請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76812完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林泰元(Thai-Yen Ling) | |
| dc.contributor.author | Min-Hsuan Hsu | en |
| dc.contributor.author | 徐民軒 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:37:33Z | - |
| dc.date.available | 2021-07-10T21:37:33Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76812 | - |
| dc.description.abstract | 周邊動脈疾病(PAD)是指缺血性靜息痛、動脈功能不全、潰瘍、壞疽和下肢低血流。按照Fontaine分級(III-IV期)或Rutherford分級(4-6級),重症肢體缺血(CLI)是本病PAD的晚期,通常伴隨著相當高的發病率和死亡率。到目前為止,標準的治療方案,如手術、血管內介入治療、侵入性手術對PAD的病人進行早期微創處理,但仍然是效果不佳。越來越多的研究表明,來自不同組織的間葉幹細胞(MSCs)具有促進缺血性肢體血管生成和改善機體血液供應的潛力。在此,我們提出從人類胎盤絨毛膜中提取的間葉幹細胞(pcMSCs)可以在小鼠動物模型中幫助組織再生和促進血管生成,表明pcMSCs是CLI/PAD治療應用的潛在候選者。在無血清培養體系和IV型膠原蛋白條件下,pcMSCs仍具有紡錘形,並具有分化為脂肪、硬骨和軟骨的能力,此外,它們還將顯示出間質基質細胞的標誌。在基因集富集分析(GSEA)中,pcMSCs的血管新生基因富集度相較BMMSCs有高度表現,有趣的是纖維母細胞生長因子9(FGF-9)在pcMSCs當中是獨有且大量表現的,在血管新生及組織再生中,這可能是pcMSCs優於BMMSCs的關鍵因子。細胞實驗也可以發現,pcMSCs在內皮細胞沒有生長因子的情況下,促進了內皮細胞的增殖、遷移和血管的形成,並保護內皮細胞及減少細胞凋亡。在活體外的實驗也發現,pcMSCs可以促進血管生成,加速動脈環的萌發。在活體內的實驗發現,pcMSCs輔助血液灌注、後肢缺血程度減弱,並且肌肉的壞死程度也較小。結合臨床經驗,為了加強細胞治療的效果,我們結合pcMSCs的免疫調節能力,利用常見的發炎因子調節pcMSCs的反應,希望將缺血性疾病的進程區分的更細以利於投予促進發炎抑或是抑制發炎的pcMSCs來加速組織的修復。 | zh_TW |
| dc.description.abstract | Peripheral artery disease (PAD) is defined as ischemic rest pain, arterial insufficiency ulcers, gangrene and hypoperfusion of the lower extremity. According to the Fontaine classification (stage III-IV) or the Rutherford classification (grades 4–6), critical limb ischemia (CLI) is an advanced stage of PAD, which is usually accompanied with a considerable high incidence and mortality. So far, standard treatment programs such as surgery, intravascular interventional therapy, and invasive surgery, have performed early minimally invasive treatment for patients with PAD; however, the effect is still not great. More and more studies have shown that mesenchymal stem cells (MSCs) from different tissues have the potential to promote ischemic limb angiogenesis and improve the body's blood supply. Here, we propose that mesenchymal stem cells (pcMSCs) extracted from human placental chorion can help tissue regeneration and promote angiogenesis in mouse animal models, indicating that pcMSCs are potential candidates for CLI/PAD therapeutic applications. Under the condition of a serum-free culture system and type IV collagen, pcMSCs still have a spindle shape and have the ability to differentiate into fat, hard bone, and cartilage. In addition, they will also show signs of mesenchymal stromal cells. In gene set enrichment analysis (GSEA), pcMSCs has a higher degree of enrichment of angiogenesis genes than BMMSCs. What is interesting is that fibroblast growth factor 9 (FGF-9) is unique and abundant in pcMSCs. In angiogenesis and tissue regeneration, this may be a key factor for pcMSCs to be superior to BMMSCs. Cell experiments can also find that pcMSCs promote the proliferation and migration of endothelial cells and the formation of blood vessels in the absence of growth factors in endothelial cells, protects endothelial cells, and reduces apoptosis. In vitro experiments have also found that pcMSCs can promote angiogenesis and accelerate the germination of arterial rings. In vivo experiments found that pcMSCs assisted blood perfusion, reduced hind limb ischemia, and reduced muscle necrosis. In addition to clinical experience, we combined the immunomodulatory ability of pcMSCs and used common inflammatory factors to regulate the response of pcMSCs and strengthen the effect of cell therapy. We hope to distinguish the process of ischemic disease more finely to facilitate the administration to promote inflammation or inhibit inflamed pcMSCs from accelerating tissue repair. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:37:33Z (GMT). No. of bitstreams: 1 U0001-1708202012381100.pdf: 18102032 bytes, checksum: a6e0d00b0a9879628f104e06c4dfc852 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Contents 中文摘要 I Abstract II Chapter 1 Introduction 1 1.1 The original of mesenchymal stem/stromal cells (MSCs) 2 1.2 Identity document of MSCs 3 1.3 Sources of MSCs 5 1.4 In vitro MSCs expansion: alternative methods 7 1.5 The risk of malignant transformation of in vitro expanded MSCs 9 1.6 MSCs functions 10 1.7 The mechanisms of MSC-based therapy 13 1.8 Overview of peripheral arterial disease (PAD) 17 1.9 Regenerative processes of peripheral arterial disease (PAD) 19 1.10 Clinical trial of peripheral arterial disease (PAD) 22 1.11 Aim of study 23 Chapter 2 Materials and methods 26 2.1 Animals 27 2.2 Human placenta choriodecidual-derived mesenchymal stem cells (pcMSCs) 27 2.3 Multilineage differentiation 28 2.4 Immunophenotypic characterization of pcMSCs 30 2.5 RNA sequencing analysis 30 2.6 Endothelial cells culture 31 2.7 Ischimia-impaired cell model 31 2.8 Cell viability assay 32 2.9 DNA content analysis 32 2.10 Annexin V-FITC/propidium iodide (PI) apoptotic analysis 32 2.11 Wound healing assay 33 2.12 Tube formation assay 33 2.13 In vivo matrigel plug assay 34 2.14 Aortic ring assay 34 2.15 Reverse-transcription (RT) and real-time polymerase chain reaction (RT-PCR) 35 2.16 Splenocyte proliferation assay 36 2.17 A murine model of peripheral arterial disease (PAD) 37 2.18 Statistical analysis 38 Chapter 3 Results 39 3.1 The characteristics of human placenta choriodecidual-derived mesenchymal stromal cells (pcMSCs) 40 3.2 Gene markers for the human bone marrow mesenchymal stromal cells (BMMSCs) versus placenta choriodecidual-derived mesenchymal stromal cells (pcMSCs) comparison 41 3.3 Enrichment of angiogenesis-related items is upregulated in pcMSCs in the gene 42 set enrichment analysis (GSEA) 42 3.4 pcMSCs promote endothelial cells viability in vitro 43 3.5 pcMSCs promote endothelial cells proliferation was associated with G0/G1 44 3.6 pcMSCs decrease endothelial cells apoptosis and maintaine live cell population 44 3.7 pcMSCs promote endothelial cells migration in vitro 45 3.8 pcMSCs promote endothelial cells tube formation in vitro 46 3.9 pcMSCs enhance ex vivo angiogenesis in matrigel plug assay 46 3.10 pcMSCs promote microvessel outgrowth from the murine aortic ring 47 3.11 The inflammatory cytokines enhance pcMSCs’ immunoregulatory function 47 3.12 Inflammatory cytokines stimulate pcMSCs reduce splenocytes proliferation 49 Chapter 4 Discussion and conclusion 52 4.1 What have we learned from clinical trials of peripheral arterial disease (PAD) 53 4.2 Tissue regeneration-inflammation cross-talk 55 4.3 Mesenchymal stromal cell intervention the progression of tissue regeneration 56 4.4 Conclusion 57 Chapter 5 Figures and legends 60 Figure 1. The characteristics of pcMSCs 63 Figure 2. Gene markers for the human bone marrow mesenchymal stromal cells (BMMSCs) versus placenta choriodecidual-derived mesenchymal stromal cells (pcMSCs) comparison 66 Figure 3. Enrichment of angiogenesis-related items is upregulated by pcMSCs in the GSEA analysis 69 Figure 4. pcMSCs promote endothelial cells viability in vitro 71 Figure 5. pcMSCs promote endothelial cells proliferation was associated with G0/G1 arrest 75 Figure 6. pcMSCs decrease endothelial cells apoptosis and maintain live cell population 79 Figure 7. pcMSCs promote endothelial cells migration in vitro 83 Figure 8. pcMSCs promote endothelial cells tube formation in vitro 85 Figure 9. pcMSCs enhance ex vivo angiogenesis in matrigel plug assay 87 Figure 10. pcMSCs promote microvessel outgrowth from the murine aortic ring 89 Figure 11. The inflammatory cytokines enhance pcMSCs’ immunoregulatory function 92 Figure 12. Inflammatory cytokines stimulate pcMSCs reduce splenocytes proliferation 94 Figure 13. pcMSCs promote blood perfusion and attenuate hind limb ischemia in vivo 98 Table 1. Antibodies for flow cytometry 99 Table 2. Biological process classification of GESA analysis 100 Table 3. Ischemia scale 104 Table 4. Real time PCR human primer sequences 105 Chapter 6 References 108 | |
| dc.language.iso | en | |
| dc.subject | 周邊動脈疾病 | zh_TW |
| dc.subject | 胎盤絨毛膜間葉幹細胞 | zh_TW |
| dc.subject | 內皮細胞 | zh_TW |
| dc.subject | 血管再生 | zh_TW |
| dc.subject | 細胞治療 | zh_TW |
| dc.subject | 後肢缺血 | zh_TW |
| dc.subject | Hind limb ischemia | en |
| dc.subject | Placenta choriodecidual-derived mesenchymal stromal cells | en |
| dc.subject | Endothelial cells | en |
| dc.subject | Vascular regeneration | en |
| dc.subject | Cell therapy | en |
| dc.subject | Peripheral artery disease | en |
| dc.title | 人類胎盤絨毛膜蛻膜間葉細胞促進小鼠模型血管再生緩解後肢缺血 | zh_TW |
| dc.title | The Application of Human Placenta Choriodecidual Membrane Derived Mesenchymal Stromal Cells to Relieve Hind limb Ischemia by Promoting Vascular Regeneration in Mouse Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林秋烽(Chiou-Feng Lin),林琬琬(Wan-Wan Lin),楊鎧鍵(Kai-Chien Yang),黃彥華(Yen-Hua Huang) | |
| dc.subject.keyword | 周邊動脈疾病,胎盤絨毛膜間葉幹細胞,內皮細胞,血管再生,細胞治療,後肢缺血, | zh_TW |
| dc.subject.keyword | Peripheral artery disease,Placenta choriodecidual-derived mesenchymal stromal cells,Endothelial cells,Vascular regeneration,Cell therapy,Hind limb ischemia, | en |
| dc.relation.page | 127 | |
| dc.identifier.doi | 10.6342/NTU202003721 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202012381100.pdf 未授權公開取用 | 17.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
