2011, pp. 1–4. [31]A. Lai, C. Caloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34–50, Sep. 2004. [32]P.-H. Tsai et al., “Broadband balanced frequency doublers with fundamental rejection enhancement using a novel compensated Marchand balun,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 1913-1923, May 2013. [33]G. Vallant et al., “Analog IQ impairments in Zero-IF radar receivers: Analysis, measurements and digital compensation,' in IEEE International Instrumentation and Measurement Technology Conference, 2012, pp. 1703–1707. [34]A. Gupta et al., “Linearity Considerations for Low-EVM, Millimeter-Wave Direct Conversion Modulators,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 10, pp. 3272–3285, Oct. 2012. [35]B. Razavi, T. Aytur, C. Lam, F.-R. Yang, R.-H. Yan, H.-C. Kang, C.-C. Hsu, and C.-C. Lee, “Multiband UWB transceivers,” in Proc. IEEE Custom Integr. Circuits Conf., Sep. 2005, pp. 141–148. [36]M. Shimozawa, K. Nakajima, H. Ueda, T. Tadokoro, and N. Suematsu,“An even harmonic image rejection mixer using an eight-phase polyphase filter,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 1485–1488. [37]Y.-T. Chou, Y.-H. Lin, and H. Wang, “A high image rejection E-band subharmonic IQ demodulator with low power consumption in 90-nm CMOS process,” in Proc. Eur. Microw. Integr. Circuits Conf., Oct. 2016, pp. 488–491. [38]F. Zhu, K. Wang and K. Wu, “Design Considerations for Image-Rejection Enhancement of Quadrature Mixers,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 13, pp. 216–218, Mar. 2019. [39]P.-H. Chiang et al., “A 53 to 84 GHz CMOS power amplifier with 10.8-dBm output power and 31 GHz 3-dB bandwidth,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1–6, 2014, pp. 1–3. [40]K. Fong, C. Hull and R. Meyer, “A Class AB Monolithic Mixer for 900-MHz Applications,” IEEE J. Solid-State Circuits, vol.32, no.8, pp. 1166-1172, Aug. 1997. [41]H. Arrano and C. Meza, “OFDM: Today and in the Future of Next Generation Wireless Communications,” in CONESCAPAN Conf. Dig., Sep. 2016, pp. 1–6. [42]S. Shopov et al., “A 13.2-dBm, 138-GHz I/Q RF-DAC with 64-QAM and OFDM Free-Space Constellation Formation,” in 43th IEEE ESSCIRC Conf. Dig., Sep. 2017, pp. 191–194. [43]M. McKinley et al., “EVM Calculation for Broadband Modulated Signals,” in 64th ARFTG Conf. Dig., Dec. 2004, pp. 45–52. [44]S. Kawai et al., “An 802.11ax 4×4 Spectrum-Efficient WLAN AP Transceiver SoC Supporting 1024QAM with Frequency-Dependent IQ Calibration and Integrated Interference Analyzer,” in IEEE Int Solid-State Circuits Conf., Feb. 2018, pp. 442– 443. [45]J. Robert, C. Schaaf, and L. Stadelmeier, “DVB-C2 - The standard for next generation digital cable transmission,' in IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, 2009, pp. 1–5. [46]NHK STRL Broadcast Technology No. 52, Spring 2013, “Large-capacity Transmission Technologies for Next generation Terrestrial Broadcasting,” [Online]. Available:https://www.nhk.or.jp/strl/publica/bt/bt52/pdf/fe0052-3.pdf [47]S. Saito et al., “8K Terrestrial Transmission Field Tests Using Dual-Polarized MIMO and Higher-Order Modulation OFDM,” IEEE Trans. Broadcast., vol. 62, no. 1, pp. 306–315, Mar. 2016. [48]R. Shafik et al., “On the Extended Relationships Among EVM, BER and SNR as Performance Metrics,” IEEE International Conference on Electrical and Computer Engineering, Dec. 2006, pp. 408–411. [49]E. Jacobsen, 'Understanding and Relating Eb/No, SNR, and other Power Efficiency Metrics', [Online]. Available: https://www.dsprelated.com/showarticle/168.php [50]M. N. Rajesh et al., “An analysis of BER comparison of various digital modulation schemes used for adaptive modulation,” in IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), Bangalore, 2016, pp. 241-245. [51]Y. Lee, ” Uncertainty for digital modulation measurement,” in IEEE MTT-S Int. Microw. Symp. workshops, Jun. 15–20, 2008. [52]Keysight Technologies Technical Overview, “WLAN 802.11a/b/g/j/p/n/ac/af/ah/ax X-Series Measurement Application N9077A \ W9077A,” [Online]. Available: https://d3fdwrtpsinh7j.cloudfront.net/Docs/datasheet/5990-9642EN.pdf [53]J. Chramiec, 'Subharmonically Pumped Schottky Diode Single Sideband Modulator,' in IEEE Transactions on Microwave Theory and Techniques, vol. 26, no. 9, pp. 635-638, Sep. 1978. [54]H. Okazaki and Y. Yamaguchi, 'Wide-band SSB subharmonically pumped mixer MMIC,' 1997 IEEE MTT-S International Microwave Symposium Digest, Denver, CO, USA, 1997, pp. 1035-1038. [55]H. Hayashi, H. Okazaki, A. Kanda, T. Hirota and M. Muraguchi, 'Millimeter- waveband amplifier and mixer MMICs using a broad-band 45 degree power divider/combiner,' in IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 6, pp. 811-819, June 1998. [56]A. Q. kiayani, 'DSP based transmitter I/Q imbalance calibration - implementation and performance measurements,' M.Sc. Thesis, Tampere, University of Technology, Tampere, Finland, 2009. [57]J. C. Kao, Y. H. Hsiao, K. S. Yeh, C. C. Chiong, Y. H. Lin, K. Y. Lin and H. Wang, “A25-to-45-GHz 45° power divider,” 2013 European Microwave Conference (EuMC), pp. 959-962, Oct. 2013. [58]H. Hayashi, H. Okazaki, A. Kanda, T. Hirota and M. Muraguchi, 'Millimeter-waveband amplifier and mixer MMICs using a broad-band 45 degrees power divider/combiner,' in IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 6, pp. 811-819, Jun. 1998. [59]S. Emami, C.H. Doan, A. M. Niknejad, and R. W. Brodersen, “ A 60-GHz downconverting CMOS single-gate mixer,” in IEEE RFIC Symp., Jun. 2005, pp. 163–166. [60]J. H. Tsai, H. Y. Yang, T. W. Huang, H. Wang, “A 30–100 GHz wideband subharmonic active mixer in 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 554–556, Aug. 2008. [61]L. Sheng, J. C. Jensen, and L.-E. Larson, “A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/ downconverter,” IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1329–1337, Sep. 2000. [62]S. Weng, C. Shen and H. Chang, 'A wide modulation bandwidth bidirectional CMOS IQ modulator/demodulator for microwave and millimeter-wave gigabit applications,' 2012 7th European Microwave Integrated Circuit Conference, Amsterdam, 2012, pp. 8-11. [63]C. Lin, H. Chang, P. Wu, K. Lin and H. Wang, 'A 35-50 GHz IQ-Demodulator in 0.13-μm CMOS Technology,' 2007 IEEE/MTT-S International Microwave Symposium, Honolulu, HI, 2007, pp. 1397-1400. [64]K. W. Hamed, A. P. Freundorfer, Y. M. M. Antar, P. Frank and D. Sawatzky, 'A High-Bit Rate Ka-Band Direct Conversion QPSK Demodulator,' in IEEE Microwave and Wireless Components Letters, vol. 18, no. 5, pp. 365-367, May 2008. [65]Elbert, B. R., Introduction to Satellite Communication, Norwood, MA: Artech House, 1987. [66]Sharma S. K., Chatzinotas S., and Arapoglou P. D., Satellite Communications in the 5G Era, The Institution of Engineering and Technology, 2018. [67]Völk F. et al., “Satellite integration into 5G: Accent on first over-the-air tests of an edge node concept with integrated satellite backhaul,” Future Internet, vol. 11, 17 pp, Sept. 2019. [68]V. Tikhvinskiy and V. Koval, “Prospects of 5G Satellite Networks Development,”2020. [Online]. Available: https://www.intechopen.com/online-first/prospects-of- 5g-satellite-networks-development [69]S. Leong, et al., “Ka-Band Satellite Communications Design Analysis and Optimisation,” DSTA HORIZONS, 2015. [Online]. Available: https://www.dsta.gov.sg/docs/default-source/dsta-about/ka-band-satellite-com munications-design-analysis-andoptimisation.pdf?sfvrsn=2 [70]Gabriel M. Rebeiz, Lee M. Paulsen, “Advances in low-cost phased arrays using silicon technologies,” IEEE Antennas and Propagation USNC/URSI, pp. 1035 – 1036, 2017. [71]Gabriel M. Rebeiz, Lee M. Paulsen, “Advances in SATCOM phased arrays using silicon technologies,” IEEE MTT-S Int. Microwave Symposium (IMS), pp. 1877 – 1879, 2017. [72]K. K. Wei Low, A. Nafe, S. Zihir, T. Kanar and G. M. Rebeiz, 'A Scalable Circularly-Polarized 256-Element Ka-Band Phased-Array SATCOM Transmitter with ±60° Beam Scanning and 34.5 dBW EIRP,' 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2019, pp. 1064-1067. [73]Robert J. Mailloux, Phased Array Antenna Handbook- Chapter 1, 2nd ed. Artech House, 2005. [74]H. Hashemi, X. Guan, A. Komijani, and A. Hajimiri, “A 24-GHz SiGe Phased-Array Receiver LO Phase-Shifting Approach,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 614-626, Feb. 2005. [75]S. Raman, N. Barker, and G. Rebeiz, “A w-band dielectric-lens-based integrated monopulse radar receiver,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2308-2316, Dec. 1998. [76]R. Miura, T. Tanaka, I. Chiba, A. Horie, and Y. Karasawa, “Beamforming experiment with a dbf multibeam antenna in a mobile satellite environment,” IEEE Trans. Antennas Propagat., vol. 45, no. 4, pp. 707-714, Apr 1997. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76825 | - |
| dc.description.abstract | 本論文將分成兩個部分,第一個部分為寬頻調變器與解調器,裡面包含了E頻段寬頻直接升頻發射機以及38 GHz之具有高鏡像抑制之解調器,皆使用65 奈米互補式金屬氧化物半導體設計,另一部分則為由晶片等級進一步整合至系統等級之Ka頻段具有相位陣列之衛星通訊收發機模組。 在第一個部分的設計,由於使用次諧波混頻器架構的緣故,電路上會需要一個精準的45度產生器。而且因為希望可以有高資料量的傳輸,因此會使用高階調變來增加資料傳輸量。而在高階調變中,如何改善IQ路徑上的振福與相位平衡相當關鍵。在第一個電路中,我們在LO端提出了一個的45度產生器(HQG)。但考慮 到此結構對製程變異較為敏感。因此,也導入了製程變異容忍度分析的設計方法。它可以讓我們在設計上預測是否達到我們的要求,也藉以減輕製程變異的影響。此E頻段的發射機使用了5 dBm 的LO功率達成在56 至86 GHz之間有23±2 dB的增益。在1.2V的供應電壓下,直流功耗為164 mW且可具有6.5 dBm的輸出功率。此E頻段的高頻譜效率發射機並達到了在OFDM的訊號中,分別在1024-QAM與4096-QAM調變下分別具有1.6 %和1.58 %的誤差向量幅度。 另外,在第二個電路設計中,則是為了減少製程變異的問題,我們在LO端採用了一個基於傳輸線架構的分波器。跟傳統設計相比,這個設計對於製程變異較為不敏感。但相較於其他架構,所佔晶片面積會比較大,損耗也稍高。但是由於其對製程變異的影響較小,仍然是一個很好的選擇。此解調器在37.5 至41.5 GHz之間具有高達40 dBc的鏡像抑制能力。且在使用了6 dBm的LO功率達成在22 至41 GHz之間有2±2 dB的增益,在1.2V 的供應電壓下,直流功耗為75 mW。此38 GHz解調器也展示了在OFDM的訊號中,使用低中頻下分別在1024-QAM與4096-QAM調變下分別具有3.2 %和1.9 %的誤差向量幅度。 第二部分則是一個Ka 頻段中的衛星通訊收發模組的設計。此模組也同時結合了相位陣列的功能來達成天線波束的切換。對於系統應用的部分,除了各單一晶片的設計或是多功能晶片整合外,要如何將其使用到系統中是相當重要的一環。在這個設計中,我們由晶片等級提升至模組等級,最後再將其成功整合成完整系統。這對通訊系統原型的評估相當重要。在發射端使用29GHz,接收端使用19GHz的頻段來設計這個系統。升頻和降頻混頻器架構上使用於寬頻的鏡像抑制混波器,同時還能有合理的轉換增益以及直流功率消耗。前端電路部分還分別結合功率放大器與低雜訊放大器與相移器。全部皆以CMOS與砷化鎵製程來製作。最後,進一步並整合了電源供應系統、相位陣列的控制板與天線系統,使其具有可調訊號發射與接收方向的系統。同時,我們也做了類比與數位訊號測試來做系統的驗證。該系統在Ka頻段中提供了一種低成本,單極化相控陣列衛星通訊收發機,其具有34 dBm EIRP。在未來進一步小型化和整合之後,在可攜式衛星通訊模組應用中將具有很大的潛力。 | zh_TW |
| dc.description.abstract | This thesis will be divided into two parts. The first part is the wideband modulator and demodulator, which contains the E-band broadband direct up-conversion transmitter and the 38 GHz demodulator with high image rejection, respectively. These chips are all implemented in 65-nm CMOS process. The second part is a satellite communication transceiver module with a phased array that is integrated from the chip level to the system level at Ka-band. In the first part of the design, due to the application of the sub-harmonic architecture, a precise 45-degree generator will be needed in the circuit. Additionally, because the mixer is expected to have a higher throughput, a high-order modulation will be used to increase the data rate. In high-order modulation, it is quite critical lower the amplitude and phase imbalance on the IQ paths. In the first circuit, a 45-degree generator (half-quadrature generator, HQG) at the LO port is proposed. However, this structure is more sensitive to process variation. Therefore, the design methodology of process-variation tolerance analysis is also introduced. This allows us to predict whether we can meet our design requirements in design, so as to mitigate the impact of process variation.The E-band direct-conversion transmitter with a 5 dBm LO drive power provides a conversion gain of 23±2 dB from 56 to 86 GHz. The saturated power is 6.5 dBm with a total dc power consumption of 164 mW from a 1.2 V supply voltage. This spectrum-efficient transmitter achieves a 1024-QAM and 4096-QAM modulated signal with 1.6% and 1.58% EVM, respectively. In the second circuit design, in order to reduce the problem of process variation, we used a transmission-line based divider at the LO port. Compared with conventional techniques and architectures, this transmission-line based power splitter will have a larger chip area and slightly higher loss, but because this power splitter is less sensitive to process variation, it is still a good choice for this design. The demodulator achieves a high image rejection ratio of above 40 dBc from 37.5 to 41.5 GHz. It can also achieve 2±2 dB conversion gain from 22 to 41 GHz with 6 dBm LO power while consuming a total dc power consumption of 78 mW from the 1.0 V supply voltage. This demodulator also demonstrates a 1024-QAM and 4096-QAM modulated signal under the low IF operation with 3.2 % and 1.9 % EVM, respectively. The second part is the design of a Ka-band transceiver module with phased-array for satellite communication (SATCOM). This module combines the function of the phased-array to achieve beam switching of the antenna. For the system application, in addition to the design of each single chip and the integration of multi-chips (system on chip, SOC), it is also very important to know how to apply it in the system. In this design, we upgraded from the chip level to the module level, and finally successfully integrated it into a complete system. This is very important for the evaluation of the communication system prototype. The uplink and downlink frequency of this transceiver is 29GHz and 19GHz, respectively. Wideband image rejection mixers is adopted in the design of the up converter and down converter with low IF architectures, while also having reasonable conversion gain and dc power consumption. This system also includes the power amplifiers, low noise amplifiers and phase shifters in the front-end. This design uses the standard CMOS and GaAs phemt process with a compact chip size to realize the proposed transceiver system. Finally, this design also integrates the bias board, the controller of the phased array and the antenna system, so that it has adjustable signal transmission and reception directions. Analog and digital signal tests are simultaneously performed to verify the system. This system presents a low cost, single-polarized phased-array SATCOM transceiver in the Ka-band with a 34 dBm EIRP. After further miniaturization and integration in the future, it will have great potential in portable SATCOM applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:37:59Z (GMT). No. of bitstreams: 1 U0001-1508202004182500.pdf: 9636289 bytes, checksum: 966a4f3ad45e97991cd5c35b064e372d (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 ........................................................................................................... # 誌謝 ................................................................................................................................... i 中文摘要 ......................................................................................................................... iii ABSTRACT ...................................................................................................................... v CONTENTS .................................................................................................................. viii LIST OF FIGURES ......................................................................................................... xi LIST OF TABLES ....................................................................................................... xviii Chapter 1 Introduction .............................................................................................. 1 1.1 Background and Motivation ........................................................................... 1 1.2 Literature Survey ............................................................................................ 4 1.2.1 Millimeter-wave Broadband Communication ....................................... 4 1.2.2 Development of Satellite ....................................................................... 7 1.3 Contributions .................................................................................................. 8 1.3.1 A 67-86 GHz Spectrum-Efficient CMOS Transmitter Supporting 4096-QAM with A Process-Variation-Tolerant Design. ................................. 8 1.3.2 A 38 GHz Demodulator with High Image Rejection in 65nm-CMOS Process ................................................................................................... 9 1.3.3 A Ka-band Phased-Array Transceiver for Satellite Communication .. 10 1.4 Organization of this Dissertation .................................................................. 11 Chapter 2 A 67-86 GHz Spectrum-Efficient CMOS Transmitter Supporting 4096-QAM with A Process-Variation-Tolerant Design ....................... 13 2.1 Introduction .................................................................................................. 14 2.2 Circuit Design Consideration and Architecture ............................................ 18 2.2.1 EVM Performance of Transmitter ....................................................... 18 2.2.2 The Influence of I/Q Impairment ........................................................ 19 2.2.3 Transmitter Design and Implementation ............................................. 20 2.3 Process-Variation-Tolerant Design and Analysis of The System ................. 24 2.3.1 Single Circuit Block Analysis on Modulator ...................................... 25 2.3.2 Multiple Circuit Block Analysis on Modulator ................................... 27 2.3.3 Transmitter .......................................................................................... 28 2.3.4 Capacitor Variation on LO Power Splitter .......................................... 28 2.3.5 Tolerance Design Summary ................................................................ 32 2.4 Measurement Results .................................................................................... 34 2.4.1 Test Setup ............................................................................................ 34 2.4.2 CW Measurements .............................................................................. 36 2.4.3 Digital Modulation Measurements ...................................................... 40 2.4.4 Performance Comparsion .................................................................... 45 2.5 Summary ....................................................................................................... 47 Chapter 3 A 38 GHz Demodulator with High Image Rejection in 65nm-CMOS Process ..................................................................................................... 49 3.1 Introduction .................................................................................................. 50 3.2 Literature Survey .......................................................................................... 51 3.3 Circuit Design ............................................................................................... 52 3.3.1 Sub-Harmonic Mixer .......................................................................... 52 3.3.2 IF/LO Buffer Design ........................................................................... 55 3.3.3 Passive Component at LO Port ........................................................... 59 3.3.4 45° Power Splitter ............................................................................... 59 3.4 Measurement Results .................................................................................... 66 3.4.1 Continuing Wave Measurement .......................................................... 66 3.4.2 Modulation Signal Measurement ........................................................ 67 3.5 Summary ....................................................................................................... 75 Chapter 4 A Ka-band Phased-Array Transceiver for Satellite Communication ...................................................................................... 77 4.1 Literature Survey .......................................................................................... 77 4.2 Transceiver Module Design with Phase Array Technique ............................ 79 4.2.1 PCB Process ........................................................................................ 80 4.2.2 Single-Polarization Antenna ................................................................ 82 4.2.3 Phase Array Technique ........................................................................ 82 4.3 Bias and Control Board ................................................................................ 88 4.4 Transmitter .................................................................................................... 89 4.4.1 Functional Block Design of Transmitter ............................................. 90 4.4.2 Module Design and Implementation of Transmitter ........................... 97 4.5 Receiver ........................................................................................................ 99 4.5.1 Functional Block Design of Receiver ................................................. 99 4.5.2 Module Design and Implementation of Receiver ............................. 106 4.6 Measurement Results .................................................................................. 108 4.6.1 Receiver Measurement ...................................................................... 108 4.6.2 Transmitter Measurement ................................................................. 113 4.7 Performance Summary ............................................................................... 118 Chapter 5 Conclusions ........................................................................................... 119 REFERENCE................................................................................................................ 121 | |
| dc.language.iso | en | |
| dc.subject | 解調器 | zh_TW |
| dc.subject | 4096正交振幅調變 | zh_TW |
| dc.subject | 製程變異容忍設計 | zh_TW |
| dc.subject | 鏡像抑制比 | zh_TW |
| dc.subject | E-頻段 | zh_TW |
| dc.subject | 互補式金屬氧化物半導體 | zh_TW |
| dc.subject | Ka-頻段 | zh_TW |
| dc.subject | 相位陣列 | zh_TW |
| dc.subject | 衛星通訊 | zh_TW |
| dc.subject | image-rejection ratio (IRR) | en |
| dc.subject | CMOS | en |
| dc.subject | E-band | en |
| dc.subject | half-quadrature generator (HQG) | en |
| dc.subject | process-variation-tolerant design | en |
| dc.subject | 4096-quadrature amplitude modulation (QAM) | en |
| dc.subject | demodulator | en |
| dc.subject | Ka-band | en |
| dc.subject | phased-array | en |
| dc.subject | satellite communication | en |
| dc.title | 4096-QAM調變與解調器之研製與Ka頻段衛星相位陣列收發機模組系統設計 | zh_TW |
| dc.title | Research of 4096-QAM Modulator and Demodulator, and Ka-band Satellite Phased-Array Transceiver Modular System Design | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0003-2940-129X | |
| dc.contributor.oralexamcommittee | 蔡政翰(Jeng-Han Tsai),楊弘源(Hong-Yuan Yang),李威璁(Wei-Tsung Li),鍾杰穎(Jie-Ying Zhong) | |
| dc.subject.keyword | 互補式金屬氧化物半導體,E-頻段,鏡像抑制比,製程變異容忍設計,4096正交振幅調變,解調器,Ka-頻段,相位陣列,衛星通訊, | zh_TW |
| dc.subject.keyword | CMOS,E-band,image-rejection ratio (IRR),half-quadrature generator (HQG),process-variation-tolerant design,4096-quadrature amplitude modulation (QAM),demodulator,Ka-band,phased-array,satellite communication, | en |
| dc.relation.page | 132 | |
| dc.identifier.doi | 10.6342/NTU202003502 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1508202004182500.pdf 未授權公開取用 | 9.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
