請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76802完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張淑媛 (Sui-Yuan Chang) | |
| dc.contributor.author | Mei-Ann Wang | en |
| dc.contributor.author | 王梅安 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:37:19Z | - |
| dc.date.available | 2021-07-10T21:37:19Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | 1. Palese, P., The genes of influenza virus. Cell, 1977. 10(1): p. 1-10. 2. E. Hoffmann, J.S., Y. Guan, R. G. Webster, and D. R. Perez, Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol, 2001. 146: p. 2275-2289. 3. Howley, B.N.F.D.M.K.P.M., Fields Virology. 5th ed. Orthomyxoviridae: the viruses and their replication. Vol. 2. 2007: Wolters Kluwer Health/Lippincott Williams Wilkins. 1647-1701. 4. Fujiyoshi, Y., Fine structure of influenza A virus observed by electron cryo-microscopy. The EMBO Journal, 1994. 13(1): p. 318-326. 5. C.M. Chu, M.B.S., Ph.D. Camb., Filamentous forms associated with newly isolated influenza virus. Lancet, 1949. 1(6554): p. 602. 6. KILBOURNE ED, M.J., Genetic studies of influenza viruses. I. Viral morphology and growth capacity as exchangeable genetic traits. Rapid in ovo adaptation of early passage Asian strain isolates by combination with PR8. J Exp Med, 1960. 111: p. 387-406. 7. Huang, Q., et al., Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2003. 1614(1): p. 3-13. 8. Schroeder C, H.H., Möncke-Buchner E, Lin TI., The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein. Eur Biophys J, 2005. 34(1): p. 52-66. 9. Matlin KS, R.H., Helenius A, Simons K., Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol., 1981. 91(3): p. 601–613. 10. Sieczkarski SB, W.G., Influenza Virus Can Enter and Infect Cells in the Absence of Clathrin-Mediated Endocytosis. Journal of Virology, 2002. 76(20): p. 10455-10464. 11. Dou, D., et al., Influenza A Virus Cell Entry, Replication, Virion Assembly and Movement. Front Immunol, 2018. 9: p. 1581. 12. Takeda, M., et al., Influenza A Virus M2 Ion Channel Activity Is Essential for Efficient Replication in Tissue Culture. Journal of Virology, 2002. 76(3): p. 1391-1399. 13. Robert E. O'Neill, R.J., Günter Blobel, Peter Palese and Junona Moroianu, Nuclear Import of Influenza Virus RNA Can Be Mediated by Viral Nucleoprotein and Transport Factors Required for Protein Import. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 1995. 270: p. 22701-22704. 14. Paul Digard, L.T., and Debra Elton, Viral Genome Replication. Orthomyxovirus Genome Transcription and Replication, ed. C.E.C.M.G.K.D. Raney. 2009: Springer. 163-180. 15. Baudin, F., et al., In vitro dissection of the membrane and RNP binding activities of influenza virus M1 protein. Virology, 2001. 281(1): p. 102-8. 16. Gabriele Neumann, M.T.H., , and Yoshihiro Kawaoka, Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J. , 2000. 19(24): p. 6751–6758. 17. Hutchinson, E.C. and E. Fodor, Transport of the influenza virus genome from nucleus to nucleus. Viruses, 2013. 5(10): p. 2424-46. 18. Barman S, N.D., Analysis of the transmembrane domain of influenza virus neuraminidase, a type II transmembrane glycoprotein, for apical sorting and raft association. J Virol., 2000. 74(14): p. 6538-45. 19. Avalos RT, Y.Z., Nayak DP., Association of influenza virus NP and M1 proteins with cellular cytoskeletal elements in influenza virus-infected cells. J Virol., 1997. 71(4): p. 2947-58. 20. Nayak DP, H.E., Barman S., Assembly and budding of influenza virus. Virus Res., 2004. 106(2): p. 147-65. 21. Rossman, J.S. and R.A. Lamb, Influenza virus assembly and budding. Virology, 2011. 411(2): p. 229-36. 22. D.Blaas, E.P.a.E.K., Identification of the cap binding protein of infvuenzavirus. Nucleic Acids Research, 1982. 10(15): p. 4803-4812. 23. RM, K., Priming of Influenza Viral RNA Transcription by Capped Heterologous RNAs. Curr Top Microbiol Immunol., 1981. 93: p. 123-149. 24. Janet Braam, I.U., and Robert M. Krug, Molecular Model of a Eucaryotic Transcription Complex: Functions and Movements of Influenza P Proteins during Capped RNA-Primed Transcription. Cell, 1983. 34(2): p. 609-618. 25. Kawaguchi, A., T. Naito, and K. Nagata, Involvement of influenza virus PA subunit in assembly of functional RNA polymerase complexes. J Virol, 2005. 79(2): p. 732-44. 26. Zamarin, D., et al., Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog, 2005. 1(1): p. e4. 27. Mazur, I., et al., The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein. Cellular Microbiology, 2008. 10(5): p. 1140-1152. 28. B. W. Jagger, H.M.W., J. C. Kash, K.-A. Walters, N. M. Wills, An Overlapping Protein-Coding Region in Influenza A Virus Segment 3 Modulates the Host Response. Science, 2012. 337(6091): p. 199-204. 29. Hayashi, T., L.A. MacDonald, and T. Takimoto, Influenza A Virus Protein PA-X Contributes to Viral Growth and Suppression of the Host Antiviral and Immune Responses. J Virol, 2015. 89(12): p. 6442-52. 30. I. A. WILSON, J.J.S.D.C.W., Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature, 1981. 289(5796): p. 366-373. 31. Bullough PA1, H.F., Treharne AC, Ruigrok RW, Skehel JJ, Wiley DC., Crystals of a fragment of influenza haemagglutinin in the low pH induced conformation. J Mol Biol, 1994. 236(4): p. 1262-1265. 32. Koerner, I., et al., Altered receptor specificity and fusion activity of the haemagglutinin contribute to high virulence of a mouse-adapted influenza A virus. J Gen Virol, 2012. 93(Pt 5): p. 970-9. 33. Digard, A.n.P.a.P., The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. Journal of General Virology, 2002. 83: p. 723–734. 34. Shu LL, B.W., Webster RG., Analysis of the evolution and variation of the human influenza A virus nucleoprotein gene from 1933 to 1990. J Virol., 1993. 67(5): p. 2723-9. 35. Kheiri, M.T., et al., Influenza virosome/DNA vaccine complex as a new formulation to induce intra-subtypic protection against influenza virus challenge. Antiviral Res, 2012. 95(3): p. 229-36. 36. Luo C, N.E., Nakajima K., The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. J Gen Virol, 1999. 80: p. 2969–2976. 37. Matrosovich, M.N., et al., Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol, 2004. 78(22): p. 12665-7. 38. Kim CU, C.X., Mendel DB., Neuraminidase inhibitors as anti-influenza virus agents. Antivir Chem Chemother, 1999. 10(4): p. 141-154. 39. Okomo-Adhiambo, M., et al., Neuraminidase inhibitor susceptibility surveillance of influenza viruses circulating worldwide during the 2011 Southern Hemisphere season. Influenza Other Respir Viruses, 2013. 7(5): p. 645-58. 40. Ye Z, L.T., Offringa DP, McInnis J, Levandowski RA., Association of Influenza Virus Matrix Protein with Ribonucleoproteins. J Virol, 1999. 73(9): p. 7467-7473. 41. Wharton SA, B.R., Skehel JJ, Hay AJ., Role of virion M2 protein in influenza virus uncoating: specific reduction in the rate of membrane fusion between virus and liposomes by amantadine. J Gen Virol., 1994. 75: p. 945-948. 42. Wainright PO, P.M., Brugh M, Beard CW., Amantadine resistance among hemagglutinin subtype 5 strains of avian influenza virus. Avian Dis., 1991. 35(1): p. 31-39. 43. Krumbholz, A., et al., High prevalence of amantadine resistance among circulating European porcine influenza A viruses. J Gen Virol, 2009. 90(Pt 4): p. 900-8. 44. Hale, B.G., et al., The multifunctional NS1 protein of influenza A viruses. J Gen Virol, 2008. 89(Pt 10): p. 2359-76. 45. Akarsu H, B.W., Petosa C, Petit I, Müller CW, Ruigrok RW, Baudin F., Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2). EMBO J., 2003. 22(18): p. 4646-4655. 46. Taubenberger, J.K. and D.M. Morens, 1918 influenza: the mother of all pandemics. Emerging Infectious Diseases, 2006. 12(1): p. 15-22. 47. Li, Q., et al., Epidemiology of human infections with avian influenza A(H7N9) virus in China. N Engl J Med, 2014. 370(6): p. 520-32. 48. <Influenza_Summary_IRA_HA_interface_17_July_2015.pdf>. 49. Roos, R., <cidrap.umn.edu-CDC estimate of global H1N1 pandemic deaths 284000.pdf>. 2012. 50. Shrestha, S.S., et al., Estimating the burden of 2009 pandemic influenza A (H1N1) in the United States (April 2009-April 2010). Clin Infect Dis, 2011. 52 Suppl 1: p. S75-82. 51. Garten, R.J., Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in Humans. SCIENCE, 2009. 325: p. 197. 52. Obuchi, M., et al., Influenza A(H1N1)pdm09 virus and asthma. Front Microbiol, 2013. 4: p. 307. 53. Ji-Rong Yang, Y.-P.H., Feng-Yee Chang, New Variants and Age Shift to High Fatality Groups Contribute to Severe Successive Waves in the 2009 Influenza Pandemic in Taiwan. PLoS One, 2011. 6(11). 54. Nelson M, S.D., Wentworth D, The early diversification of influenza A/H1N1pdm. PLoS Curr, 2009. 3(1). 55. Mahmoud . Moussa , O.L.W., Kouka S.E.Abdel Wahab Reduced pathogenicity associated with a small plaque variant of the Egyptian strain of Rift Valley fever virus (ZH501). Trans R Soc Trop Med Hyg, 1982. 76(4): p. 482-486. 56. Jia Y, M.R., Dupuis AP, 2nd, Ngo KA, Maffei JG, Jerzak GV, Franke MA, Kauffman EB, Kramer LD., Characterization of a small plaque variant of West Nile virus isolated in New York in 2000. Virology., 2007. 367(2): p. 339-347. 57. Cosby SL, L.C., Fitzgerald SP, Martin SJ, Pressdee S, Allen IV., The isolation of large and small plaque canine distemper viruses which differ in their neurovirulence for hamsters. J Gen Virol., 1981. 52: p. 345-353. 58. Falcón AM, M.R., Zürcher T, Gómez P, Portela A, Nieto A, Ortín J., Defective RNA replication and late gene expression in temperature-sensitive influenza viruses expressing deleted forms of the NS1 protein. J Virol. , 2004. 78(8): p. 3880-8. 59. Wang W, L.B., Zhou H, Suguitan AL Jr, Cheng X, Subbarao K, Kemble G, Jin H., Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J Virol., 2010. 84(13): p. 6570-7. 60. Abed, Y., et al., Role of permissive neuraminidase mutations in influenza A/Brisbane/59/2007-like (H1N1) viruses. PLoS Pathog, 2011. 7(12): p. e1002431. 61. Howley, B.N.F.D.M.K.P.M., Fields Virology. Principles of virology. Vol. 1. 2007: Wolters Kluwer Health/Lippincott Williams Wilkins. 62. O, D., Structure of the MxA stalk elucidates the assembly of ring-like units of an antiviral module. Small GTPases, 2010. 1(1): p. 62-64. 63. Gotz, V., et al., Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Sci Rep, 2016. 6: p. 23138. 64. Manz, B., et al., Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein. PLoS Pathog, 2013. 9(3): p. e1003279. 65. Nguyen, H.K., et al., Virological characterization of influenza H1N1pdm09 in Vietnam, 2010-2013. Influenza Other Respir Viruses, 2015. 9(4): p. 216-24. 66. Hung, S.J., et al., Genetic variations on 31 and 450 residues of influenza A nucleoprotein affect viral replication and translation. J Biomed Sci, 2020. 27(1): p. 17. 67. Zhao, Z., et al., PB2-588I enhances 2009 H1N1 pandemic influenza virus virulence by increasing viral replication and exacerbating PB2 inhibition of beta interferon expression. J Virol, 2014. 88(4): p. 2260-7. 68. A, N., et al., Identification of Rare PB2-D701N Mutation from a Patient with Severe Influenza: Contribution of the PB2-D701N Mutation to the Pathogenicity of Human Influenza. Front. Microbiol, 2017. 8: p. 7. 69. Yu, Z., et al., A PB1 T296R substitution enhance polymerase activity and confer a virulent phenotype to a 2009 pandemic H1N1 influenza virus in mice. Virology, 2015. 486: p. 180-6. 70. Barr IG, C.L., Komadina N, A new pandemic influenza A(H1N1) genetic variant predominated in the winter 2010 influenza season in Australia, New Zealand and Singapore. Euro Surveill, 2010. 15(42). 71. Maurer-Stroh, S., et al., Potential human adaptation mutation of influenza A(H5N1) virus, Canada. Emerging infectious diseases, 2014. 20(9): p. 1580-1582. 72. Belser, J.A., et al., Effect of D222G mutation in the hemagglutinin protein on receptor binding, pathogenesis and transmissibility of the 2009 pandemic H1N1 influenza virus. PLoS One, 2011. 6(9): p. e25091. 73. Nelson, S.W., et al., Madin-Darby canine kidney cell sialic acid receptor modulation induced by culture medium conditions: Implications for the isolation of influenza A virus. Influenza Other Respir Viruses, 2019. 13(6): p. 593-602. 74. Ruggiero T, D.R.F., Cerutti F, A(H1N1)pdm09 hemagglutinin D222G and D222N variants are frequently harbored by patients requiring extracorporeal membrane oxygenation and advanced respiratory assistance for severe A(H1N1)pdm09 infection. Influenza Other Respir Viruses., 2013. 7(6). 75. Ilyushina, N.A., et al., Influenza A virus hemagglutinin mutations associated with use of neuraminidase inhibitors correlate with decreased inhibition by anti-influenza antibodies. Virol J, 2019. 16(1): p. 149. 76. Retamal, M., et al., Epitope mapping of the 2009 pandemic and the A/Brisbane/59/2007 seasonal (H1N1) influenza virus haemagglutinins using mAbs and escape mutants. J Gen Virol, 2014. 95(Pt 11): p. 2377-2389. 77. Skehel, J.J. and D.C. Wiley, Receptor Binding and Membrane Fusion in Virus Entry: The Influenza Hemagglutinin. Annual Review of Biochemistry, 2000. 69(1): p. 531-569. 78. Mair, C.M., et al., Receptor binding and pH stability - how influenza A virus hemagglutinin affects host-specific virus infection. Biochim Biophys Acta, 2014. 1838(4): p. 1153-68. 79. Al Khatib, H.A., A.A. Al Thani, and H.M. Yassine, Evolution and dynamics of the pandemic H1N1 influenza hemagglutinin protein from 2009 to 2017. Arch Virol, 2018. 163(11): p. 3035-3049. 80. Al Khatib, H.A., A.A. Al Thani, and H.M. Yassine, Evolution and dynamics of the pandemic H1N1 influenza hemagglutinin protein from 2009 to 2017. Archives of Virology, 2018. 163(11): p. 3035-3049. 81. Jones, S., et al., Evolutionary, genetic, structural characterization and its functional implications for the influenza A (H1N1) infection outbreak in India from 2009 to 2017. Sci Rep, 2019. 9(1): p. 14690. 82. Simon, P., et al., The I222V Neuraminidase Mutation Has a Compensatory Role in Replication of an Oseltamivir-Resistant Influenza Virus A/H3N2 E119V Mutant. Journal of Clinical Microbiology, 2010. 49(2): p. 715-717. 83. LeGoff, J., et al., I223R mutation in influenza A(H1N1)pdm09 neuraminidase confers reduced susceptibility to oseltamivir and zanamivir and enhanced resistance with H275Y. PLoS One, 2012. 7(8): p. e37095. 84. Trebbien, R., et al., Development of oseltamivir and zanamivir resistance in influenza A(H1N1)pdm09 virus, Denmark, 2014. Euro Surveill, 2017. 22(3). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76802 | - |
| dc.description.abstract | 流感病毒藉由飛沫傳播,經常造成急性嚴重的呼吸道及肺部疾病,尤其是A型流感病毒,其曾經造成數次世界性大流行如西元1918年西班牙流感及西元2009年新型豬流感。西元2009年H1N1新型豬流感為三重組病毒,其基因來源包含人、豬以及禽流感病毒,最初於美國及墨西哥爆發,而後流行至世界並造成約135萬人感染,28萬人死亡。在2009~2016年間,病毒仍有造成數波之流行並持續演化,其分支由最初之clade 1演進至clade11.4。實驗室最初利用病毒溶斑滴定法(Plaque assay)測定H1N1標準株A/California/07/2009之病毒價數時,發現此病毒株之溶斑尺寸大小不一,可明顯區分為大型(L)與小型(S)溶斑。而根據先前研究指出,病毒之致病性及基因之變異可能會影響其溶斑尺寸之大小,顯示在此病毒株中可能含有兩群不同之病毒,因此本篇論文想分析大小溶斑病毒之基因變異並希望了解這些突變位點是否會持續存在病毒株中並影響病毒之演化。 我們將不同尺寸之病毒溶斑純化(plaque purification)並培養數代,所得之病毒株稱為L clone及S clone。為了了解兩株病毒之感染與生長差異,將L及S clone感染MDCK細胞後,進行病毒結合細胞試驗、病毒進入細胞試驗、病毒之核酸複製能力及病毒複製生長能力,發現L clone病毒複製能力較高,但在病毒結合及進入細胞試驗的量皆少於S clone;而在分析病毒核酸複製能力之實驗時,S clone的vRNA、mRNA及cRNA生成量皆較低,顯示L clone具有較佳的複製效率。接著,分析病毒的八段基因序列後發現HA基因上的D114N、D144E及D239G較有可能改變血凝集素與唾液酸之結合力;而在NA基因上則發現了T226A之改變;另外,在NP基因上亦觀察到兩個突變位點:D53E及D101G,這些突變位點多位於蛋白質功能區,可能會影響病毒蛋白之功能。本研究發現於病毒HA、NP與NA基因的位點會影響病毒感染複製能力並導致溶斑型態改變。 | zh_TW |
| dc.description.abstract | Influenza viruses cause spread by droplets and could cause acute and severe respiratory and lung diseases, especially influenza A virus, which is known to cause several worldwide pandemics,which an 1918 pandemic flu and 2009 pandemic flu. The pandemic H1N1 virus of 2009 (2009 H1N1) was a triple-reassortant virus, which was migrated from with human , avian and swine flu. Initial 2009 pandemic outbreak was observed in the Unite State and Mexico, and then the viruses spread rapidly around the world. 2009 H1N1 has caused about 1.35 million infections and 280 thousand deaths in 2009. From 2009 to 2016, 2009 H1N1 still caused several waves of epidemics and continued to evolve. Its branch evolved from the original clade 1 to clade 11.4. Our laboratory has identified two virus variants with different plaque sizes, designated as L and S clones, from the standard strain A/California/07/2009 (Cal07). Since previous studies have demonstrated that different plaque sizes of influenza A virus might implicate different virulence and pathogenicity of viruses, we aimed to characterize the phenotypes of 2009 H1N1 L and S clones and to use reverse genetics to determine the amino acid substitutions which might contribute to the phenotypic differences. First, L and S clones were individually passaged and purified by plaque purification assay. The derived L and S clones were used for subsequent virus characterization and full genome construction. The virus growth kinetics was first determined in MDCK cells by collecting the cultured supernatants at 0, 3, 6, 12, 24, 48 and 72 hours post infection (hpi). The L clone exhibited faster replication kinetics, especially at 12 hpi. To determine whether the delayed growth kinetics is due to differential efficiency of viral RNA replication, the levels of vRNA, mRNA and cRNA were respectively determined. Compared to the S clone, a 2 fold increase of viral mRNA and cRNA and a 1000 fold increase of vRNA of the L clone was observed by real-time RT-PCR. These results indicate that the L clone is more efficient in viral replication than the S clone. Next, the eight genome fragments were individually PCR-amplified and sequenced. Among several mutations on HA gene, D114N, D144E and G239D are likely to change the binding ability to HA and sialic acid, T226A of NA and two variants (D53E and D101G) of NP were also identified to be unique for the L or the S clones. These mutation sites are located in protein functional regions, which may affect the function of viral proteins. Our study found that mutations on HA, NA and NP gene may affect the replication and plaque size of 2009 H1N1. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:37:19Z (GMT). No. of bitstreams: 1 U0001-1708202020005000.pdf: 2729368 bytes, checksum: 31b4db49630bc0ff15360d48f1495644 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝..... i 中文摘要 ii Abstract iii 第一章 緒論 1 1-1 A型流感病毒 1 1-1-1 A型流感病毒構型 1 1-1-2 流感病毒之複製 1 1-1-3 流感病毒蛋白質 2 1-2 流感病毒重要之大流行 6 1-2-1 2009年H1N1之大流行 7 1-2-2 2009年H1N1基因來源及特徵 7 1-2-3 2009~2016年H1N1流感病毒之演進 7 1-3 病毒溶斑尺寸型態與其特性 8 1-3-1 影響病毒溶斑尺寸之因素 8 1-3-2 流感病毒之基因與溶斑尺寸之相關性 8 第二章 實驗動機與目的 10 2-1實驗研究動機 10 2-2實驗假說及目的 10 第三章 實驗材料與方法 11 3-1 實驗材料 11 3-1-1 細胞培養 11 3-1-2 流感病毒株 11 3-1-3 商業試劑套組 11 3-1-4病毒反轉錄-聚合酶鏈鎖反應(Reverse Transcription-Polymerase Chain Reaction, RT-PCR) 12 3-1-5 流感病毒溶菌斑實驗 (Plaque assay) 12 3-1-6 勝任細胞 13 3-1-7 細菌培養基 13 3-1-8 限制酶與緩衝溶液 13 3-1-9 質體 13 3-1-10引子及探針 13 3-1-11 轉染實驗(Transfection assay) 15 3-2 實驗方法 15 3-2-1 細胞培養 15 3-2-2 流感病毒培養 15 3-2-3 流感病毒溶斑試驗 16 3-2-4流感病毒核酸萃取 16 3-2-5 病毒反轉錄-聚合酶鏈鎖反應(RT-PCR reaction) 17 3-2-6 熱衝擊轉型 (Heat shock transformation) 18 3-2-7 細菌質體萃取 18 3-2-8 限制酶切割 18 3-2-9 產物膠體純化 19 3-2-10 pHW2000載體製備 19 3-2-11 DNA連接作用 (Ligation) 19 3-2-12 蔗糖梯度超高速分層離心 20 3-2-13 即時定量聚合酶連鎖反應 20 3-2-14 以轉染實驗製造H1N1病毒 20 3-2-15 病毒分析及質體繪畫軟體 21 3-2-16參考病毒序列來源 21 第四章 實驗結果 22 4-1 A/California/07/2009 wild type病毒之純化 22 4-2 Cal/07 WT , S clone 及 L clone尺寸差異 22 4-3 L與S clone生長曲線之測定 22 4-4 探討L及S clone進入細胞能力之差異 23 4-5 L與S clone於細胞中之複製能力 23 4-6 L clone與S clone全片段基因體定序分析 24 4-6.1 血球凝集酶(Hemagglutinin;HA) 之序列分析 24 4-6.2 神經胺酸酶(Neuraminidase;NA) 之序列分析 25 4-6.3核蛋白質 (Nucleoprotein;NP) 之序列分析 25 4-6.4基質蛋白質(Matrix protein ; M)及非結構蛋白質(Non-structural protein ; NS)............ 25 4-6.5聚合酶蛋白(Polymerase) 之序列分析 26 4-7 L、S clone與2009~2016年新型H1N1流感病毒序列及演化樹分析 26 4-8 L clone與Lp5全片段基因體定序分析 27 4-9 S clone與 Sp5全片段基因體定序分析 28 4-10 建構新型流感病毒H1N1全片段基因體 29 第五章 討論 30 第六章 參考文獻 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 2009年H1N1新型流感病毒 | zh_TW |
| dc.subject | 大小溶斑病毒 | zh_TW |
| dc.subject | 基因變異 | zh_TW |
| dc.subject | genetic variants | en |
| dc.subject | L and S clone | en |
| dc.subject | 2009 H1N1 influenza virus | en |
| dc.title | 探討2009年H1N1流感病毒株之基因體變異對病毒本身感染能力之影響 | zh_TW |
| dc.title | Functional characterization of genetic mutations in 2009 pandemic influenza variants | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李君男(Chun-Nan Lee),高全良(Chuan-Liang KAO),劉旻禕(HELENE-MINYI LIU) | |
| dc.subject.keyword | 2009年H1N1新型流感病毒,大小溶斑病毒,基因變異, | zh_TW |
| dc.subject.keyword | 2009 H1N1 influenza virus,L and S clone,genetic variants, | en |
| dc.relation.page | 76 | |
| dc.identifier.doi | 10.6342/NTU202003851 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202020005000.pdf 未授權公開取用 | 2.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
