請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7680完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張雅君(Ya-Chun Chang) | |
| dc.contributor.author | Shang-Ming Guo | en |
| dc.contributor.author | 郭尚明 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:49:57Z | - |
| dc.date.available | 2022-08-24 | |
| dc.date.available | 2021-05-19T17:49:57Z | - |
| dc.date.copyright | 2017-08-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-17 | |
| dc.identifier.citation | 張清安 (2006)。蘭花病毒之診斷、鑑定與偵測。植物重要防疫檢疫病害診斷鑑定技術研習會專刊(五)。
Ajjikuttira, P., Loh, C.-S., and Wong, S.-M. (2005). Reciprocal function of movement proteins and complementation of long-distance movement of Cymbidium mosaic virus RNA by Odontoglossum ringspot virus coat protein. J. Gen. Virol. 86: 1543-1553. Ali, R.N., Dann, A.L., Cross, P.A., and Wilson, C.R. (2014). Multiplex RT-PCR detection of three common viruses infecting orchids. Arch. Virol. 159: 3095-3099. An, G., Ebert, P., Mitra, A., and Ha, S. (1988). Binary vectors. Gelvin, S.B. Schilperoort, R.A., Verma, D.P.S. Plant Mol. Biol. Man. vol A3. Kluwer Acad. Publ. Dordrecht, pp. 1-19. Angell, S.M., Davies, C., and Baulcombe, D.C. (1996). Cell-to-cell movement of Potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana cleveland ii. Virology 216: 197-201. Baulcombe, D.C., Chapman, S., and Santa Cruz, S. (1995). Jellyfish green fluorescent protein as a reporter for virus infections. Plant J. 7: 1045-1053. Brosseau, C. and Moffett, P. (2015). Functional and genetic analysis identify a role for Arabidopsis ARGONAUTE5 in antiviral RNA silencing. Plant Cell 27: 1742-1754. Chapman, S., Kavanagh, T., and Baulcombe, D. (1992). Potato virus X as a vector for gene expression in plants. Plant J. 2: 549-557. Chiu, M.H., Chen, I.H., Baulcombe, D.C., and Tsai, C.H. (2010). The silencing suppressor P25 of Potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway. Mol. Plant Pathol. 11: 641-649. Cruz, S.S., Chapman, S., Roberts, A.G., Roberts, I.M., Prior, D.A., and Oparka, K.J. (1996). Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proc. Natl. Acad. Sci. U. S. A. 93: 6286-6290. Cuellar, W.J., Kreuze, J.F., Rajamaki, M.-L., Cruzado, K.R., Untiveros, M., and Valkonen, J.P.T. (2009). Elimination of antiviral defense by viral RNase III. Proc. Natl. Acad. Sci. U. S. A. 106: 10354-10358. Dawson, W.O., Bar-Joseph, M., Garnsey, S.M., and Moreno, P. (2015). Citrus tristeza virus: making an ally from an enemy. Annu. Rev. Phytopathol. 53: 137-155. Dietrich, C. and Maiss, E. (2003). Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. J. Gen. Virol. 84: 2871-2876. Ding, S.W. and Voinnet, O. (2007). Antiviral immunity directed by small RNAs. Cell 130: 413-426. Ding, X.S., Liu, J., Cheng, N.-H., Folimonov, A., Hou, Y.-M., Bao, Y., Katagi, C., Carter, S.A., and Nelson, R.S. (2004). The Tobacco mosaic virus 126-kDa protein associated with virus replication and movement suppresses RNA silencing. Mol. Plant. Microbe. Interact. 17: 583-592. Donnelly, M.L., Hughes, L.E., Luke, G., Mendoza, H., tenDam, E., Gani, D., and Ryan, M.D. (2001). The “cleavage” activities of Foot-and -mouth disease virus 2A site-directed mutants and naturally occurring “2A-like” sequences. J. Gen. Virol. 82: 1027-1041. Ebhardt, H.A., Thi, E.P., Wang, M.B., and Unrau, P.J. (2005). Extensive 3’ modification of plant small RNAs is modulated by helper component-proteinase expression. Proc Natl Acad Sci U S A 102: 13398-13403. Epel, B.L., Padgett, H.S., Heinlein, M., and Beachy, R.N. (1996). Plant virus movement protein dynamics probed with a GFP-protein fusion. Gene 173: 75-79. Garcia-Cano, E., Resende, R.O., Fernand ez-Munoz, R., and Moriones, E. (2006). Synergistic interaction between Tomato chlorosis virus and Tomato spotted wilt virus results in breakdown of resistance in tomato. Phytopathology 96: 1263-1269. Gonzalez-Jara, P., Atencio, F.A., Martinez-Garcia, B., Barajas, D., Tenllado, F., and Diaz-Ruiz, J.R. (2005). A single amino acid mutation in the Plum pox virus helper component-proteinase gene abolishes both synergistic and RNA silencing suppression activities. Phytopathology 95: 894-901. Gonzalez-Jara, P., Tenllado, F., Martinez-Garcia, B., Atencio, F.A., Barajas, D., Vargas, M., Diaz-Ruiz, J., and Diaz-Ruiz, J.R. (2004). Host-dependent differences during synergistic infection by potyviruses with Potato virus X. Mol. Plant Pathol. 5: 29-35. Hacker, D.L. and Fowler, B.C. (2000). Complementation of the host range restriction of Southern cowpea mosaic virus in bean by Southern bean mosaic virus. Virology 266: 140-149. He, A.L. (2012). Analysis and application of the capsid protein subgenomic promotor of Pitaya virus X. Master Thesis. Heinlein, M., Epel, B.L., Padgett, H.S., and Beachy, R.N. (1995). Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270: 1983-1985. Hisa, Y., Suzuki, H., Atsumi, G., Choi, S.H., Nakahara, K.S., and Uyeda, I. (2014). P3N-PIPO of Clover yellow vein virus exacerbates symptoms in pea infected with White clover mosaic virus and is implicated in viral synergism. Virology 449: 200-206. Hu, W.W., Wong, S.M., Goh, C.J., and Loh, C.S. (1998). Synergism in replication of Cymbidium mosaic potexvirus (CymMV) and Odontoglossum ringspot tobamovirus (ORSV) RNA in orchid protoplasts. Arch. Virol. 143: 1265-1275. Huang, Y.W. (2014). Synergism in infectivity between Odontoglossum ringspot virus and Cymbidium mosaic virus. Master Thesis. Karran, R.A. and Sanfacon, H. (2014). Tomato ringspot virus coat protein binds to ARGONAUTE 1 and suppresses the translation repression of a reporter gene. Mol. Plant. Microbe. Interact. 27: 933-943. Karyeija, R.F., Kreuze, J.F., Gibson, R.W., and Valkonen, J.P. (2000). Synergistic interactions of a potyvirus and a phloem-limited crinivirus in sweet potato plants. Virology 269: 26-36. Keima, T., Hagiwara-Komoda, Y., Hashimoto, M., Neriya, Y., Koinuma, H., Iwabuchi, N., Nishida, S., Yamaji, Y., and Namba, S. (2017). Deficiency of the eIF4E isoform nCBP limits the cell-to-cell movement of a plant virus encoding triple-gene-block proteins in Arabidopsis thaliana. Sci. Rep. 7: 39678. King, A.M.Q., Elliot Lefkowitz, M.J.A., and Carstens, E.B. (2011). Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. Koh, K.W., Lu, H.-C., and Chan, M.-T. (2014). Virus resistance in orchids. Plant Sci. 228: 26-38. Lakatos, L., Szittya, G., Silhavy, D., and Burgyan, J. (2004). Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J. 23: 876-884. Latham, J.R. and Wilson, A.K. (2008). Transcomplementation and synergism in plants: implications for viral transgenes? Mol. Plant Pathol. 9: 85-103. Lee, S.-C. (2008). Development of detection methods for two important orchid viruses, Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV), and construction and characterization of an ORSV infectious cDNA clone. Master thesis. Lee, S.-C. and Chang, Y.-C. (2006). Multiplex RT-PCR detection of two orchid viruses with an internal control of plant nad5 mRNA. Plant Pathol. Bull. 15: 187-196. Lee, S.-C. and Chang, Y.-C. (2008). Performances and application of antisera produced by recombinant capsid proteins of Cymbidium mosaic virus and Odontoglossum ringspot virus. Eur. J. Plant Pathol. Lin, P.C., Hu, W.C., Lee, S.C., Chen, Y.L., Lee, C.Y., Chen, Y.R., Liu, L.Y., Chen, P.Y., Lin, S.S., and Chang, Y.C. (2015). Application of an integrated omics approach for identifying host proteins that interact with Odontoglossum ringspot virus capsid protein. Mol Plant Microbe Interact 28: 711-726. Liu, D., Shi, L., Han, C., Yu, J., Li, D., and Zhang, Y. (2012). Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS One 7: e46451. Liu, H.L., Liu, Y.W., Shen, T.L., Hsu, C.H., and Chang, Y.C. (2016). Characterization and application of a common epitope recognized by a broad-spectrum C4 monoclonal antibody against capsid proteins of plant potyviruses. Appl. Microbiol. Biotechnol. 100: 1853-1869. Lu, H.C., Chen, C.E., Tsai, M.H., Wang, H.I., Su, H.J., and Yeh, H.H. (2009). Cymbidium mosaic potexvirus isolate-dependent host movement systems reveal two movement control determinants and the coat protein is the dominant. Virology 388: 147-159. Lu, H.C., Chen, H.H., Tsai, W.C., Chen, W.H., Su, H.J., Chang, D.C., and Yeh, H.H. (2007). Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol. 143: 558-569. Lu, R., Folimonov, A., Shintaku, M., Li, W.-X., Falk, B.W., Dawson, W.O., and Ding, S.-W. (2004). Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc. Natl. Acad. Sci. U. S. A. 101: 15742-15747. Mascia, T. and Gallitelli, D. (2016). Synergies and antagonisms in virus interactions. Plant Sci. 252: 176-192. Minato, N., Komatsu, K., Okano, Y., Maejima, K., Ozeki, J., Senshu, H., Takahashi, S., Yamaji, Y., and Namba, S. (2014). Efficient foreign gene expression in planta using a Plantago asiatica mosaic virus-based vector achieved by the strong RNA-silencing suppressor activity of TGBp1. Arch. Virol. 159: 885-896. Mochizuki, T., Nobuhara, S., Nishimura, M., Ryang, B.-S., Naoe, M., Matsumoto, T., Kosaka, Y., and Ohki, S.T. (2016). The entry of Cucumber mosaic virus into cucumber xylem is facilitated by co-infection with Zucchini yellow mosaic virus. Arch. Virol. Padgett, H.S., Epel, B.L., Kahn, T.W., Heinlein, M., Watanabe, Y., and Beachy, R.N. (1996). Distribution of tobamovirus movement protein in infected cells and implications for cell-to-cell spread of infection. Plant J. 10: 1079-1088. Park, M.-R. and Kim, K.-H. (2013). Molecular characterization of the interaction between the N-terminal region of Potato virus X (PVX) coat protein (CP) and Nicotiana benthamiana PVX CP-interacting protein, NbPCIP1. Virus Genes 46: 517-523. Pearson, M.N. and Cole, J.S. (1991). Further observations on the effects of Cymbidium mosaic virus and Odontoglossum ringspot virus on the growth of Cymbidium orchids. J. Phytopathol. 131: 193-198. Petty, I.T., Hunter, B.G., Wei, N., and Jackson, A.O. (1989). Infectious Barley stripe mosaic virus RNA transcribed in vitro from full-length genomic cDNA clones. Virology 171: 342-349. Pruss, G., Ge, X., Shi, X.M., Carrington, J.C., and Bowman Vance, V. (1997). Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9: 859-868. Pruss, G.J., Nester, E.W., and Vance, V. (2008). Infiltration with Agrobacterium tumefaciens induces host defense and development-dependent responses in the infiltrated zone. Mol. Plant. Microbe. Interact. 21: 1528-1538. Rochow. W and Ross. F (1955). Virus multiplication in plants doubly infected by Potato viruses X and Y. Virology 1: 10-27. Ruiz, M.T., Voinnet, O., and Baulcombe, D.C. (1998). Initiation and maintenance of virus-induced gene silencing. Plant Cell 10: 937-946. Ryang, B.-S., Kobori, T., Matsumoto, T., Kosaka, Y., and Ohki, S.T. (2004). Cucumber mosaic virus 2b protein compensates for restricted systemic spread of Potato virus Y in doubly infected tobacco. J. Gen. Virol. 85: 3405-3414. Siddiqui, S.A., Valkonen, J.P.T., Rajamaki, M.-L., and Lehto, K. (2011). The 2b silencing suppressor of a mild strain of Cucumber mosaic virus alone is sufficient for synergistic interaction with Tobacco mosaic virus and induction of severe leaf malformation in 2b-transgenic tobacco plants. Mol. Plant. Microbe. Interact. 24: 685-693. Srinivasan, R. and Alvarez, J.M. (2007). Effect of mixed viral infections (Potato virus Y-Potato leafroll virus) on biology and preference of vectors Myzus persicae and Macrosiphum euphorbiae (Hemiptera: Aphididae). J. Econ. Entomol. 100: 646-655. Syller, J. (2012). Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol. Plant Pathol. 13: 204-216. Syller, J. and Grupa, A. (2016). Antagonistic within-host interactions between plant viruses: molecular basis and impact on viral and host fitness. Mol. Plant Pathol. 17: 769-782. Tilsner, J., Linnik, O., Louveaux, M., Roberts, I.M., Chapman, S.N., and Oparka, K.J. (2013). Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J. Cell Biol. 201: 981-995. Tilsner, J., Linnik, O., Wright, K.M., Bell, K., Roberts, A.G., Lacomme, C., Santa Cruz, S., and Oparka, K.J. (2012). The TGB1 movement protein of Potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory. Plant Physiol. 158: 1359-1370. Turpen, T.H., Turpen, A.M., Weinzettl, N., Kumagai, M.H., and Dawson, W.O. (1993). Transfection of whole plants from wounds inoculated with Agrobacterium tumefaciens containing cDNA of Tobacco mosaic virus. J. Virol. Methods 42: 227-239. Untiveros, M., Fuentes, S., and Salazar, L.F. (2007). Synergistic interaction of Sweet potato chlorotic stunt virus (Crinivirus) with Carla-, Cucumo-, Ipomo-, and Potyviruses infecting sweet potato. Plant Dis. Vance, V.B. (1991). Replication of Potato virus X RNA is altered in coinfections with Potato virus Y. Virology 182: 486-494. Vance, V.B., Berger, P.H., Carrington, J.C., Hunt, A.G., and Shi, X.M. (1995). 5’ proximal potyviral sequences mediate Potato virus X/potyviral synergistic disease in transgenic tobacco. Virology 206: 583-590. Vieira, J. and Messing, J. (1987). Production of single-stranded plasmid DNA. Methods Enzymol. 153: 3-11. Voinnet, O. and Baulcombe, D.C. (1997). Systemic signalling in gene silencing. Nature 389: 553. Voinnet, O., Lederer, C., and Baulcombe, D.C. (2000). A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103: 157-167. Wang, L.Y., Lin, S.S., Hung, T.H., Li, T.K., Lin, N.C., and Shen, T.L. (2012). Multiple domains of the Tobacco mosaic virus p126 protein can independently suppress local and systemic RNA silencing. Mol Plant Microbe Interact 25: 648-657. Wang, Y., Lee, K.C., Gaba, V., Wong, S.M., Palukaitis, P., and Gal-On, A. (2004). Breakage of resistance to Cucumber mosaic virus by co-infection with Zucchini yellow mosaic virus: enhancement of CMV accumulation independent of symptom expression. Arch. Virol. 149: 379-396. Wege, C. and Siegmund, D. (2007). Synergism of a DNA and an RNA virus: enhanced tissue infiltration of the begomovirus Abutilon mosaic virus (AbMV) mediated by Cucumber mosaic virus (CMV). Virology 357: 10-28. Wong, S.M., Chng, C.G., Lee, Y.H., Tan, K., and Zettler, F.W. (1994). Incidence of Cymbidium mosaic and Odontoglossum ringspot viruses and their significance in orchid cultivation in Singapore. Crop Prot. 13: 235-239. Yao, J.Y. (2011). Studies on Tobacco mild green mosaic virus and construction of a TMGMV-based vector. Master Thesis. Zayakina, O., Arkhipenko, M., Kozlovsky, S., Nikitin, N., Smirnov, A., Susi, P., Rodionova, N., Karpova, O., and Atabekov, J. (2008). Mutagenic analysis of Potato virus X movement protein (TGBp1) and the coat protein (CP): in vitro TGBp1-CP binding and viral RNA translation activation. Mol. Plant Pathol. 9: 37-44. Zettler, F.W., Ko, N.-J., Wisler, G.C., Elliott, M.S., and Wong, S.-M. (1990). Viruses of orchids and their control. Plant Dis. 74: 621-626. Zhang, X., Yuan, Y.R., Pei, Y., Lin, S.S., Tuschl, T., Patel, D.J., and Chua, N.H. (2006). Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev. 20: 3255-3268. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7680 | - |
| dc.description.abstract | 植物病毒共同感染於相同寄主時,常會產生交互作用。齒舌蘭輪斑病毒(Odontoglossum ringspot virus, ORSV)與蕙蘭嵌紋病毒(Cymbidium mosaic virus, CymMV)複合感染至蘭花時,往往會造成較單獨感染更為嚴重的病徵,此病徵加劇的現象稱為協力作用(synergistic effect)。本實驗室於圓葉菸草(Nicotiana benthamiana)系統中發現,ORSV與CymMV複合感染於菸草原生質體時,仍保有協力作用,且ORSV似乎透過具有基因靜默抑制功能之p126蛋白調控與CymMV的協力作用。本研究延續兩病毒於圓葉菸草中之試驗,以農桿菌接種法接種CymMV與ORSV之其他蛋白,發現除了p126外,鞘蛋白也會使CymMV的累積量上升,但機制仍不清楚。ORSV p126的四個功能區單獨存在時,已被證明均不具有基因靜默抑制能力;而本研究構築出不同功能區組合的p126蛋白,發現缺少任一功能區者,亦無法抑制植物之基因靜默。將ORSV與CymMV複合接種於菸草中,發現在接種葉的病毒累積量上無法觀察到兩者有協力作用產生;但透過罹病組織之汁液接種,在接種葉與系統葉均可觀察到較明顯且嚴重的病徵。利用間接式酵素免疫吸附法(I-ELISA)測定,發現原本無法移動至系統葉之CymMV可成功感染至系統葉,顯示雖然在病毒累積量上無協力現象,但在移動能力上ORSV仍可協助CymMV。若將CymMV與失去系統性移動能力之ORSVE100A複合感染,則此協力現象消失,顯示CymMV之系統性移動可能倚賴ORSV之CP或ORSV之感染過程。欲了解CymMV受ORSV協助的情形是否具有專一性,嘗試共表現CymMV與Turnip mosaic virus (TuMV) HCPro、Cucumber mosaic virus (CMV) 2b、Potato virus X (PVX) p25及Tomato bushy stunt virus (TBSV) p19等已知的病毒基因靜默抑制子。結果顯示,除PVX p25幫助CymMV的效應較不明顯外,其餘基因靜默抑制子均可顯著地提升CymMV累積量,顯示在病毒累積量上p126協助CymMV的情形並不具有專一性。然而在系統性移動上,TuMV、PVX及隸屬於Tobamovirus屬之Tomato mild green mosaic virus (TMGMV)均可協助CymMV移動至系統葉。在TuMV+CymMV與PVX+CymMV複合感染時,分別有57%及50%的植株在系統葉上偵測到CymMV;而在TMGMV+CymMV複合感染植株中,CymMV均可系統性感染。最後,本實驗構築出可表現明顯綠色螢光之CymMV-eGFP螢光病毒株,並利用該材料驗證在病毒累積量與系統性移動上所觀察到的現象。 | zh_TW |
| dc.description.abstract | Mixed infection of plant viruses usually leads to intrahost virus-virus interactions. Odontoglossum ringspot virus (ORSV) and Cymbidium mosaic virus (CymMV) commonly co-infect orchid plants and cause more severe symptoms, which is defined as synergistic effect. Recently, we found that the synergistic effect between ORSV and CymMV did exist on Nicotiana benthamiana protoplasts. This interaction seems to be regulated by the silencing suppression activity of ORSV p126. In this study, we continued to explore the interactions between ORSV and CymMV on N. benthamiana. In addition to p126, transiently expressed ORSV capsid protein (CP) facilitated CymMV accumulation on the inoculated leaves of N. benthamiana, but ORSV movement protein did not. The mechanism under this phenomenon remains unknown. Individual domains of ORSV p126 were proved without RNA silencing suppression ability and could not improve CymMV accumulation. In this study, we constructed five different domain combination of p126 and found that all four domains are necessary for RNA silencing suppression. Surprisingly, viral RNA and CP accumulation of both ORSV and CymMV had no significant difference between singly and doubly inoculated leaves of N. benthamiana plants through agroinoculation. However, by means of sap inoculation, more severe symptoms on both inoculated and systemic leaves of doubly infected plants were observed compared to singly infected ones. Next, we detected the viruses in systemic leaves of ORSV and CymMV doubly infected plants by indirect-ELISA, and found that the systemic movement-deficient CymMV could systemically infect N. benthamiana. These results suggested that although mixed infection of ORSV and CymMV did not exhibit synergistic interaction on inoculated leaves, ORSV still facilitated CymMV in other mechanism, probably on movement. Interestingly, facilitation on CymMV systemic movement disappeared when CymMV was co-inoculated with systemic movement-deficient ORSV (ORSVE100), which suggested the systemic movement of CymMV may rely on ORSV CP or ORSV infection processes. To understand the specificity of ORSV-CymMV synergism, we co-expressed CymMV with some well-known RNA silencing suppressors (RSSs), e.g. Turnip mosaic virus (TuMV) HCPro, Cucumber mosaic virus 2b, Potato virus X (PVX) p25 and Tomato bushy stunt virus p19. Except for PVX p25, all RSSs could significantly increase the accumulation of CymMV, which indicated that p126-mediated enhancement of CymMV accumulation probably can be replaced by other RSSs. Furthermore, we were curious about whether CymMV can systemically infect N. benthamiana with the aid of other ORSV-related or ORSV-unrelated viruses. For mixed infection of TuMV+CymMV, and PVX+CymMV, about 57% and 50% infected plants showed systemic CymMV infection. Co-infection of CymMV and Tomato mild green mosaic virus (TMGMV), a tobamovirus, facilitated systemic movement of CymMV on all tested plants. Finally, we constructed three eGFP-expressing CymMV clones and used one of them to confirm the experimental results. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:49:57Z (GMT). No. of bitstreams: 1 ntu-106-R03633010-1.pdf: 3294046 bytes, checksum: e41da7d947f6e9713e19e43ec838fcf2 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract iii 1. 前言 1 1.1 植物之防禦反應與病毒基因靜默抑制子 1 1.2 植物病毒之交互作用 2 1.3 植物病毒之協力作用 3 1.4 齒舌蘭輪斑病毒與蕙蘭嵌紋病毒 5 1.5 前人研究與研究目的 6 2. 材料與方法 9 2.1 實驗植物與栽植方式 (Plant material and growth conditions) 9 2.2 小量質體製備 (Plasmid DNA mini preparation) 9 2.3 中量質體製備 (Plasmid DNA midi preparation) 10 2.4 DNA純化 (DNA purification) 11 2.5 質體構築 (Plasmid construction) 11 2.6 農桿菌注射法 (Agroinfiltration) 16 2.7 植物全RNA萃取 (Plant total RNA extraction) 18 2.8 反轉錄即時定量聚合酶鏈鎖反應 (Reverse transcription-real time polymerase chain reaction) 18 2.9 西方墨點法 (Western blotting) 19 2.10 間接式酵素連結免疫吸附法 (indirect enzyme-linked immunosorbent assay). 21s 2.11 生體外轉錄與病毒RNA接種 (in vitro transcription and viral transcript inoculation) 21 2.12 以罹病組織進行病毒接種 (Virus inoculation by infected tissue) 22 2.13 GFP螢光攝影 23 3. 結果 24s 3.1 去除載體上之非病毒序列以增強ORSV與CymMV感染性選殖株之感染力... 24 3.2 短暫表現ORSV蛋白對CymMV累積量之影響 25 3.3 ORSV與CymMV於N. benthamiana植株上之病毒累積情形 26 3.4 不同長度之ORSV p126之基因靜默抑制能力測試 26 3.5 ORSV與CymMV複合感染之病徵觀察及系統性移動情形 26 3.6 構築CymMV螢光病毒並將其與ORSV共同表現 28 3.7 ORSV蛋白對CymMV-eGFP 螢光表現之影響 30 3.8 短暫表現不同病毒之基因靜默抑制子對CymMV累積量的影響 31 3.9 CymMV與TuMV、PVX及TMGMV複合感染之病徵觀察及系統性移動情形 32 4. 討論 34 4.1 ORSV與CymMV於接種葉之協力作用 34 4.2 複合感染時所發生之CymMV系統性移動 37 4.3 ORSV p126之基因靜默抑制能力 39 4.4 CymMV螢光病毒株之應用 40 4.5 結語 41 5. 參考文獻 42 6. 附表 51 7. 附圖 55 | |
| dc.language.iso | zh-TW | |
| dc.title | 於圓葉菸草中探討蕙蘭嵌紋病毒與齒舌蘭輪斑病毒之交互作用 | zh_TW |
| dc.title | Interactions between Cymbidium mosaic virus and Odontoglossum ringspot virus in Nicotiana benthamiana | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林詩舜(Shih-Shun Lin),蔡慶修(Ching-Hsiu Tsai) | |
| dc.subject.keyword | 齒舌蘭輪斑病毒,蕙蘭嵌紋病毒,協力作用,基因靜默抑制,GFP 螢光病毒株, | zh_TW |
| dc.subject.keyword | Odontoglossum ringspot virus,Cymbidium mosaic virus,RNA silencing suppression,GFP-expressing virus, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU201703539 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf | 3.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
