請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76818完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張嘉銓(Chia-Chuan Chang) | |
| dc.contributor.author | Wan-Chia Tsai | en |
| dc.contributor.author | 蔡宛珈 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:37:44Z | - |
| dc.date.available | 2021-07-10T21:37:44Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | 1. Luo, Y.; Liu, Y.; Luo, D. Cytotoxic alkaloids from Boehmeria siamensis. Planta Medica. 2003, 69, 842–845. 2. Becker, H.; Scher, J. M.; Speakman, J. B.; Zapp, J. Bioactivity guided isolation of antimicrobial compounds from Lythrum Salicaria. Fitoterapia. 2005, 76, 580–584. 3. Min, Y.; Yang, J.; Ping, Y.; Liu, W. Chemical constituents of Boehmeria macrophylla Hornem. J. Adv. Mat. Res. 2012, 550,1378–1380. 4. Semwal, D. K.; Rawat, U.; Semwal, R.; Singh, R. Chemical constituents from the leaves of Boehmeria rugulosa with antidiabetic and antimicrobial activities. J Asian Nat. Prod. Res. 2009, 11, 1045–1055. 5. Matsuura, S.; Lee, L.; Iinuma, M. Studies on the components of Boehmeria sp. I. Studies on the components of the roots of Boehmeria platanifolia Franch. et Sav (author’s transl)]. Yakugaku Zasshi 1973, 93, 1682–1684. 6. Paniagua-Pérez, R.; Flores-Mondragón, G.; Reyes-Legorreta, C.; Herrera-López, B. Evaluation of the anti-inflammatory capacity of beta-sitosterol in rodent assays. Afr. J. Tradit. Complement. Altern. Med. 2016, 14, 123–130. 7. Saleem, M. Lupeol, A novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009, 285, 109–115. 8. Oyarzún, M. L.; Garbarino, J. A.; Gambaro, V.; Guilhem, J. Two triterpenoids from Boehmeria excelsa. Phytochemistry. 1986, 26, 221–223. 9. Moghaddam, M. Biological activity of betulinic acid: A review. J. Pharm. Pharmacol. 2012, 3, 119–123. 10. Luo, Y.; Liu, Y.; Luo, D.; Gao, X.; Li, B.; Zhang, G. Cytotoxic alkaloids from Boehmeria Siamensis. Planta. Med. 2003, 69, 842–845. 11. Cai, X. F.; Jin, X.; Lee, D.; Yang, Y. T.; Lee, K. Phenanthroquinolizidine alkaloids from the roots of Boehmeria pannosa potently inhibit hypoxia-inducible factor-1 in AGS human gastric cancer cells. J. Nat. Prod. 2006, 69, 1095–1097. 12. Chemler, S. Phenanthroindolizidines and phenanthroquinolizidines: Promising alkaloids for anti-cancer therapy.J. Curr. Bioact. Compd. 2009, 5, 2–19. 13. Xu, J.-P. Cancer inhibitors from chinese natural medicines. Boca Raton: CRC Press, 2016. 14. Liu, Z.; Lv, H.; Li, H.; Zhang, Y.; Zhang, H.; Su, F. Interaction studies of an anticancer alkaloid, (+)-(13aS)-deoxytylophorinine, with calf thymus DNA and four repeated double-helical DNAs. Chemotherapy. 2011, 57, 310–320. 15. Gullon, B.; Lú-Chau, T. A.; Moreira, M. T. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. J. Trends. Food Sci. Technol. 2017, 67, 220–235 16. Perk, A. A.; Shatynska-Mytsyk, I.; Gerçek, Y. C.; Boztaş, K. Rutin mediated targeting of signaling machinery in cancer cells. Cancer Cell Int. 2014, 14. 124–128. 17. Refaat, J.; Desoukey, S. Y.; Ramadan, M. A. Rhoifolin: A review of sources and biological activities. Int. J. Pharmacogn. Phytochem. Res. 2015, 2, 102–109. 18. Takemoto, T.; Miyasi, T.; Kusano, G. Flavones and other compounds of Boehmeria tricuspis and B. holosericea. Yakugaku Zasshi. 1975, 14, 2534. 19. Zhang, Z. R.; Zaharna, M. A.; Wong, M. M.-K.; Chiu, S.-K. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation. Plos. One. 2013, 8, e54577. 20. Shanmugam, B.; Shanmugam, K. R.; Ravi, S. Exploratory studies of (–)-epicatechin, a bioactive compound of phyllanthus niruri, on the antioxidant enzymes and oxidative stress markers in d-galactosamine-induced hepatitis in rats: A study with reference to clinical prospective. Pharmacogn. Mag. 2017, 13, 56–62. 21. Ngo, D.-H.; Ryu, B.; Vo, T.-S.; Himaya, S. W. A. Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from pacific cod (gadus macrocephalus) skin gelatin. Int. J. Biol. Macromol. 2011, 49, 1110–1116. 22. Yang, C. S.; Wang, X.; Lu, G.; Picinich, S. C. Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer. 2009, 9, 429–439. 23. Zhang, Y.; Zhang, R.; Ni, H. Eriodictyol exerts potent anticancer activity against A549 human lung cancer cyell line by inducing mitochondrial-mediated apoptosis, G2/M cell cycle arrest and inhibition of m-TOR/PI3K/Akt signalling pathway. Arch. Med. Sci. 2019, 16, 446–452. 24. Lou, H.; Jing, X.; Ren, D. Eriodictyol protects against H2O2-induced neuron-like PC12 cell death through activation of Nrf2/ARE signaling pathway. Neurochem. Int. 2012, 61, 251–257. 25. Semwal, D. K.; Rawat, U.; Semwal, R. Chemical constituents from the leaves of Boehmeria rugulosa with antidiabetic and antimicrobial activities. J. Asian Nat. Prod. Res. 2009, 11, 1045–1055. 26. Al-Musayeib, N.; Perveen, S.; Fatima, I.; Nasir, M. Antioxidant, anti-glycation and anti-inflammatory activities of phenolic constituents from Cordia sinensis. Molecules. 2011, 16, 10214–10226. 27. Ganai, A. A.; Farooqi, H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed. Pharmacother. 2015, 76, 30–38. 28. Izhaki, I. Emodin – a Secondary metabolite with multiple ecological functions in higher plants. New. Phytologist. 2002, 155, 205–217. 29. Lee, S.; Han, J.-M.; Kim, H.; Kim, E. Synthesis of cinnamic acid derivatives and their inhibitory effects on LDL-oxidation, acyl-CoA: Cholesterol acyltransferase-1 and -2 activity, and decrease of HDL-particle size. Bioorg. Med. Chem. Lett. 2004, 14, 4677–4681. 30. Bhattacharyya, S. S.; Paul, S.; Dutta, S.; Boujedaini, N. Anti-oncogenic potentials of a plant coumarin (7-hydroxy-6-methoxy coumarin) against 7,12-dimethylbenz [a] anthracene-induced skin papilloma in mice: The possible role of several key signal proteins. Chin. J. Integr. Med. 2010, 8, 645–654. 31. Mudianta, I. W.; Garson, M. J. Isolation and absolute configuration of Boehmenan from Durio Affinis Becc. Rec. Nat. Prod. 2014, 8, 195–198. 32. Xiudong, Y.; Min-Cheol, K.; Ki-Wan, L.; Sung-Myung, K. Antioxidant activity and cell protective effect of loliolide isolated from Sargassum ringgoldianum subsp. coreanum. Algae. 2011, 26, 201–208. 33. Al-Shamma, A.; Drake, S. D.; Guagliardi, L. E.; Mitscher, L. A. Antimicrobial alkaloids from Boehmeria cylindrica. Phytochemistry. 1982, 21, 485–487. 34. Lin, C.-C.; Yen, M.-H.; Lo, T.; Lin, J.-M. Evaluation of the hepatoprotective and antioxidant activity of Boehmeria nivea var. Nivea and B. nivea var. tenacissima. J. Ethnopharmacol. 1998, 60, 9–17. 35. Song, Y.; Pan, L.; Li, W.; Si, Y.; Zhou, D.; Zheng, C. Natural neuro-inflammatory inhibitors from Caragana turfanensis. Bioorg. Med. Chem. Lett. 2017, 27, 4765–4769. 36. Yuan, X.; Wen, H.; Cui, Y.; Fan, M.; Liu, Z. Phenolics from Lagotis brevituba Maxim. Nat. Prod. Res. 2017, 31, 362–366. 37. Xu, S.; Shang, M.-Y.; Liu, G.-X.; Xu, F.; Wang, X. Chemical constituents from the rhizomes of Smilax glabra and their antimicrobial activity. Molecules. 2013, 18, 5265–5287. 38. Wang, D.; Mu, Y.; Dong, H.; Yan, H.; Hao, C.; Wang, X. Chemical constituents of the ethyl acetate extract from Diaphragma juglandis fructus and their inhibitory activity on nitric oxide production in vitro. Molecules. 2018, 23, 72. 39. Hashmi, M. A.; Khan, A.; Ayub, K.; Farooq, U. Spectroscopic and density functional theory studies of 5,7,3',5'-tetrahydroxyflavanone from the leaves of Olea ferruginea. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 128, 225–230. 40. Extract and fraction of Cassia occidentalis L. (a synonym of Senna occidentalis) have osteogenic effect and prevent glucocorticoid-induced osteopenia. J. Ethnopharmacol. 2019, 235, 8–18 41. Jiang, C.L.; Tsai, S. F.; Lee, S. S. Flavonoids from Curcuma longa leaves and their NMR assignments. Nat. Prod. Commun. 2015, 10, 63–66. 42. Xu, Y.; Tao, Z.; Jin, Y. Flavonoids, a potential new insight of Leucaena leucocephala foliage in ruminant health. J. Agric. Food Chem. 2018, 66, 7616–7626. 43. Pendota, S. C.; Aremu, A. O.; Slavětínská, L. P. Identification and characterization of potential bioactive compounds from the leaves of Leucosidea sericea. J. Ethnopharmacol. 2018, 220, 169–176. 44. Bracher, F.; Daab, J. Total synthesis of the indolizidinium alkaloid ficuseptine. Eur. J. Org. Chem. 2002, 14, 2288–2291. 45. Kubo, M.; Yatsuzuka, W.; Matsushima, S.; Harada, K. Antimalarial phenanthroindolizine alkaloids from Ficus septica. Chem. Pharm. Bull. 2016, 64, 957–960. 46. Al-Khdhairawi, A. A. Q. Isolation, structure, characterization and cytotoxicity assessment of alkaloids from Ficus fistulosa var. tengerenisis (Miq.) Kuntze. MPhil thesis, University of Nottingham, England (2018). 47. 消渴草 (2009,10月)。臺灣藥用植物資源名錄。 行政院衛生署中醫藥委員會。2020年6月18日,取自http://kplant.biodiv.tw/%E6%B6%88%E6%B8%B4%E8%8D%89/%E6%B6%88%E6%B8%B4%E8%8D%89.htm 48. Ananthakrishnan, M.; Doss, V. A. Effect of 50% hydro-ethanolic leaf extracts of Ruellia tuberosa L. and Dipteracanthus patulus (Jacq.) on lipid profile in alloxan induced diabetic rats. Int. J. Prev. Med. 2013, 4, 744–747. 49. Ko, C.-Y.; Lin, R.-H.; Lo, Y. M.; Chang, W.-C. Effect of Ruellia tuberosa L. on aorta endothelial damage-associated factors in high-fat diet and streptozotocin-induced type 2 diabetic rats. Food Sci. Nutr. 2019, 7, 3742–3750. 50. Chen, F. A.; Wu, A. B.; Shieh, P.; Kuo, D. H. Evaluation of the antioxidant activity of Ruellia tuberosa. Food Chem. 2006, 94, 14–18. 51. Alam, M. A.; Subhan, N.; Awal, M. A.; Alam, M. S. Antinociceptive and anti-inflammatory properties of Ruellia tuberosa. Pharm. Biol. 2009, 47, 209–214. 52. Samy, M. N.; Sugimoto, S.; Matsunami, K. Chemical constituents and biological activities of genus Ruellia. Int. J. Pharmacogn. Phytochem. Res. 2015, 2, 270–279. 53. Fu, G.; Pang, H.; Wong, Y. H. Naturally occurring phenylethanoid glycosides: potential leads for new therapeutics. Curr. Med. Chem. 2008, 15, 2592–2613. 54. Jiménez, C.; Riguera, R. Phenylethanoid glycosides in plants: structure and biological activity. Nat. Prod. Rep. 1994, 11, 591–606. 55. Halliwell, B.; Gutteridge, J. M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984, 219, 1–14. 56. Georgiev, M.; Alipieva, K.; Orhan, I. Antioxidant and cholinesterases inhibitory activities of Verbascum xanthophoeniceum Griseb. and its phenylethanoid glycosides. Food Chem. 2011, 128, 100–105. 57. Geng, X.; Tian, X.; Tu, P.; Pu, X. Neuroprotective effects of eehinacoside in the mouse MPTP model of parkinson’s disease. Eur. J. Pharmacol. 2007, 564, 66–74. 58. Li, Y.-Y.; Lu, J.-H.; Li, Q.; Zhao, Y.-Y. Pedicularioside A from buddleia lindleyana inhibits cell death induced by 1-methyl-4-phenylpyridinium ions (MPP+) in primary cultures of rat mesencephalic neurons. Eur. J. Pharmacol. 2008, 579, 134–140. 59. Güvenç, A.; Okada, Y.; Akkol, E. K.; Duman, H. Investigations of anti-inflammatory, antinociceptive, antioxidant and aldose reductase inhibitory activities of phenolic compounds from Sideritis brevibracteata. Food Chem. 2010, 118, 686–692. 60. Seo, E. S.; Oh, B. K.; Pak, J. H. Acteoside improves survival in cecal ligation and puncture-induced septic mice via blocking of high mobility group box 1 release. Mol. Cells. 2013, 35, 348–354. 61. Liu, Y.; He, W.; Mo, L.; Shi, M.; Zhu, Y. Antimicrobial, anti-inflammatory activities and toxicology of phenylethanoid glycosides from Monochasma savatieri franch. ex maxim. J. Ethnopharmacol. 2013, 149, 431–437. 62. Nazemiyeh, H.; Rahman, M. M.; Gibbons, S. A. Assessment of the antibacterial activity of phenylethanoid glycosides from Phlomis lanceolata against mltiple-drug-resistant strains of Staphylococcus aureus. J. Nat. Med. 2008, 62, 91–95. 63. Hu, X.; Shao, M.; Song, X.; Wu, X.; Qi, L. Anti-influenza virus effects of crude phenylethanoid glycosides isolated from Ligustrum purpurascens via inducing endogenous interferon-γ. J. Ethnopharmacol. 2016, 179, 128–136. 64. Zhao, G.; Shi, A.; Fan, Z.; Du, Y. Salidroside inhibits the growth of human breast cancer in vitro and in vivo. Oncol. Rep. 2015, 33, 2553–2560. 65. Hu, B.; Zou, Y.; Liu, S.; Wang, J.; Zhu, J. Salidroside attenuates concanavalin A-induced hepatitis via modulating cytokines secretion and lymphocyte migration in mice. Mediators. Inflamm. 2014, 2014, e314081. 66. Piątczak, E.; Grąbkowska, R.; Wysokińska, H. Production of iridoid and phenylethanoid glycosides by In vitro systems of plants from the Buddlejaceae, orobanchaceae, and Scrophulariaceae families. Springer International Publishing, 2008. 67. Zhou, Y.; Zhu, J.; Shao, L.; Guo, M. Current advances in acteoside biosynthesis pathway elucidation and biosynthesis. Fitoterapia. 2020, 142, e104495. 68. Xue, Z.; Yang, B. Phenylethanoid glycosides: Research advances in their phytochemistry, pharmacological activity and pharmacokinetics. Molecules. 2016, 21, 991. 69. Ohta, T.; Nakamura, S.; Nakashima, S. Chemical structures of constituents from the whole plant of Bacopa monniera. J. Nat. Med. 2016, 70, 404–411. 70. Wan, J. F.; Yuan, J. Q.; Mei, Z. N.; Yang, X. Z. Phenolic glycosides from Boschniakia himalaica. Chin. Chem. Lett. 2012, 23, 579–582. 71. Nan, Z.; Zeng, K.; Shi, S.; Zhao, M. Phenylethanoid glycosides with anti-inflammatory activities from the stems of Cistanche deserticola cultured in Tarim Desert. Fitoterapia. 2013, 89, 167–174. 72. Pan, Y.; Morikawa, T.; Ninomiya, K. Bioactive constituents from chinese natural medicines. XXXVI. four new acylated phenylethanoid oligoglycosides, Kankanosides J1, J2, K1, and K2, from stems of Cistanche tubulosa. Chem. Pharm. Bull. 2010, 58, 575–578. 73. Jin, Q.; Jin, H. G,; Shin, J. E. Phenylethanoid glycosides from Digitalis purpurea L. Bull. Korean. Chem. Soc. 2011, 32, 1721–1724. 74. Dong, Z.; Lu, X.; Tong, X. Forsythiae fructus: A review on its phytochemistry, quality control, pharmacology and pharmacokinetics. Molecules. 2017, 22, 1466–1515. 75. Kuang, H. X.; Xia, Y. G.; Yang, B. Y. A new caffeoyl phenylethanoid glycoside from the unripe fruits of Forsythia Suspensa. Chin. J. Nat. Medicines. 2009, 7, 278–282. 76. Wu, H. F.; Zhu, Y. D.; Zhang, L. J. A new phenylethanoid glycoside from Incarvillea Compacta. J. Asian. Nat. Prod. Res. 2016, 18, 596–602. 77. Martin, F.; Hay, A. E.; Quinteros Condoretty, V. R. Antioxidant phenylethanoid glycosides and a neolignan from Jacaranda Caucana. J. Nat. Prod. 2009, 72, 852–856. 78. De Santana Julião, L.; Piccinelli, A. L.; Marzocco, S. Phenylethanoid glycosides from Lantana fucata with in vitro anti-inflammatory activity. J. Nat. Prod. 2009, 72, 1424–1428. 79. Li, Y.; Chen, Z.; Feng, Z.; Yang, Y. Hepatoprotective glycosides from Leonurus Japonicus Houtt. Carbohydr. Res. 2012, 348, 42–46. 80. Yang, J. H.; Kondratyuk, T. P.; Jermihov, K. C. Bioactive compounds from the Fern Lepisorus Contortus. J. Nat. Prod. 2011, 74, 129–136. 81. Xue, Z.; Yan, R.; Yang, B. Phenylethanoid glycosides and phenolic glycosides from stem bark of Magnolia Officinalis. Phytochemistry. 2016, 127, 50–62. 82. Li, M.; Shi, M.-F.; Liu, Y.-L. Phenylethanoid glycosides from Monochasma savatieri and their anticomplement activity through the classical pathway. Planta. Med. 2012, 78, 1381–1386. 83. Morikawa, T.; Ninomiya, K.; Kuramoto, H. Phenylethanoid and phenylpropanoid glycosides with melanogenesis inhibitory activity from the flowers of Narcissus tazetta var. Chinensis. J. Nat. Med. 2016, 70, 89–101. 84. Liu, P.; Deng, R. X.; Duan, H. Q.; Yin, W. P. Phenylethanoid glycosides from the roots of Phlomis umbrosa. J. Asian Nat. Prod. Res. 2009, 11, 69–74. 85. Jabeen, B.; Riaz, N.; Saleem, M. Isolation of natural compounds from Phlomis stewartii showing α-glucosidase inhibitory activity. Phytochemistry. 2013, 96, 443–448. 86. Phakeovilay, C.; Disadee, W.; Sahakitpichan, P. Phenylethanoid and flavone glycosides from Ruellia tuberosa L. J. Nat. Med. 2013, 67, 228–233. 87. Marino, S. D.; Festa, C.; Incollingo, F. Antioxidant activity of phenolic and phenylethanoid glycosides from Teucrium polium L. Food Chem. 2012, 133, 21–28. 88. Pacifico, S.; D’Abrosca, B.; Pascarella, M. T. A. Antioxidant efficacy of iridoid and phenylethanoid glycosides from the medicinal plant Teucrium chamaedris in cell-free systems. Bioorg. Med. Chem. 2009, 17, 6173–6179. 89. Dai, J.; Wu, Y.; Chen, S.; Zhu, S. Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohydrate Polymers. 2010, 82, 629–635. 90. Shataer, D.; Abdulla, R.; Ma, Q. L.; Liu, G. Y. Chemical composition of extract of Corylus avellana shells. Chem. Nat. Compd. 2020, 56, 338–340. 91. Ito, J.; Chang, F. R.; Wang, H. K.; Park, Y. K. Anti-AIDS agents. 48.(1) Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis. J. Nat. Prod. 2001, 64, 1278–1281. 92. Fang, Q.; Maglangit, F.; Mugat, M. Targeted isolation of indole alkaloids from Streptomyces Sp. CT37. Molecules. 2020, 25, 1108–1118. 93. Zhou, D.; Zhang, Y.; Jiang, Z.; Hou, Y. Biotransformation of isofraxetin-6-O-β-D-glucopyranoside by Angelica sinensis (Oliv.) diels callus. Bioorg. Med. Chem. Lett. 2017, 27, 248–253. 94. Lee, S. J.; Jang, H. J.; Kim, Y. Inhibitory effects of IL-6-Induced STAT3 activation of bioactive compounds derived from Salvia plebeia R.Br. Process. Biochem. 2016, 51, 2222–2229. 95. Lin, C.-F.; Huang, Y.-L.; Cheng, L.-Y. Bioactive flavonoids from Ruellia tuberosa. J. Chin. Med. 2006, 17. 506–512. 96. Costa, A. G.; Yoshida, N. C.; Garcez, W. S. Metabolomics approach expands the classification of propolis samples from Midwest brazil. J. Nat. Prod. 2020, 83, 333–343. 97. Eleftheriou, P.; Therianou, E.; Lazari, D.; Dirnali, S. Docking assisted prediction and biological evaluation of Sideritis L. components with PTP1b inhibitory action and probable anti-diabetic properties. Curr. Top. Med. Chem. 2019, 19, 383–392. 98. Xiang, Y.; Jing, Z.; Haixia, W.; Ruitao, Y. Antiproliferative activity of phenylpropanoids isolated from Lagotis brevituba Maxim. Phytother. Res. 2017, 31, 1509–1520. 99. Genc, Y.; Harput, U. S.; Saracoglu, I. Active compounds isolated from Plantago subulata L. via wound healing and antiinflammatory activity guided studies. J. Ethnopharmacol. 2019, 241. e112030. 100. Ogawa, K.; Otani, K.; Ding, J. K. Phenolic glycosides from Nuo-Mi-Xang-Cao, a chinese acanthaceous herb. Chem. Pharm. Bull. 1991, 39, 927–929. 101. Santana Julião, L. D.; Piccinelli, A. L.; Marzocco, S. Phenylethanoid glycosides from Lantana fucata with in vitro anti-inflammatory activity. J. Nat. Prod. 2009, 72, 1424–1428. 102. Rodriguez, J. P.; Lee, Y. K.; Woo, D. G. Flavonoids from Cirsium japonicum var. maackii pappus as inhibitors of aldose reductase and their simultaneous determination. Chem. Pap. 2018, 72, 81–88. 103. Zhang, W.; Li, H.-J.; Wang, C. Synergistic effect of 1-(2,5-dioxoimidazolidin-4-yl)urea and tween-80 towards the corrosion mitigation of mMild steel in HCl. New. J. Chem. 2019, 43, 13899–13910. 104. Moriyama, H.; Iizuka, T.; Nagai, M. Adenine, an Inhibitor of platelet aggregation, from the leaves of Cassia alata. Biol. Pharm. Bull. 2003, 26, 1361–1364. 105. Wang, C. Y.; Jang, H.-J.; Han, Y. K.; Su, X. D. Alkaloids from Tetrastigma hemsleyanum and their anti-inflammatory effects on LPS-Induced RAW264.7 cells. Molecules. 2018, 23, 1445–1456. 106. Seki, T.; Morimura, S.; Tabata, S. Antioxidant activity of vnegar produced from distilled residues of the Japanese liquor shochu. J. Agric. Food Chem. 2008, 56, 3785–3790. 107. Das, N.; Bhattacharya, A.; Kumar Mandal, S. Ichnocarpus frutescens (L.) R. Br. root derived phyto-steroids defends inflammation and algesia by pulling down the pro-inflammatory and nociceptive pain mediators: An in-vitro and in-vivo appraisal. Steroids, 2018, 139, 18–27. 108. Surendra, K.; Corey, E. J. A. Short enantioselective total synthesis of the fundamental pentacyclic triterpene lupeol. J. Am. Chem. Soc. 2009, 131, 13928–13929. 109. 陳孟勤,第一部份: 台灣苧麻業部化學成分之研究。第二部分: 金童及金皇石斛水萃物對小鼠腸道菌的菌相分布及生理數值影響分析。國立臺灣大學醫學院藥學研究所碩士論文,台北 (2019)。 110. 黃婉婷,石蓮花及台灣苧麻化學成分之研究。國立臺灣大學醫學院藥學研究所碩士論文,台北 (2018)。 111. 台灣苧麻 (2014,9月24日)。福星花園。2020年7月1日,取自http://bruce0342.blogspot.com/2014/09/blog-post_26.html 112. Al-Shamma, A.; Drake, S.D.; Guagliardi, L. E.; Mitscher, L. A. Antimicrobial alkaloids from Boehmeria cylindrical. Phytochemistry. 1982, 21, 485-487. 113. Mandhare, A. A. Review on the anticancer and in-silico binding studies of phenanthroindolizidine alkaloids. J. Chem. Inf. Model. 2015, 1, 1–15. 114. Foo, L. Y. The first natural 2,3-cis-dihydroflavonol and rationalization of the biogenesis of 2,3-cis-proanthocyanidins. J. Chem. Soc.Chem. Commun. 1986, 1. 675–677. 115. Das, L. K. L.; Verma, M.; Sahai, M. Three new acyltyramines from Anisodus Luridus Link etOtto (Solanaceae). Nat. Prod. Res. 2016, 30, 2434–2441. 116. Azizah, A. A.; Katherine, A. H.; Zoey, D. Antibacterial compounds from the Australian native plant Eremophila glabra. Fitoterapia. 2018, 126, 45–52. 117. Moe, K.; Katsuyoshi, M.; Hideaki, O. Chlorine-containing iridoid and iridoid glucoside, and other glucosidesfrom leaves of Myoporum bontioides. Phytochemistry. 2008, 69, 2517-2522. 118. Mouna, C.; Bassem, K.; Hazem, B. M. Evaluation of anti-diabetic and anti-tumoral activities of bioactivecompounds from Phoenix dactylifera L’s leaf: In vitro and in vivo approach. Biomed. Pharmacother. 2016, 84, 415–422. 119. Nam, S. Y.; Kim, H. Y.; Yoou, M. S. Anti-inflammatory effects of isoacteoside from Abeliophyllum distichum. Nat. Prod. Res. 2015, 37, 258–264. 120. Marconi Rego, B. J.; Renata, R. M.; Jandson, S. S. Anti-inflammatory and antioxidant activities of Lantana radula Swartz and its phenylethanoid glycosides. J. Med. Plants. Res. 2014, 8, 1354–1361. 121. Samy, M. N.; Khalil, H. E.; Sugimoto. S. Three new flavonoid glycosides, byzantionoside B 6'-O-sulfate and xyloglucoside of (Z)-hex-3-en-1-ol from Ruellia patula. Chem. Pharm. Bull. 2011, 59, 725–729. 122. Sudo, H.; Otsuka, H.; Hirata, E. Megastigmane, benzyl and phenethyl alcohol glycosides, and 4, 4'-dimethoxy-β-truxinic acid catalpol diester from the leaves of Premna subscandens merr. Yakugaku Zasshi. 2000, 48, 542–546. 123. Damtoft, S.; Franzy, H.; L Jensen, S. R. Iridoids and verbascosides in Retzia. Phytochemistry. 1993, 34, 239–243. 124. Zhao, Y.; Zeng, J.; Liu, Y. Collective syntheses of phenylethanoid glycosides by interrupted pummerer reaction mediated glycosylations. J. Carbohydr. Chem. 2019, 37, 471–497. 125. Kırmızıbekmez, H.; Erdoğan, M.; Kúsz, N. Secondary metabolites from the aerial parts of Sideritis germanicopolitana and their in vitro enzyme inhibitory activities. Nat. Prod. Res. 2019, 5, 25–29. 126. Tan, D.; Jiang, C.; Tao, Y. Chemical constituents of Acanthus ilicifolius. Arch. Pharm. Res. 2016, 52, 1830–1831. 127. Phakeovilay, C.; Diasdee, W.; Sahakitpichan, P. Phenylethanoid and flavone glycosides from Ruellia tuberosa L. J. Nat. Med. 2012, 67, 228–233. 128. Porter. E. A.; Kite, G. C.; Veitch, N. C. Phenylethanoid glycosides in tepals of Magnolia salicifolia and their occurrence in flowers of Magnoliaceae. Phytochemistry. 2015, 117, 185–193. 129. Saracoglu, I.; Suleimanov, T.; Shukurova, A. Iridoids and phenylethanoid glycosides from Phlomis pungens of the flora of Azerbaijan. Chem. Nat. Compd. 2017, 53, 2055–2057. 130. Liu, Y.; Seligmann, O.; Wagner, H. Paucifloside, a new phenylpropanoid glycoside from Lysionotus pauciflorus. Nat. Prod. Res. 1995, 7, 23–28. 131. Chun, J. C.; Kim, J. C.; Hwang, I. T. Acteoside from Rehmannia glutinosa nullifies paraquat activity in Cucumis sativus. Pestic. Biochem. Phys. 2002, 72, 153–159. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76818 | - |
| dc.description.abstract | 第一部分:台灣苧麻莖部化學成分之研究 台灣苧麻 (Boehmeria formosana) 為台灣原生之蕁麻科植物,分布於台灣還有日本及中國大陸。同屬植物具有降血糖、抗B型肝炎,與抗癌等活性。而在本實驗室先前研究中,發現台灣苧麻葉部具有多種菲併吲哚啶(phenanthroindolizidine)與菲併喹啉(phenathroquinolizidine)類生物鹼的成分,文獻中報導具有抗發炎、抗微生物、抗癌、抗痢疾等生物活性。基於上述原因,本研究進而探討此植物之莖部中生物鹼及其他生物活性成分,藉以評估台灣苧麻莖部對於藥用的潛力。 莖部乙醇萃取物以液相-液相分配進行極性分割,得到二氯甲烷、乙酸乙酯、正丁醇層與水四個可溶部分。乙酸乙酯及二氯甲烷可溶部分利用Sephadex LH-20、矽膠正相及逆相和半製備高效能液相層析管柱進行分離,純化並鑑定出10個化合物: para-coumaric acid (1)、5-O-caffeoylshikimic acid (2) taxifolin (3)、eriodictyol (4)、luteolin (5)、quercetin 3-O-α-L-rhamnoside (6)、5,7-dihydroxychromone (7)、ficuseptine (8)、4a,4b-seco-dehydroantofine (9)及(+)-antofine (10)。 上述成分之化學結構主要係藉由一維與二維解析核磁共振譜並搭配質譜資料而得到。文獻報導4a,4b-seco-dehydroantofine (9)及(+)-antofine (10)對於肺癌、肝癌細胞具有抑制作用。 第二部分:塊莖蘆莉草化學成分之研究 塊莖蘆莉草 (Ruellia tuberosa) 原產於中美洲和南美洲熱帶地區,分佈於東南亞印尼、印度、巴基斯坦和臺灣等熱帶地區。此植物為爵床科之蘆利草屬植物,同屬植物具有調控血糖、抗氧化、抗發炎與抗癌等生物活性。因此探討此植物之化學成分,藉以釐清本植物之活性來源成分。 全株乙醇萃取物依序以等體積之正己烷、乙酸乙酯、正丁醇層與水層,以液相-液相分配進行極性分割,共得到四個可溶部分。乙酸乙酯可溶部分利用Sephadex LH-20、矽膠管柱、逆向層析管柱及半製備高效能液相層析管柱進行分離,並純化鑑定出16個化合物: para-hydroxylbenzaldehyde (11)、vanillin (12)、indole-3-carboxaldehyde (13)、cirsimatin (14)、caffeic acid (15)、acteoside (16)、isoacteoside (17)、isonuomioside (18)、fucatoside A (19)、cirsimarin (20)、allantoin (21)、adenine (22)、indole-3-carboxylic acid (23)、tyrosol (24)、stigmasterol (25)、lupeol (26)。 上述成分之結構主要係藉由解析核磁共振譜(氫、碳-13與二維圖譜)並搭配質譜資料而得到。而其中acteoside (16) 具有抗氧化活性,對於血糖與血管收縮素轉換酶(anti-angiotensin-converting enzyme)皆具有抑制效果;isoacteoside (17) 具有抗菌、抗氧化、抗發炎,與肝保護等生物活性。 | zh_TW |
| dc.description.abstract | Part 1: Chemical investigations on the stem of Boehmeria formosana Boehmeria formosana is an indogenous Urticaceae plant of Taiwan, distributed not only in Taiwan, but also in Japan and mainland China. The species from the same genus possess the activities of anti-hyperglycemia, inhibition of HBV production anti-cancer, etc. In the previous studies of our lab, aboundant phenanthroindolizidines and phenathroquinolizidines were isolated from the leaves of B. formosana, and these compounds are reported to demonstrate many biological activities, such as anti-inflammation, anti-microorganism, anti-cancer and anti-dysentery. Thus, the aim of the present study was to investigate the chemical constituents from B. formosana stem and evaluate the potential of B. formosana in medicinal uses. The ethanol extract of the B. formosana stem was divided into four fractions (dichloromethane-, ethyl acetate-, n-butanol-, and water- soluble fractions) by liquid-liquid partition. The ethyl acetate- and dichloromethane- soluble fractions were further separated by Sephadex LH-20, silica gel, RP-18 and semi-preparative RP-18 HPLC chromatography to give 10 compounds, including para-coumaric acid (1), 5-O-caffeoylshikimic acid (2), taxifolin (3), eriodictyol (4), luteolin (5), quercetin 3-O-α-L-rhamnoside (6), 5,7-dihydroxychromone (7), ficuseptine (8), 4a,4b-seco-dehydroantofine (9), and (+)-antofine (10). The structures of the aforementioned compounds were elucidated mainly by spectroscopic analyses of 1D and 2D NMR and assisted by MS data. 4a,4b-seco-dehydroantofine (9) and (+)-antofine (10) were reported to inhibit the growth of lung, liver cancer cells. Part 2: Chemical investigations on whole plant of Ruellia tuberosa Ruellia tuberosa is Acanthaceous herb native to tropical regions of central and south America, and is distributed in Southeast Asia, Indonesia, India, Pakistan and Taiwan. The species of the same genus were reported to possess bioactivities such as anti-glycemia, antioxidation, anti-inflammation, anti-cancer, etc. Therefore, the present study was to investigate the chemical constituents to clarify the resource compounds of its activities. The ethanol extract plant of R. tuberosa was divided into four soluble fractions (n-hexane-, ethyl acetate-, n-butanol-, and water- soluble fractions) by liquid-liquid partition. The ethyl acetate-soluble fraction were further separated by Sephadex LH-20, silica gel, RP-18 and semi-preparative RP-18 HPLC chromatography to give 16 compounds, including para-hydroxylbenzaldehyde (11), vanillin (12), indole-3-carboxaldehyde (13), cirsimatin (14), caffeic acid (15), acteoside (16), isoacteoside (17), isonuomioside (18), fucatoside A (19), cirsimarin (20), allantoin (21), adenine (22), indole-3-carboxylic acid (23), tyrosol (24), stigmasterol (25), and lupeol (26). The structures of the aforementioned compounds were elucidated mainly by 1D and 2D NMR spectroscopic analyses and assisted by MS data. Acteoside (16) was reported to demonstrate antioxidant, anti-angiotensin converting enzyme (ACE) activities and anti-hyperglycemic effect in vitro, isoacteoside (17) exhibited antimicrobial activity against Gram-positive and negative bacteria. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:37:44Z (GMT). No. of bitstreams: 1 U0001-1608202019202900.pdf: 7372675 bytes, checksum: 98db7beebb96ddb86073b1c93289740b (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 中文摘要 III Abstract V 總目錄 VII 流程圖目錄(List of Schemes) XII 表目錄(List of Tables) XIII 圖目錄(List of Figures) XV 專有名詞縮寫(Abbreviatoin of Terminology) XX 壹、台灣苧麻化學成分之研究 1 1. 植物簡介及研究目的 1 1.1植物簡介 1 1.1.1苧麻屬(Boehmeria)植物成分之文獻回顧 2 1.2 研究目的 14 2. 實驗結果與討論 15 2.1 苯丙烷類 (Phenylpropanoids) 16 2.1.1 p-Coumaric acid (1) 之結構解析 16 2.1.2 5-O-Caffeoyl shikimic acid (2) 之結構解析 17 2.2 黃酮類 (Flavonoids) 19 2.2.1 Taxifolin (3) 之結構解析 19 2.2.2 Eriodictyol (4) 之結構解析 21 2.2.3 Luteolin (5) 之結構解析 23 2.2.4 Quercetin 3-O-α-L-rhamnoside (6) 之結構解析 25 2.2.5 5,7-Dihydroxychromone (7) 之結構解析 28 2.3 菲併吲哚啶生物鹼衍生物 (Secophenanthroindolizidine alkaloids) 30 2.3.1 Ficuseptine (8) 之結構解析 30 2.3.2 4a,4b-seco-Dehydroantofine (9) 之結構解析 32 2.4 菲併喹啉生物鹼衍生物 (Secophenanthroquinolizidine alkaloids) 34 2.4.1 (+)-Antofine (10) 之結構解析 34 2.5 討論 36 2.5.1 化學成分於台灣苧麻之分布與含量 36 2.5.2 化合物8-10之生合成推測 38 3. 實驗部分 40 3.1儀器與器材 40 3.1.1理化性質測定儀器 40 3.1.2成分分離之儀器與器材 40 3.1.3 試劑與溶劑 41 3.2 植物來源 42 3.3台灣苧麻莖部化學成分之分離 42 3.3.1台灣苧麻莖部之萃取 42 3.3.2乙酸乙酯可溶層之分離 43 3.3.2.1化合物1之分離 43 3.3.2.2化合物2及6之分離 43 3.3.2.3化合物3之分離 44 3.3.2.4 化合物4之分離 44 3.3.2.5化合物5之分離 45 3.3.3二氯甲烷可溶層之分離 45 3.3.3.1化合物7之分離 46 3.3.3.2化合物8~10之分離 46 3.4 化合物之物理數據 49 第二章 塊莖蘆莉草化學成分之研究 52 1. 植物介紹及研究目的 52 1.1 植物介紹 52 1.2 研究目的 53 1.2.1 蘆莉草屬(Ruellia)植物成分之文獻回顧 54 1.3 苯乙醇苷(Phenylethanoid glycosides) 65 1.3.1 簡介 65 1.3.2 苯乙醇苷 (Phenylethanoid glycosides) 生合成途徑 68 1.3.3 苯乙醇苷 (Phenylethanoid glycosides) 結構與生物活性 71 2. 實驗結果與討論 82 2.1 苯乙醇苷類之單醣組成鑑定方法 83 2.1.1 實驗目的 83 2.1.2苯乙醇苷類之酸水解 83 2.1.3苯乙醇苷類酸水解後單醣之標定 84 2.1.3.1 單糖標定之製備方法 85 2.1.4 單糖-PMP之高效能液相層析偵測 86 2.2 苯甲醛類 (Benzaldehydes) 87 2.2.1 p-Hydroxylbenzaldehyde (11) 之結構解析 87 2.2.2 Vanillin (12) 之結構解析 88 2.3 吲哚生物鹼衍生物(Indole alkaloids) 89 2.3.1 Indole-3-carboxaldehyde (13) 之結構解析 89 2.4 黃酮類 (Flavonoids) 91 2.4.1 Cirsimaritin (14) 之結構解析 91 2.5 苯丙烷類 (Phenylpropanids) 93 2.5.1 Caffeic acid (15) 之結構解析 93 2.6 苯乙醇苷類 (Phenylethanoid glycosides) 95 2.6.1 Acteoside (16) 之結構解析 95 2.6.2 Isoacteoside (17) 之結構解析 99 2.6.3 Isonuomioside (18) 之結構解析 102 2.6.4 Fucatoside A (19) 之結構解析 105 3. 化合物結構鑑定 108 3.1黃酮類 (Flavonoids) 108 3.1.1 Cirsimarin (20) 之結構鑑定 108 3.2 乙內醯脲衍生物 (Hydantoin) 110 3.2.1 Allantoin (21) 之結構鑑定 110 3.3 嘌呤類 (Purine) 111 3.3.1 Adenine (22) 之結構鑑定 111 3.4 吲哚生物鹼衍生物(Indole-type alkaloids) 112 3.4.1 Indole-3-carboxylic acid (23) 之結構鑑定 112 3.5 苯丙烷類 (Phenylpropanoids) 113 3.5.1 Tyrosol (24) 之結構鑑定 113 3.6 固醇類 (Steroids) 114 3.6.1 Stigmasterol (25) 之結構鑑定 114 3.7 萜類 (Terpenoids) 116 3.7.1 Lupeol (26) 之結構鑑定 116 4. 討論 118 4.1 苯乙醇苷類化合物一維核磁共振訊號特徵探討 118 4.2 苯乙醇苷類化合物16與抗糖尿病活性之關聯 122 5. 實驗部分 123 5.1儀器與器材 123 5.2植物來源 123 5.3塊莖蘆莉草化學成分之分離 123 5.3.1塊莖蘆莉草之萃取 123 5.3.2 乙酸乙酯可溶部分之分離 124 5.3.2.1 化合物11及12之分離 124 5.3.2.2 化合物13及14之分離 125 5.3.2.3 化合物16及17之分離 126 5.3.2.4 化合物15之分離 128 5.3.2.5 化合物18之分離 129 5.3.2.6 化合物19之分離 130 5.4化合物11~19之物理數據 133 附圖 149 | |
| dc.language.iso | zh-TW | |
| dc.subject | 台灣苧麻 | zh_TW |
| dc.subject | 塊莖蘆莉草 | zh_TW |
| dc.subject | Boehmeria formosana | en |
| dc.subject | Ruellia tuberosa | en |
| dc.title | 台灣苧麻莖部暨塊莖蘆莉草化學成分之研究 | zh_TW |
| dc.title | Chemical investigation on Boehmeria formosana stem and Ruellia tuberosa | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李水盛(Shoel-Sheng Lee),林雲蓮(Yun-Lian Lin) | |
| dc.subject.keyword | 台灣苧麻,塊莖蘆莉草, | zh_TW |
| dc.subject.keyword | Boehmeria formosana,Ruellia tuberosa, | en |
| dc.relation.page | 211 | |
| dc.identifier.doi | 10.6342/NTU202003604 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202019202900.pdf 未授權公開取用 | 7.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
