請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76794完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳沛隆(Pei-Lung Chen) | |
| dc.contributor.author | Han-I Lin | en |
| dc.contributor.author | 林翰宜 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:37:08Z | - |
| dc.date.available | 2021-07-10T21:37:08Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | 1. Kruer, M.C. and N. Boddaert, Neurodegeneration with brain iron accumulation: a diagnostic algorithm. Semin Pediatr Neurol, 2012. 19(2): p. 67-74. 2. Schneider, S.A., et al., Genetics and Pathophysiology of Neurodegeneration with Brain Iron Accumulation (NBIA). Curr Neuropharmacol, 2013. 11(1): p. 59-79. 3. Kruer, M.C., et al., Neuroimaging features of neurodegeneration with brain iron accumulation. AJNR Am J Neuroradiol, 2012. 33(3): p. 407-14. 4. Hogarth, P., Neurodegeneration with brain iron accumulation: diagnosis and management. J Mov Disord, 2015. 8(1): p. 1-13. 5. Levi, S. and D. Finazzi, Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front Pharmacol, 2014. 5: p. 99. 6. Urrutia, P.J., N.P. Mena, and M.T. Nunez, The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol, 2014. 5: p. 38. 7. Di Meo, I. and V. Tiranti, Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol, 2018. 22(2): p. 272-284. 8. Hartig, M., et al., Mitochondrial membrane protein-associated neurodegeneration (MPAN). Int Rev Neurobiol, 2013. 110: p. 73-84. 9. Hogarth, P., et al., New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN. Neurology, 2013. 80(3): p. 268-75. 10. Monfrini, E., et al., A de novo C19orf12 heterozygous mutation in a patient with MPAN. Parkinsonism Relat Disord, 2018. 48: p. 109-111. 11. Gregory, A., et al., Autosomal dominant mitochondrial membrane protein-associated neurodegeneration (MPAN). Mol Genet Genomic Med, 2019. 7(7): p. e00736. 12. Lewis, B.P., R.E. Green, and S.E. Brenner, Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci U S A, 2003. 100(1): p. 189-92. 13. McKenna, A., et al., The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010. 20(9): p. 1297-303. 14. DePristo, M.A., et al., A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 2011. 43(5): p. 491-498. 15. Van der Auwera, G.A., et al., From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics, 2013. 43: p. 11 10 1-11 10 33. 16. Poplin, R., et al., Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv, 2018: p. 201178. 17. Yang, H. and K. Wang, Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc, 2015. 10(10): p. 1556-66. 18. Richards, S., et al., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med, 2015. 17(5): p. 405-24. 19. Ran, F.A., et al., Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013. 8(11): p. 2281-2308. 20. Shah, R.R., et al., Efficient and versatile CRISPR engineering of human neurons in culture to model neurological disorders. Wellcome Open Res, 2016. 1: p. 13. 21. Renaud, J.B., et al., Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases. Cell Rep, 2016. 14(9): p. 2263-2272. 22. Mashal, R.D., J. Koontz, and J. Sklar, Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat Genet, 1995. 9(2): p. 177-83. 23. Vouillot, L., A. Thelie, and N. Pollet, Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda), 2015. 5(3): p. 407-15. 24. Shipley, M.M., C.A. Mangold, and M.L. Szpara, Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line. J Vis Exp, 2016(108): p. 53193. 25. Veitia, R.A., S. Caburet, and J.A. Birchler, Mechanisms of Mendelian dominance. Clin Genet, 2018. 93(3): p. 419-428. 26. Hartig, M.B., et al., Absence of an orphan mitochondrial protein, c19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation. Am J Hum Genet, 2011. 89(4): p. 543-50. 27. Landoure, G., et al., Hereditary spastic paraplegia type 43 (SPG43) is caused by mutation in C19orf12. Hum Mutat, 2013. 34(10): p. 1357-60. 28. Venco, P., et al., Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca(2)(+). Front Genet, 2015. 6: p. 185. 29. Gagliardi, M., et al., C19orf12 gene mutations in patients with neurodegeneration with brain iron accumulation. Parkinsonism Relat Disord, 2015. 21(7): p. 813-6. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76794 | - |
| dc.description.abstract | 研究背景與目的 腦部鐵質沉積神經退化症 (Neurodegeneration with Brain Iron Accumulation, NBIA),為少見之遺傳性神經退化性疾病,臨床症狀漸進式肢體出現肌張力不全症、巴金森緩慢僵硬症狀、痙攣與合併認知功能下降等多重神經系統退化症狀。腦部核磁共振掃描可於基底核以及腦幹黑質區發現深色鐵質沉澱的影像特徵,腦部病理報告則於這些區域觀察到局部萎縮、神經細胞中深色鐵質沉積、以a-synuclein為主成分的路易士體或是tau病理蛋白沉積。NBIA具有10多種分型,各分型為不同基因的突變導致體顯性或是隱性之遺傳模式。隨著分子生物學的進展,迄今為止已知至少10種基因參與鐵質在細胞中之運輸、儲存和調控與神經細胞功能的維持、脂質代謝與粒線體功能息息相關。然而,這些基因的突變與各基因之間的關聯交互作用如何導致神經細胞中病理蛋白沉積、鐵質代謝異常因而鐵質沉積與神經細胞凋亡機轉仍未知。 我們過去發現一少見之顯性遺傳NBIA家族,並不帶有已知肌張力不全症、巴金森症之遺傳基因,病患與母親皆於20-30歲間出現漸進式肌張力不全症、僵硬與合併認知功能下降等多重神經系統退化症狀,腦部核磁共振掃描亦出現典型之鐵質沉澱的影像特徵。因此,我們希望:一、透過全外顯子定序技術(whole exome sequencing, WES)找出此顯性遺傳家族之新穎致病基因變異。二:利用CRISPR/Cas9 基因編輯技術建立帶有此新穎致病基因變異神經細胞模式,以探討神經細胞退化之分子機轉,以期將來為NBIA神經退行性疾病的研究和治療提供策略。 研究結果 此顯性遺傳NBIA家族中兩位罹病成員接受WES分析,在層層分析,僅挑選在公開基因資訊網站gnomAD與Taiwan biobank中minor allele frequency 小於0.0001的基因變異位點,並經PolyPhen-2 與SIFT programs預測可能會產生具致病性蛋白質的變異後,我們發現在該家族罹病成員中的C19orf12基因上有一異型合子(heterozygous)的單一核甘酸嵌入變異c.273_274insA ,此變異導致胺基酸提前終止合成,因而造成錯位突變(p.P92Tfs*9),家族成員內的分離分析(Segregation analysis)亦顯示此嵌入錯位突變應為此顯性家族之致病位點。值得注意的是C19orf12 為導致NBIA分型中少見之mitochondrial membrane protein-associated neurodegeneration (MPAN)之致病基因,C19orf12 轉錄之蛋白為表現在粒線體與內質網之17kDa蛋白,相關研究極少,我們利用CRISPR/Cas9 基因編輯技術建立帶有此新穎致病基因變異的神經細胞模式,以探討此突變導致神經細胞退化之分子機轉,並藉由探討粒線體功能、脂質代謝與鐵質代謝異常之交互關係,以期釐清此少見之神經退化性疾病的分子生理機轉,希望有助於未來發展此疾病之治療策略。 | zh_TW |
| dc.description.abstract | Neurodegeneration with Brain Iron Accumulation (NBIA) is a group of rare inherited neurological disorders that share the clinical features of dystonia, parkinsonism, spasticity accompanied by varying degrees of intellectual disability and abnormal iron deposition in the basal ganglia and/or substantia nigra. Iron accumulates in the basal ganglia and may be accompanied by a-synuclein containing Lewy bodies deposition, axonal swellings and hyperphosphorylated tau depending on NBIA subtype. More than 10 genes have been associated with different subtypes of NBIA contributing to either autosomal-dominant or autosomal recessive inheritances of disease. However, the molecular mechanism and the interactions between these NBIA-causative genes in neurodegeneration, iron accumulations remain largely unknown. We previously identified an autosomal-dominant NBIA family with characteristics clinical and radiological features through large-scale screening of patients with dystonia. We therefore have the following aims to identify the genetic cause and the molecular mechanism leading to neurodegeneration in this index family. Aim 1: Utilizing whole exome sequencing (WES) and segregation analysis to identify the genetic cause in the autosomal-dominant NBIA family. Aim 2: To investigate the pathogenicity of the identified mutation using clustered, regularly interspaced, short palindromic repeats-associated nuclease 9 (CRISPR-Cas9)-based knock-in human dopaminergic SH-SY5Y cell line model. Results: WES was performed in two affected members of this autosomal-dominant inheritance NBIA family with a coverage of 100× read depth showed 96 nonsynonymous variants with minor allele frequency ≤ 0.0001 in the gnomAD and Taiwan Biobank. Further comparative analyses and pathogenicity prediction analysis by PolyPhen-2 and SIFT programs identified one heterozygous novel and potentially pathogenic variant, c.273_274insA (p.P92Tfs*9) insertion in C19orf12, which caused a frameshift and premature stop codon in the protein sequence. This novel potential pathogenic variant co-segregated within the family. Mutations in C19orf12 contribute to a rare subtype of NBIA, mitochondrial membrane protein-associated neurodegeneration (MPAN). To prove its pathogenicity and functional impacts in the neurodegeneration, we will assay the pathogenicity of the identified mutation using CRISPR/Cas9-based knock-in human dopaminergic SH-SY5Y cell line model. Further neuronal iron dynamic assay, mitochondria function and fission-fusion dynamics and protein degradation pathways will be investigated to prove the pathogenicity of this novel mutation of MPAN. Conclusion: Our findings will support recent observations that monoallelic C19orf12 mutations may contribute to autosomal dominant MPAN and will be the first report showing the pathogenic mechanism of C19orf12 mutation in neurons. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:37:08Z (GMT). No. of bitstreams: 1 U0001-1808202007042700.pdf: 3416684 bytes, checksum: 8359d84537e6c0d9c48c00d2ed8a279e (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 I 中文摘要 II 英文摘要 IV TABLE OF CONTENTS VI 1. INTRODUCTION 1 1.1. NEURODEGENERATION WITH BRAIN IRON ACCUMULATION (NBIA) 1 1.2. MITOCHONDRIAL MEMBRANE PROTEIN ASSOCIATED NEURODEGENERATION (MPAN) 2 1.3. GENETIC INHERITANCE OF MPAN 3 1.4. MOTIVATION AND AIMS 4 2. MATERIALS AND METHODS 5 2.1. ENROLLMENT OF PARTICIPANTS 5 2.2. DNA EXTRACTION AND QUALITY CONFIRMATION 5 2.3. SAMPLE PREPARATION AND MASSIVELY PARALLEL SEQUENCING 5 2.4. DATA ANALYSIS AND FILTRATION PIPELINE FOR WHOLE EXOME SEQUENCING 6 2.5. GENERATON OF C19ORF12 KNOCK-IN SH-SY5Y CELL LINES 7 2.6. CRISPR/CAS9 SCREENING, VALIDATION AND HDR ANALYSIS 8 2.7. DIFFERENTIATION OF C19ORF12 KNOCK-IN SH-SY5Y CELL 8 2.8. IMMUNOBLOTTING 9 3. RESULTS 10 IDENTIFICATION OF NBIA-CAUSATIVE VARIANT IN A TAIWANESE FAMILY 10 C19ORF12 KNOCK-IN SH-SY5Y CELL LINE CONSTRUCTION 10 PHENOTYPIC CHARACTERIZATION OF C19ORF12 KNOCK-IN SH-SY5Y CELL LINE 11 4. DISCUSSION 12 5. REFERENCES 14 6. FIGURES 18 7. TABLES 36 | |
| dc.language.iso | en | |
| dc.subject | 腦部鐵質沉積神經退化症 | zh_TW |
| dc.subject | C19orf12 | zh_TW |
| dc.subject | 粒線體 | zh_TW |
| dc.subject | 脂質代謝 | zh_TW |
| dc.subject | SH-SY5Y | zh_TW |
| dc.subject | 多巴胺神經細胞 | zh_TW |
| dc.subject | CRISPR/Cas9系統 | zh_TW |
| dc.subject | C19orf12 | en |
| dc.subject | Neurodegeneration with brain iron accumulation (NBIA) | en |
| dc.subject | membrane protein-associated neurodegeneration (MPAN) | en |
| dc.subject | dopaminergic neuron | en |
| dc.subject | lipid metabolism | en |
| dc.title | 探討新穎C19orf12致病基因突變導致顯性遺傳腦部鐵質沉積神經退化症之機轉 | zh_TW |
| dc.title | Novel C19orf12 pathogenic insertion variant in a Taiwanese family with autosomal dominant mitochondrial membrane protein-associated neurodegeneration (MPAN, NBIA4). | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林靜嫻(Chin-Hsien Lin) | |
| dc.contributor.oralexamcommittee | 楊偉勛(Wei-Shiung Yang),許書睿(Jacob Shujui Hsu) | |
| dc.subject.keyword | 腦部鐵質沉積神經退化症,C19orf12,粒線體,脂質代謝,SH-SY5Y,多巴胺神經細胞,CRISPR/Cas9系統, | zh_TW |
| dc.subject.keyword | Neurodegeneration with brain iron accumulation (NBIA),membrane protein-associated neurodegeneration (MPAN),C19orf12,lipid metabolism,dopaminergic neuron, | en |
| dc.relation.page | 44 | |
| dc.identifier.doi | 10.6342/NTU202003922 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202007042700.pdf 未授權公開取用 | 3.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
