請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76824完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敬哲(Jing-Jer Lin) | |
| dc.contributor.author | Tomoka Kato | en |
| dc.contributor.author | 加藤友華 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:37:58Z | - |
| dc.date.available | 2021-07-10T21:37:58Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | 1. Aguilera, A., and Garcia-Muse, T. (2012). R loops: from transcription byproducts to threats to genome stability. Mol Cell 46, 115-124. 2. Arora, R., Lee, Y., Wischnewski, H., Brun, C.M., Schwarz, T., and Azzalin, C.M. (2014). RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun 5, 5220. 3. Azzalin, C.M., and Lingner, J. (2008). Telomeres - The silence is broken. Cell Cycle 7, 1161-1165. 4. Azzalin, C.M., Reichenbach, P., Khoriauli, L., Giulotto, E., and Lingner, J. (2007). Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798-801. 5. Badis, G., Saveanu, C., Fromont-Racine, M., and Jacquier, A. (2004). Targeted mRNA degradation by deadenylation-independent decapping. Mol Cell 15, 5-15. 6. Balk, B., Maicher, A., Dees, M., Klermund, J., Luke-Glaser, S., Bender, K., and Luke, B. (2013). Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol 20, 1199-1205. 7. Bermejo, R., Lai, M.S., and Foiani, M. (2012). Preventing Replication Stress to Maintain Genome Stability: Resolving Conflicts between Replication and Transcription. Mol Cell 45, 710-718. 8. Boeck, R., Tarun, S., Jr., Rieger, M., Deardorff, J.A., Müller-Auer, S., and Sachs, A.B. (1996). The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity. J Biol Chem 271, 432-438. 9. Bonneau, F., Basquin, J., Ebert, J., Lorentzen, E., and Conti, E. (2009). The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139, 547-559. 10. Boule, J.B., and Zakian, V.A. (2007). The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates. Nucleic Acids Res 35, 5809-5818. 11. Branzei, D., Seki, M., Onoda, F., and Enomoto, T. (2002). The product of Saccharomyces cerevisiae WHIP/MGS1, a gene related to replication factor C genes, interacts functionally with DNA polymerase delta. Mol Genet Genomics 268, 371-386. 12. Breslow, D.K., Cameron, D.M., Collins, S.R., Schuldiner, M., Stewart-Ornstein, J., Newman, H.W., Braun, S., Madhani, H.D., Krogan, N.J., and Weissman, J.S. (2008). A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5, 711-718. 13. Brown, C.E., Tarun, S.Z., Jr., Boeck, R., and Sachs, A.B. (1996). PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol Cell 16, 5744-5753. 14. Bryan, T.M., Englezou, A., Dalla-Pozza, L., Dunham, M.A., and Reddel, R.R. (1997). Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3, 1271-1274. 15. Bryan, T.M., Englezou, A., Gupta, J., Bacchetti, S., and Reddel, R.R. (1995). Telomere Elongation in Immortal Human-Cells without Detectable Telomerase Activity. EMBO J 14, 4240-4248. 16. Burkard, K.T., and Butler, J.S. (2000). A nuclear 3'-5' exonuclease involved in mRNA degradation interacts with Poly(A) polymerase and the hnRNA protein Npl3p. Mol Cell 20, 604-616. 17. Cesena, D., Cassani, C., Rizzo, E., Lisby, M., Bonetti, D., and Longhese, M.P. (2017). Regulation of telomere metabolism by the RNA processing protein Xrn1. Nucleic Acids Res 45, 3860-3874. 18. Chan, C.S.M., and Tye, B.K. (1983a). A Family of Saccharomyces-Cerevisiae Repetitive Autonomously Replicating Sequences That Have Very Similar Genomic Environments. J Mol Biol 168, 505-523. 19. Chan, C.S.M., and Tye, B.K. (1983b). Organization of DNA-Sequences and Replication Origins at Yeast Telomeres. Cell 33, 563-573. 20. Chang, J.H., Jiao, X., Chiba, K., Oh, C., Martin, C.E., Kiledjian, M., and Tong, L. (2012). Dxo1 is a new type of eukaryotic enzyme with both decapping and 5'-3' exoribonuclease activity. Nat Struct Mol Biol 19, 1011-1017. 21. Chawla, R., and Azzalin, C.M. (2008). The telomeric transcriptome and SMG proteins at the crossroads. Cytogenet Genome Res 122, 194-201. 22. Chen, J.J., Chiang, Y.C., and Denis, C.L. (2002). CCR4, a 3 '-5 ' poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J 21, 1414-1426. 23. Chu, H.P., Cifuentes-Rojas, C., Kesner, B., Aeby, E., Lee, H.G., Wei, C., Oh, H.J., Boukhali, M., Haas, W., and Lee, J.T. (2017). TERRA RNA Antagonizes ATRX and Protects Telomeres. Cell 170, 86-101. 24. Deng, Z., Norseen, J., Wiedmer, A., Riethman, H., and Lieberman, P.M. (2009). TERRA RNA Binding to TRF2 Facilitates Heterochromatin Formation and ORC Recruitment at Telomeres. Mol Cell 35, 403-413. 25. Denisenko, O., and Bomsztyk, K. (2002). Yeast hnRNP K-like genes are involved in regulation of the telomeric position effect and telomere length. Mol Cell 22, 286-297. 26. Eppens, N.A., Faber, A.W., Rondaij, M., Jahangir, R.S., van Hemert, S., Vos, J.C., Venema, J., and Raué, H.A. (2002). Deletions in the S1 domain of Rrp5p cause processing at a novel site in ITS1 of yeast pre-rRNA that depends on Rex4p. Nucleic acids Res 30, 4222-4231. 27. Faber, A.W., Van Dijk, M., Raué, H.A., and Vos, J.C. (2002). Ngl2p is a Ccr4p-like RNA nuclease essential for the final step in 3'-end processing of 5.8S rRNA in Saccharomyces cerevisiae. RNA 8, 1095-1101. 28. Feddersen, A., Dedic, E., Poulsen, E.G., Schmid, M., Van, L.B., Jensen, T.H., and Brodersen, D.E. (2012). Saccharomyces cerevisiae Ngl3p is an active 3'-5' exonuclease with a specificity towards poly-A RNA reminiscent of cellular deadenylases. Nucleic Acids Res 40, 837-846. 29. Feuerhahn, S., Iglesias, N., Panza, A., Porro, A., and Lingner, J. (2010). TERRA biogenesis, turnover and implications for function. FEBS Lett 584, 3812-3818. 30. Ginno, P.A., Lott, P.L., Christensen, H.C., Korf, I., and Chedin, F. (2012). R-Loop Formation Is a Distinctive Characteristic of Unmethylated Human CpG Island Promoters. Mol Cell 45, 814-825. 31. Gocha, A.R., Acharya, S., and Groden, J. (2014). WRN loss induces switching of telomerase-independent mechanisms of telomere elongation. PLoS One 9, e93991. 32. Gonzalez, C.I., Ruiz-Echevarria, M.J., Vasudevan, S., Henry, M.F., and Peltz, S.W. (2000). The yeast hnRNP-like protein Hrp1/Nab4 marks a transcript for nonsense-mediated mRNA decay. Mol Cell 5, 489-499. 33. Greider, C.W., and Blackburn, E.H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405-413. 34. Greider, C.W., and Blackburn, E.H. (1987). The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51, 887-898. 35. Greider, C.W., and Blackburn, E.H. (1989). A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331-337. 36. Harley, C.B., Futcher, A.B., and Greider, C.W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature 345, 458-460. 37. Hayflick, L., and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621. 38. Horowitz, H., and Haber, J.E. (1984). Subtelomeric regions of yeast chromosomes contain a 36 base-pair tandemly repeated sequence. Nucleic Acids Res 12, 7105-7121. 39. Huertas, P., and Aguilera, A. (2003). Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12, 711-721. 40. Idler, R.K., and Yan, W. (2012). Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis. J Androl 33, 309-337. 41. Iglesias, N., Redon, S., Pfeiffer, V., Dees, M., Lingner, J., and Luke, B. (2011). Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast. EMBO Rep 12, 587-593. 42. Jiao, X., Xiang, S., Oh, C., Martin, C.E., Tong, L., and Kiledjian, M. (2010). Identification of a quality-control mechanism for mRNA 5'-end capping. Nature 467, 608-611. 43. Kim, M., Krogan, N.J., Vasiljeva, L., Rando, O.J., Nedea, E., Greenblatt, J.F., and Buratowski, S. (2004). The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517-522. 44. Larrivee, M., LeBel, C., and Wellinger, R.J. (2004). The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev 18, 1391-1396. 45. Lee, H.H., Kim, Y.S., Kim, K.H., Heo, I., Kim, S.K., Kim, O., Kim, H.K., Yoon, J.Y., Kim, H.S., Kim, D.J., et al. (2007). Structural and functional insights into Dom34, a key component of no-go mRNA decay. Mol Cell 27, 938-950. 46. Lin, K.W., McDonald, K.R., Guise, A.J., Chan, A., Cristea, I.M., and Zakian, V.A. (2015). Proteomics of yeast telomerase identified Cdc48-Npl4-Ufd1 and Ufd4 as regulators of Est1 and telomere length. Nat Commun 6, 8290. 47. Lingner, J., Hughes, T.R., Shevchenko, A., Mann, M., Lundblad, V., and Cech, T.R. (1997). Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561-567. 48. Longhese, M.P., Plevani, P., and Lucchini, G. (1994). Replication factor A is required in vivo for DNA replication, repair, and recombination. Mol Cell 14, 7884-7890. 49. Lopez de Silanes, I., Stagno d'Alcontres, M., and Blasco, M.A. (2010). TERRA transcripts are bound by a complex array of RNA-binding proteins. Nat Commun 1, 33. 50. Louis, E.J., and Haber, J.E. (1990). Mitotic Recombination among Subtelomeric Y' Repeats in Saccharomyces-Cerevisiae. Genetics 124, 547-559. 51. Luke, B., Panza, A., Redon, S., Iglesias, N., Li, Z., and Lingner, J. (2008). The Rat1p 5' to 3' exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 32, 465-477. 52. Lundblad, V., and Blackburn, E.H. (1993). An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73, 347-360. 53. Lundblad, V., and Szostak, J.W. (1989). A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633-643. 54. Mak, H.C., Pillus, L., and Ideker, T. (2009). Dynamic reprogramming of transcription factors to and from the subtelomere. Genome Res 19, 1014-1025. 55. Makarov, V.L., Hirose, Y., and Langmore, J.P. (1997). Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88, 657-666. 56. Mangus, D.A., Amrani, N., and Jacobson, A. (1998). Pbp1p, a factor interacting with Saccharomyces cerevisiae poly(A)-binding protein, regulates polyadenylation. Mol Cell 18, 7383-7396. 57. Miller, J.E., Zhang, L., Jiang, H., Li, Y., Pugh, B.F., and Reese, J.C. (2018). Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8, 315-330. 58. Moyzis, R.K., Buckingham, J.M., Cram, L.S., Dani, M., Deaven, L.L., Jones, M.D., Meyne, J., Ratliff, R.L., and Wu, J.R. (1988). A Highly Conserved Repetitive DNA-Sequence, (Ttaggg)N, Present at the Telomeres of Human-Chromosomes. Proc Natl Acad Sci USA 85, 6622-6626. 59. Ng, L.J., Cropley, J.E., Pickett, H.A., Reddel, R.R., and Suter, C.M. (2009). Telomerase activity is associated with an increase in DNA methylation at the proximal subtelomere and a reduction in telomeric transcription. Nucleic Acids Res 37, 1152-1159. 60. Olovnikov, A.M. (1973). A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41, 181-190. 61. Paeschke, K., Bochman, M.L., Garcia, P.D., Cejka, P., Friedman, K.L., Kowalczykowski, S.C., and Zakian, V.A. (2013). Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497, 458-462. 62. Pfeiffer, V., Crittin, J., Grolimund, L., and Lingner, J. (2013). The THO complex component Thp2 counteracts telomeric R-loops and telomere shortening. EMBO J 32, 2861-2871. 63. Röther, S., Clausing, E., Kieser, A., and Strässer, K. (2006). Swt1, a novel yeast protein, functions in transcription. J Biol Chem 281, 36518-36525. 64. Redon, S., Reichenbach, P., and Lingner, J. (2010). The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 38, 5797-5806. 65. Reese, J.C. (2013). The control of elongation by the yeast Ccr4-not complex. Biochim Biophys Acta 1829, 127-133. 66. Rondon, A.G., Jimeno, S., and Aguilera, A. (2010). The interface between transcription and mRNP export: from THO to THSC/TREX-2. Biochim Biophys Acta 1799, 533-538. 67. Rothstein, R.J. (1983). One-step gene disruption in yeast. Methods Enzymol 101, 202-211. 68. Schoeftner, S., and Blasco, M.A. (2008). Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10, 228-236. 69. Shay, J.W., and Bacchetti, S. (1997). A survey of telomerase activity in human cancer. Eur J Cancer 33, 787-791. 70. Shoemaker, C.J., Eyler, D.E., and Green, R. (2010). Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 330, 369-372. 71. Singer, M.S., and Gottschling, D.E. (1994). TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404-409. 72. Skourti-Stathaki, K., Proudfoot, N.J., and Gromak, N. (2011). Human Senataxin Resolves RNA/DNA Hybrids Formed at Transcriptional Pause Sites to Promote Xrn2-Dependent Termination. Mol Cell 42, 794-805. 73. Skružný, M., Schneider, C., Rácz, A., Weng, J., Tollervey, D., and Hurt, E. (2009). An Endoribonuclease Functionally Linked to Perinuclear mRNP Quality Control Associates with the Nuclear Pore Complexes. PLoS Biology 7, e1000008. 74. Teng, S.C., Chang, J., McCowan, B., and Zakian, V.A. (2000). Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol Cell 6, 947-952. 75. Teng, S.C., and Zakian, V.A. (1999). Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell 19, 8083-8093. 76. Thompson, D.M., and Parker, R. (2009). The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185, 43-50. 77. Tucker, M., Valencia-Sanchez, M.A., Staples, R.R., Chen, J., Denis, C.L., and Parker, R. (2001). The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377-386. 78. van den Elzen, A.M.G., Schuller, A., Green, R., and Séraphin, B. (2014). Dom34-Hbs1 mediated dissociation of inactive 80S ribosomes promotes restart of translation after stress. EMBO J 33, 265-276. 79. van Hoof, A., Lennertz, P., and Parker, R. (2000). Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast. EMBO J 19, 1357-1365. 80. Watson, J.D. (1972). Origin of concatemeric T7 DNA. Nat New Biol 239, 197-201. 81. Wellinger, R.J., Wolf, A.J., and Zakian, V.A. (1993). Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell 72, 51-60. 82. Wellinger, R.J., and Zakian, V.A. (2012). Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191, 1073-1105. 83. Wilusz, C.J., Wormington, M., and Peltz, S.W. (2001). The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2, 237-246. 84. Winston, F., Dollard, C., and Ricupero-Hovasse, S.L. (1995). Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11, 53-55. 85. Wright, W.E., Tesmer, V.M., Huffman, K.E., Levene, S.D., and Shay, J.W. (1997). Normal human chromosomes have long G-rich telomeric overhangs at one end. Gene Dev 11, 2801-2809. 86. Xiang, S., Cooper-Morgan, A., Jiao, X., Kiledjian, M., Manley, J.L., and Tong, L. (2009). Structure and function of the 5′→ 3′ exoribonuclease Rat1 and its activating partner Rai1. Nature 458, 784-788. 87. Xue, Y., Bai, X., Lee, I., Kallstrom, G., Ho, J., Brown, J., Stevens, A., and Johnson, A.W. (2000). Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p. Mol Cell 20, 4006-4015. 88. Yamada, M., Hayatsu, N., Matsuura, A., and Ishikawa, F. (1998). Y '-Help1, a DNA helicase encoded by the yeast subtelomeric Y ' element, is induced in survivors defective for telomerase. J Biol Chem 273, 33360-33366. 89. Yu, K.F., Chedin, F., Hsieh, C.L., Wilson, T.E., and Lieber, M.R. (2003). R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 4, 442-451. 90. Yu, T.Y., Kao, Y.W., and Lin, J.J. (2014). Telomeric transcripts stimulate telomere recombination to suppress senescence in cells lacking telomerase. Proc Natl Acad Sci U S A 111, 3377-3382. 91. Zhang, L., Fletcher, A.G., Cheung, V., Winston, F., and Stargell, L.A. (2008). Spn1 regulates the recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II. Mol Cell 28, 1393-1403. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76824 | - |
| dc.description.abstract | 端粒是位於染色體末端重複性序列,其功能為防止染色體末端之間產生融合 (fusion) 現象,進而維持染色體的穩定性。端粒DNA是由subtelomeric序列以及末端G-rich重複性序列組成。大部分真核細胞會利用端粒酶來維持端粒長度,其中端粒是由RNA及蛋白質組成的核蛋白,其會利用RNA為模板進行端粒的延長。除此之外,端粒長度也可以透過同源重組 (homologous recombination)方式維持,稱為alternative lengthening of telomeres (ALT)。在酵母菌中,先前研究發現,ALT機制會受到端粒的轉錄產物調控,此轉錄產物稱為telomeric repeat-containing RNA (TERRA)。TERRA會取代原本端粒DNA的雙股結構,與DNA形成RNA:DNA hybrid,稱為R-loop結構,並藉此結構促進端粒重組的發生。然而,具體R-loop如何參與在端粒重組過程中尚不清楚。基於R-loop中具有RNA的組成,因此RNase有可能透過其酵素活性處理R-loop結構,進一步調控端粒的重組。因此在我的研究中,我以找到參與在端粒重組中的RNase為目標。利用基因剔除的方式在端粒酶缺失的酵母菌中觀察目標RNase的剔除是否影響端粒重組的發生。在篩選的19個RNase中,我發現CCR4、XRN1以及RAI1三個RNase在基因剔除後會影響端粒重組。另外,由於RNA-binding proteins也是調控RNA穩定性及分布位置的重要因素,因此我也測試TERRA-binding proteins是否影響端粒重組。利用TERRA pull down assay - iDRiP所得數據,我一共針對18個TERRA-binding proteins做測試。然而,我並未在此部分發現調控端粒重組的蛋白質。總結以上,我找到三個基因,CCR4、XRN1以及RAI1會影響端粒重組,而此結果可以幫助我們日後更深入瞭解TERRA及R-loop如何影響端粒重組的過程。 | zh_TW |
| dc.description.abstract | Telomeres locate at the ends of eukaryotic chromosomes. They are essential to prevent chromosomal end-to-end fusion and maintain chromosome integrity. Telomeric DNA is composed of subtelomeric elements and short tandem repeated G-rich sequences. Most eukaryotes utilize telomerase to elongate telomeric DNA. Telomerase is a ribonucleoprotein that uses its RNA component as a template to replicate telomeric DNA. Telomere lengths can also be maintained through a recombination-based mechanism, called the alternative lengthening of telomere (ALT). Using Saccharomyces cerevisiae as a model system, previously we and others have found that the ALT pathway is regulated by telomere transcripts, termed telomeric repeat-containing RNA (TERRA). TERRA in the form of R-loop structure facilitates the homologous recombination process in the ALT pathway. However, the detail mechanism of how R-loop structure is involved in telomere recombination is unclear. Since the R-loop structure contains an RNA component, it is likely that specific ribonucleases involved in processing R-loop might impact telomere recombination. Here I applied genetic approach to screen and identify RNases that regulate telomere recombination. By deleting RNase genes into yeast cells lacking telomerase, I tested whether these deletions affect telomere recombination. Among a total of 19 RNases analyzed, I found XRN1, CCR4, and RAI1 affected telomere recombination. I also selected 18 genes encoding TERRA-associated proteins, that was identified from iDRiP analysis, to test their effects on telomere recombination. I found none of these 18 genes affected telomere recombination. Together I have identified three genes XRN1, CCR4, and RAI1 that affected telomere recombination. The results could help us understand the mechanism of how TERRA regulates telomere recombination in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:37:58Z (GMT). No. of bitstreams: 1 U0001-1508202014254800.pdf: 17204762 bytes, checksum: ef4b0b638ad93c316e30e853af059c18 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 i 附圖目錄 ii 摘要 1 英文摘要 2 前言 3 材料與方法 12 結果 24 討論 42 參考文獻 45 附圖 56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 染色體末端複製問題 | zh_TW |
| dc.subject | 端粒酶 | zh_TW |
| dc.subject | 端粒 | zh_TW |
| dc.subject | R-loop | en |
| dc.subject | Telomere | en |
| dc.subject | TERRA | en |
| dc.subject | RNA-binding proteins | en |
| dc.subject | End replication problem | en |
| dc.subject | RNase | en |
| dc.title | 探討TERRA相關蛋白與端粒重組之關係 | zh_TW |
| dc.title | Identification and characterization of proteins that regulate TERRA in telomere recombination | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 朱雪萍(Hsueh-Ping Chu),鄧述諄(Shu-Chun Teng) | |
| dc.subject.keyword | 端粒,端粒酶,染色體末端複製問題, | zh_TW |
| dc.subject.keyword | Telomere,TERRA,R-loop,End replication problem,RNase,RNA-binding proteins, | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU202003514 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1508202014254800.pdf 未授權公開取用 | 16.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
