請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76792完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝松蒼(Sung-Tsang Hsieh) | |
| dc.contributor.author | Neng-Wei Tsai | en |
| dc.contributor.author | 蔡能維 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:37:05Z | - |
| dc.date.available | 2021-07-10T21:37:05Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | 1. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72. 2. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76. 3. Avior, Y., I. Sagi, and N. Benvenisty, Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol, 2016. 17(3): p. 170-82. 4. Zhao, J., et al., Induced pluripotent stem cells: origins, applications, and future perspectives. J Zhejiang Univ Sci B, 2013. 14(12): p. 1059-69. 5. Karagiannis, P., et al., Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiol Rev, 2019. 99(1): p. 79-114. 6. Chambers, S.M., et al., Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol, 2012. 30(7): p. 715-20. 7. Jones, I., et al., Development and validation of an in vitro model system to study peripheral sensory neuron development and injury. Sci Rep, 2018. 8(1): p. 15961. 8. Nat, R., From Human Pluripotent Stem Cells to Peripheral Neurons, in Pluripotent Stem Cells - From the Bench to the Clinic. 2016. 9. Lallemend, F. and P. Ernfors, Molecular interactions underlying the specification of sensory neurons. Trends Neurosci, 2012. 35(6): p. 373-81. 10. Huang, E.J. and L.F. Reichardt, Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci, 2001. 24: p. 677-736. 11. Gibbons, C.H., N. Wang, and R. Freeman, Capsaicin induces degeneration of cutaneous autonomic nerve fibers. Ann Neurol, 2010. 68(6): p. 888-98. 12. Starobova, H. and I. Vetter, Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front Mol Neurosci, 2017. 10: p. 174. 13. Fujikake, N., M. Shin, and S. Shimizu, Association Between Autophagy and Neurodegenerative Diseases. Front Neurosci, 2018. 12: p. 1-18. 14. Corti, O., et al., Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J Neurochem, 2020. 15. Wang, Y., M. Song, and F. Song, Neuronal autophagy and axon degeneration. Cell Mol Life Sci, 2018. 75(13): p. 2389-2406. 16. Parzych, K.R. and D.J. Klionsky, An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal, 2014. 20(3): p. 460-73. 17. Yoshii, S.R. and N. Mizushima, Monitoring and Measuring Autophagy. Int J Mol Sci, 2017. 18(9): p. 1862. 18. Zhang, Z., R. Singh, and M. Aschner, Methods for the Detection of Autophagy in Mammalian Cells. Curr Protoc Toxicol, 2016. 69: p. 20 12 1-20 12 26. 19. du Toit, A., et al., Measuring autophagosome flux. Autophagy, 2018. 14(6): p. 1060-1071. 20. Mizushima, N., T. Yoshimori, and B. Levine, Methods in mammalian autophagy research. Cell, 2010. 140(3): p. 313-26. 21. Mauvezin, C. and T.P. Neufeld, Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy, 2015. 11(8): p. 1437-8. 22. Kim, E.K. and E.J. Choi, Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta, 2010. 1802(4): p. 396-405. 23. Zhou, Y.Y., et al., MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep, 2015. 35(3). 24. Mehta, S.R., et al., Human Huntington's Disease iPSC-Derived Cortical Neurons Display Altered Transcriptomics, Morphology, and Maturation. Cell Rep, 2018. 25(4): p. 1081-1096 e6. 25. Wing, C., et al., Application of stem cell derived neuronal cells to evaluate neurotoxic chemotherapy. Stem Cell Res, 2017. 22: p. 79-88. 26. Wheeler, H.E., et al., Modeling chemotherapeutic neurotoxicity with human induced pluripotent stem cell-derived neuronal cells. PLoS One, 2015. 10(2): p. e0118020. 27. Topp KS, T.K., Levine JD., Damage to the cytoskeleton of large diameter sensory neurons and myelinated axons in vincristine-induced painful peripheral neuropathy in the rat. J Comp Neurol, 2000. 424(4): p. 563-576. 28. Yang, F. and J. Zheng, Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell, 2017. 8(3): p. 169-177. 29. Ru-Rong Ji, T.A.S., Shan-Xue Jin, and C.J.W. Raymond Schmoll, p38 MAPK Activation by NGF in Primary Sensory Neurons after Inflammation Increases TRPV1 Levels and Maintains Heat Hyperalgesia. Neuron, 2002. 36: p. 57-68. 30. Valakh, V., et al., Cytoskeletal disruption activates the DLK/JNK pathway, which promotes axonal regeneration and mimics a preconditioning injury. Neurobiol Dis, 2015. 77: p. 13-25. 31. Deng, R., et al., Acetylcholinesterase expression mediated by c-Jun-NH2-terminal kinase pathway during anticancer drug-induced apoptosis. Oncogene, 2006. 25(53): p. 7070-7. 32. Yarza, R., et al., c-Jun N-terminal Kinase (JNK) Signaling as a Therapeutic Target for Alzheimer's Disease. Front Pharmacol, 2015. 6: p. 321. 33. Li, D.D., et al., The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene, 2009. 28(6): p. 886-98. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76792 | - |
| dc.description.abstract | 誘導性多潛能幹細胞(iPSC)是多年來具有潛力,且備受期待的技術,可以誘導為多種細胞類型,以克服體內實驗對某些疾病的局限性。在我們的研究中,我們將人類誘導性多潛能幹細胞分化為感覺神經元,通過辣椒素和長春新鹼模擬神經退化的模型,並進一步評估了神經毒性和神經退化的潛在機制。為了確定治療後細胞體和神經突的形態,使用peripherin(Peri),neurofilament heavy chain(NF)和βIII-tubulin(TUB)作為標記物以檢查神經元數量和神經突長度。結果指出,根據LC50,辣椒素對細胞體造成了嚴重損害;相反的,長春新鹼抑制神經突生長。此外,我們也利用LC50來確定辣椒素和長春新鹼作用於不同的感覺神經元表型:Peri(+)/ NF(-)和Peri(+)/ NF(+)神經元。我們進一步研究了由辣椒素和長春新鹼引起的神經退化機制,其中包括檢測神經退化的信號級聯反應之藥物實驗。總而言之,這項研究證明了源自於iPSC的感覺神經元進行神經毒性測試的可行性,有助於了解iPSC作為模型的特性以探索機制,並進一步地進行臨床治療和藥物篩選。 | zh_TW |
| dc.description.abstract | Induced pluripotent stem cells (iPSCs) have the potential and are highly anticipated technology in years, and it can be induced into various cell types to overcome the limitations of in vivo experiment for certain disorders. In our research, we differentiated human iPSCs into sensory neurons, mimicked neurodegenerative model by capsaicin and vincristine, and further assessed the neurotoxicity and underlying mechanisms of neurodegeneration. To determine the morphology of soma and neurite after treatment, peripherin (Peri), neurofilament heavy chain (NF) and βIII-tubulin (TUB) were used as markers to examine neuron number and neurite length. The result indicated that capsaicin caused severe damage on the soma. On the contrary, vincristine inhibited neurite outgrowth according on LC50. Moreover, we also calculated LC50 to determine that capsaicin and vincristine mainly acted on different sensory neuron phenotypes, Peri(+)/NF(-) and Peri(+)/NF(+) neurons. We further investigated the mechanism underlying neurodegeneration caused by capsaicin and vincristine. There included pharmaceutical experiment examine signaling cascades leading as neurodegeneration. In summary, this study demonstrated the feasibility of neurotoxicity testing of iPSCs-derived sensory neuron contribute to understand property of iPSC serving as a model to explore mechanism of degeneration for clinical treatment and drug screening. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:37:05Z (GMT). No. of bitstreams: 1 U0001-1808202010075200.pdf: 5146123 bytes, checksum: 5c862f814bf24b1afc9b7ff341a627ca (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 ii 中文摘要 iii Abstract iv Table of contents v Chapter 1. Introduction 1 Human induced pluripotent stem cells (hiPSCs) 1 Neuronal differentiation from hiPSCs 1 Modeling neurodegeneration. 2 Autophagy and neurodegeneration 2 Chapter 2. Materials and Methods 4 Cell culture and differentiation 4 Capsaicin and Vincristine 5 Immunocytochemistry 5 Cell cytotoxicity and viability assay 6 Western blot 6 LC3 and SQSTM1/p62 turnover assay 7 Cell sorting 7 Image and quantification 7 Chapter 3. Result 9 Relationship of different markers and their quantitative results 9 CAP and VCR act on cell body and neurite respectively according to LC50 9 Peri(+)/NF(-) and Peri(+)/NF(+) neurons have more sensitive to CAP and VCR respectively. 10 CAP and VCR decrease cell viability and cause cell death in low and high concentration 11 Autophagosome accumulation after CAP and VCR treatment 11 CAP and VCR impair autophagy to activate JNK 12 Lysosomal integrity was interfered under CAP and VCR treatment 13 Chapter 4. Discussion 14 iPSC technology as a platform to model diseases 14 Peri(+)/NF(-) neurons are more sensitive to CAP than to VCR 14 CAP/VCR induces a time-dependent activation of p38/JNK 15 The interaction between impairment of autophagy, JNK and neuronal injury. 15 Reference 16 List of Figures 20 List of Tables 51 | |
| dc.language.iso | en | |
| dc.subject | 感覺神經元 | zh_TW |
| dc.subject | MAP激酶 | zh_TW |
| dc.subject | 誘導性多潛能幹細胞 | zh_TW |
| dc.subject | 機制 | zh_TW |
| dc.subject | 神經退化 | zh_TW |
| dc.subject | iPSC | en |
| dc.subject | MAP kinase | en |
| dc.subject | mechanism | en |
| dc.subject | neurodegeneration | en |
| dc.subject | sensory neuron | en |
| dc.title | 源自人類誘導性多潛能幹細胞的感覺神經元之 神經毒性分析 | zh_TW |
| dc.title | Human iPSCs-derived sensory neuron as a platform to examine the neurotoxicity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃祥博(Hsiagn-Po Huang),趙啟超(Chi-Chao Chao) | |
| dc.subject.keyword | 誘導性多潛能幹細胞,感覺神經元,神經退化,機制,MAP激酶, | zh_TW |
| dc.subject.keyword | iPSC,sensory neuron,neurodegeneration,mechanism,MAP kinase, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU202003925 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202010075200.pdf 未授權公開取用 | 5.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
