Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76790
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳彥榮(Edward Chern)
dc.contributor.authorYou-Quan Chenen
dc.contributor.author陳宥銓zh_TW
dc.date.accessioned2021-07-10T21:37:02Z-
dc.date.available2021-07-10T21:37:02Z-
dc.date.copyright2020-08-28
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation1. M. E. Castro-Manrreza et al., Mesenchymal Stromal Cells from the Epidermis and Dermis of Psoriasis Patients: Morphology, Immunophenotype, Differentiation Patterns, and Regulation of T Cell Proliferation. Stem Cells Int 2019, 4541797 (2019).
2. T. Taner et al., Phenotypic, Transcriptional, and Functional Analysis of Liver Mesenchymal Stromal Cells and Their Immunomodulatory Properties. Liver Transpl 26, 549-563 (2020).
3. K. H. Ryu et al., Tonsil-derived mesenchymal stromal cells: evaluation of biologic, immunologic and genetic factors for successful banking. Cytotherapy 14, 1193-1202 (2012).
4. R. S. Khan, P. N. Newsome, A Comparison of Phenotypic and Functional Properties of Mesenchymal Stromal Cells and Multipotent Adult Progenitor Cells. Front Immunol 10, 1952 (2019).
5. T. Squillaro, G. Peluso, U. Galderisi, Clinical Trials With Mesenchymal Stem Cells: An Update. Cell Transplant 25, 829-848 (2016).
6. M. Jain et al., Comparison of the Cardiomyogenic Potency of Human Amniotic Fluid and Bone Marrow Mesenchymal Stem Cells. Int J Stem Cells 12, 449-456 (2019).
7. K. Janeczek Portalska et al., Endothelial differentiation of mesenchymal stromal cells. PLoS One 7, e46842 (2012).
8. M. Fayyad-Kazan, H. Fayyad-Kazan, L. Lagneaux, M. Najar, The potential of mesenchymal stromal cells in immunotherapy. Immunotherapy 8, 839-842 (2016).
9. Z. Yan, Y. Zhuansun, R. Chen, J. Li, P. Ran, Immunomodulation of mesenchymal stromal cells on regulatory T cells and its possible mechanism. Exp Cell Res 324, 65-74 (2014).
10. G. M. Spaggiari, A. Capobianco, S. Becchetti, M. C. Mingari, L. Moretta, Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107, 1484-1490 (2006).
11. Z. Selmani et al., Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26, 212-222 (2008).
12. W. Zhang et al., Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 13, 263-271 (2004).
13. M. H. Abumaree et al., Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev Rep 9, 620-641 (2013).
14. E. Zappia et al., Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106, 1755-1761 (2005).
15. P. R. Amable, M. V. Teixeira, R. B. Carias, J. M. Granjeiro, R. Borojevic, Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton's jelly. Stem Cell Res Ther 5, 53 (2014).
16. J. Li, Huang, H., Xu, X., Biological and genetic characteristics of mesenchymal stem cells in vitro derived from human adipose, umbilical cord and placenta. Int J Clin Exp Med (2017).
17. Y. Petrenko et al., A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential. Sci Rep 10, 4290 (2020).
18. Y. Kim et al., Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem 20, 867-876 (2007).
19. M. Kabat, I. Bobkov, S. Kumar, M. Grumet, Trends in mesenchymal stem cell clinical trials 2004-2018: Is efficacy optimal in a narrow dose range? Stem Cells Transl Med 9, 17-27 (2020).
20. D. Y. S. Tanikawa et al., Deciduous Dental Pulp Stem Cells for Maxillary Alveolar Reconstruction in Cleft Lip and Palate Patients. Stem Cells Int 2020, 6234167 (2020).
21. J. Bartunek et al., Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial design. Eur J Heart Fail 18, 160-168 (2016).
22. K. C. Moon et al., Potential of Allogeneic Adipose-Derived Stem Cell-Hydrogel Complex for Treating Diabetic Foot Ulcers. Diabetes 68, 837-846 (2019).
23. J. Panes et al., Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn's disease: a phase 3 randomised, double-blind controlled trial. Lancet 388, 1281-1290 (2016).
24. K. Le Blanc et al., Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363, 1439-1441 (2004).
25. A. D. Ho, W. Wagner, W. Franke, Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy 10, 320-330 (2008).
26. C. M. McLeod, R. L. Mauck, On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis. Eur Cell Mater 34, 217-231 (2017).
27. M. Dominici et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317 (2006).
28. X. Li et al., Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int J Mol Med 34, 695-704 (2014).
29. A. K. Batsali et al., Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 8, 102 (2017).
30. H. J. Lee et al., Comparison of in vitro hepatogenic differentiation potential between various placenta-derived stem cells and other adult stem cells as an alternative source of functional hepatocytes. Differentiation 84, 223-231 (2012).
31. D. N. Urrutia et al., Comparative study of the neural differentiation capacity of mesenchymal stromal cells from different tissue sources: An approach for their use in neural regeneration therapies. PLoS One 14, e0213032 (2019).
32. H. Munir, N. T. Luu, L. S. Clarke, G. B. Nash, H. M. McGettrick, Comparative Ability of Mesenchymal Stromal Cells from Different Tissues to Limit Neutrophil Recruitment to Inflamed Endothelium. PLoS One 11, e0155161 (2016).
33. A. Ribeiro et al., Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Res Ther 4, 125 (2013).
34. S. Roux et al., In vitro characterization of patches of human mesenchymal stromal cells. Tissue Eng Part A 21, 417-425 (2015).
35. R. Donders et al., Human Wharton's Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells. Stem Cells Dev 27, 65-84 (2018).
36. H. J. Jin et al., Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 14, 17986-18001 (2013).
37. W. J. Du et al., Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem Cell Res Ther 7, 163 (2016).
38. S. Hagmann et al., Different culture media affect growth characteristics, surface marker distribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells. BMC Musculoskelet Disord 14, 223 (2013).
39. Q. A. Tran, V. Ajeti, B. T. Freeman, P. J. Campagnola, B. M. Ogle, Developmental Pathways Pervade Stem Cell Responses to Evolving Extracellular Matrices of 3D Bioprinted Microenvironments. Stem Cells Int 2018, 4809673 (2018).
40. C. Dessels, M. A. Ambele, M. S. Pepper, The effect of medium supplementation and serial passaging on the transcriptome of human adipose-derived stromal cells expanded in vitro. Stem Cell Res Ther 10, 253 (2019).
41. Q. Zhao et al., Systematic comparison of hUC-MSCs at various passages reveals the variations of signatures and therapeutic effect on acute graft-versus-host disease. Stem Cell Res Ther 10, 354 (2019).
42. D. G. Phinney et al., Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75, 424-436 (1999).
43. S. T. Mindaye, M. Ra, J. L. Lo Surdo, S. R. Bauer, M. A. Alterman, Global proteomic signature of undifferentiated human bone marrow stromal cells: evidence for donor-to-donor proteome heterogeneity. Stem Cell Res 11, 793-805 (2013).
44. E. Ahn, H. Kang, Introduction to systematic review and meta-analysis. Korean J Anesthesiol 71, 103-112 (2018).
45. N. Mikolajewicz, S. V. Komarova, Meta-Analytic Methodology for Basic Research: A Practical Guide. Front Physiol 10, 203 (2019).
46. M. M. Lalu et al., Evaluating mesenchymal stem cell therapy for sepsis with preclinical meta-analyses prior to initiating a first-in-human trial. Elife 5 (2016).
47. X. Han, B. Yang, F. Zou, J. Sun, Clinical therapeutic efficacy of mesenchymal stem cells derived from adipose or bone marrow for knee osteoarthritis: a meta-analysis of randomized controlled trials. J Comp Eff Res 9, 361-374 (2020).
48. L. Zhao, S. Chen, X. Shi, H. Cao, L. Li, A pooled analysis of mesenchymal stem cell-based therapy for liver disease. Stem Cell Res Ther 9, 72 (2018).
49. A. Mieczkowska et al., Immunophenotyping and transcriptional profiling of in vitro cultured human adipose tissue derived stem cells. Sci Rep 8, 11339 (2018).
50. B. H. Marcon et al., Cell cycle genes are downregulated after adipogenic triggering in human adipose tissue-derived stem cells by regulation of mRNA abundance. Sci Rep 9, 5611 (2019).
51. ENCODE Project Consortium, An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74 (2012).
52. Q. Xiang et al., Transcriptome analysis and functional identification of adipose-derived mesenchymal stem cells in secondary lymphedema. Gland Surg 9, 558-574 (2020).
53. N. Choi et al., Generation of trichogenic adipose-derived stem cells by expression of three factors. J Dermatol Sci 92, 18-29 (2018).
54. R. M. Samsonraj et al., Osteogenic Stimulation of Human Adipose-Derived Mesenchymal Stem Cells Using a Fungal Metabolite That Suppresses the Polycomb Group Protein EZH2. Stem Cells Transl Med 7, 197-209 (2018).
55. E. T. Camilleri et al., Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res Ther 7, 107 (2016).
56. L. G. Coffman et al., Ovarian Carcinoma-Associated Mesenchymal Stem Cells Arise from Tissue-Specific Normal Stroma. Stem Cells 37, 257-269 (2019).
57. U. Blache et al., Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate. EMBO Rep 19 (2018).
58. H. T. J. Gilbert et al., Nuclear decoupling is part of a rapid protein-level cellular response to high-intensity mechanical loading. Nat Commun 10, 4149 (2019).
59. W. C. Shen et al., Methylation and PTEN activation in dental pulp mesenchymal stem cells promotes osteogenesis and reduces oncogenesis. Nat Commun 10, 2226 (2019).
60. A. M. Billing et al., A Systems-level Characterization of the Differentiation of Human Embryonic Stem Cells into Mesenchymal Stem Cells. Mol Cell Proteomics 18, 1950-1966 (2019).
61. H. Wang et al., Characterization and Therapeutic Application of Mesenchymal Stem Cells with Neuromesodermal Origin from Human Pluripotent Stem Cells. Theranostics 9, 1683-1697 (2019).
62. S. Geyh et al., Transforming growth factor beta1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia. Haematologica 103, 1462-1471 (2018).
63. A. Andrzejewska et al., Multi-Parameter Analysis of Biobanked Human Bone Marrow Stromal Cells Shows Little Influence for Donor Age and Mild Comorbidities on Phenotypic and Functional Properties. Front Immunol 10, 2474 (2019).
64. D. F. E. Ker et al., Identifying deer antler uhrf1 proliferation and s100a10 mineralization genes using comparative RNA-seq. Stem Cell Res Ther 9, 292 (2018).
65. X. Yi et al., Comparative separation methods and biological characteristics of human placental and umbilical cord mesenchymal stem cells in serum-free culture conditions. Stem Cell Res Ther 11, 183 (2020).
66. J. Ma et al., Comparative analysis of mesenchymal stem cells derived from amniotic membrane, umbilical cord, and chorionic plate under serum-free condition. Stem Cell Res Ther 10, 19 (2019).
67. P. Y. Tan et al., E2F1 Orchestrates Transcriptomics and Oxidative Metabolism in Wharton's Jelly-Derived Mesenchymal Stem Cells from Growth-Restricted Infants. PLoS One 11, e0163035 (2016).
68. F. Liu et al., Hypoxia-Activated PI3K/Akt Inhibits Oxidative Stress via the Regulation of Reactive Oxygen Species in Human Dental Pulp Cells. Oxid Med Cell Longev 2019, 6595189 (2019).
69. J. Manokawinchoke et al., RNA sequencing data of Notch ligand treated human dental pulp cells. Data Brief 17, 407-413 (2018).
70. D. Macrin et al., Metabolism as an early predictor of DPSCs aging. Sci Rep 9, 2195 (2019).
71. S. L. Greene, O. Mamaeva, D. K. Crossman, C. Lu, M. MacDougall, Gene-Expression Analysis Identifies IGFBP2 Dysregulation in Dental Pulp Cells From Human Cleidocranial Dysplasia. Front Genet 9, 178 (2018).
72. N. L. Bray, H. Pimentel, P. Melsted, L. Pachter, Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34, 525-527 (2016).
73. A. Frankish et al., GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47, D766-D773 (2019).
74. H. Pimentel, N. L. Bray, S. Puente, P. Melsted, L. Pachter, Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods 14, 687-690 (2017).
75. R. Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing (Vienna, Austria, 2019).
76. H. Wickham, ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016).
77. R. Kolde (2019) pheatmap: Pretty Heatmaps.
78. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).
79. C. Soneson, M. I. Love, M. D. Robinson, Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 (2015).
80. M. Lawrence et al., Software for computing and annotating genomic ranges. PLoS Comput Biol 9, e1003118 (2013).
81. M. Ashburner et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25-29 (2000).
82. The Gene Ontology Consortium, The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res 47, D330-D338 (2019).
83. G. Yu, L. G. Wang, Y. Han, Q. Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284-287 (2012).
84. Y. C. Kuo, S. C. Hung, S. H. Hsu, The effect of elastic biodegradable polyurethane electrospun nanofibers on the differentiation of mesenchymal stem cells. Colloids Surf B Biointerfaces 122, 414-422 (2014).
85. S. H. Hsu et al., Substrate-dependent modulation of 3D spheroid morphology self-assembled in mesenchymal stem cell-endothelial progenitor cell coculture. Biomaterials 35, 7295-7307 (2014).
86. W. W. B. Goh, W. Wang, L. Wong, Why Batch Effects Matter in Omics Data, and How to Avoid Them. Trends Biotechnol 35, 498-507 (2017).
87. W. E. Johnson, C. Li, A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127 (2007).
88. J. S. Heo, S. G. Lee, H. O. Kim, Distal-less homeobox 5 is a master regulator of the osteogenesis of human mesenchymal stem cells. Int J Mol Med 40, 1486-1494 (2017).
89. Q. Li et al., Gata4, Tbx5 and Baf60c induce differentiation of adipose tissue-derived mesenchymal stem cells into beating cardiomyocytes. Int J Biochem Cell Biol 66, 30-36 (2015).
90. M. Xu, G. Shaw, M. Murphy, F. Barry, Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells Are Functionally and Genetically Different From Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells 37, 754-765 (2019).
91. S. Eto et al., Mesenchymal stem cells derived from human iPS cells via mesoderm and neuroepithelium have different features and therapeutic potentials. PLoS One 13, e0200790 (2018).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76790-
dc.description.abstract間葉幹細胞具有多種可應用於細胞療法的生理特性,在組織再生及免疫疾病等皆具有很高的應用價值。多篇研究表明不同組織來源的間葉幹細胞在生長速率、基因表現、分化以及免疫調節等能力上存在差異表現,可能影響細胞療法的成效。然而這些比較研究受限於培養條件及捐贈者差異對細胞活性的影響,存在結果的不一致。釐清不同組織來源的間葉幹細胞的差異表現將有助於細胞療法的開發。因此,本篇研究統合分析公開核糖核酸測序資料,目的於了解不同組織來源的間葉幹細胞在多篇研究中一致的差異表現。
本篇研究蒐集 114 筆測序資料,並從中篩選出 43 筆分析用資料以及 39 筆驗證用資料。應用分析用資料進行不同組織來源間的差異表現分析,得知不同組織來源的間葉幹細胞間存在大量差異表現基因。經驗證用資料交叉驗證,證實此差異表現基因在所有組別中普遍具有 60 % 以上的預測精密度。以此差異表現基因進行基因本體論分析,得知不同組織來源的間葉幹細胞具體可能在代謝、分化以及調控環境的能力上存在差異。本篇研究也實際取得不同組織來源的間葉幹細胞,發現在驗證的 14 個基因中,11 個基因表現符合差異表現基因的預測。
本篇研究應用統合分析得到不同組織來源的間葉幹細胞的差異表現基因,並透過乾實驗與濕實驗驗證其預測能力。這些差異表現基因可應用於預測特定組織來源的間葉幹細胞擅長的生理功能,進而有助於細胞療法的開發。
zh_TW
dc.description.abstractHuman mesenchymal stem cell (hMSC) has potential in cell therapy targeting tissue regeneration and immune diseases. Studies have shown hMSC derived from different tissues may have different properties, further affecting efficacy of cell therapies. However, specifying differences in hMSCs from comparative studies could be difficult due to their inconsistence in results. Thus, this study conducts a meta-analysis on public RNA-Seq data, aiming to discover consistent differences in previous studies.
43 analyzed data and 39 test data are selected amongst 114 collected RNA-Seq data. Numerous differential expression genes (DEGs) are revealed amongst hMSCs. Precision of these DEGs are cross-validated to be higher than 60 %. Gene ontology analysis shows these DEGs are correlated to metabolism, differentiation, or tissue remodeling. 14 origin-specific marker genes are validated, and 11 correspond to prediction in real samples.
These results show that differences in hMSCs can be obtained with RNA-Seq data meta-analysis. Experiments are needed to prove the prediction of functional differences.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:37:02Z (GMT). No. of bitstreams: 1
U0001-1808202012094200.pdf: 26006061 bytes, checksum: c8276ec0ebe9dbf80fc15c877ac0443f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents中文摘要 i
英文摘要 ii
目錄 iii
英文縮寫對照表 vii
第一章 緒論 1
1.1 人類間葉幹細胞 (human mesenchymal stem cell, hMSC) 1
1.2 間葉幹細胞的醫學應用 2
1.3 間葉幹細胞的異質性 (heterogeneity) 3
1.4 培養條件和捐贈者對觀察間葉幹細胞表現的影響 6
1.5 統合分析 (meta-analysis) 7
第二章 研究動機與架構 9
第三章 材料與方法 10
3.1 生物資訊學分析 (bioinformatic analysis) 10
3.1.1 核糖核酸測序公開資料搜索 10
3.1.2 測序資料比對至參考轉錄體 10
3.1.3 轉錄體間的比較分析 11
3.1.4 差異表現基因分析 (differential expression gene analysis) 11
3.1.5 差異表現基因的精密度分析 12
3.1.6 基因本體論分析 (gene ontology analysis) 12
3.1.7 標記基因篩選 (marker gene selection) 13
3.2 人類間葉幹細胞的取得與培養 13
3.2.1 脂肪間葉幹細胞的分離與培養 13
3.2.2 牙髓間葉幹細胞的分離與培養 14
3.2.3 骨髓與臍帶間葉幹細胞的取得與培養 15
3.3 細胞表面標記分析 15
3.4 核糖核酸表現量分析 16
3.4.1 核糖核酸抽取 (RNA extraction) 16
3.4.2 即時定量聚合酶連鎖反應 (Real-Time quantitative PCR) 17
3.5 統計分析 18
第四章 實驗結果 19
4.1 核糖核酸測序公開資料在不同研究計畫間存在明顯的差異 19
4.2 生資分析預測間葉幹細胞間存在大量差異表現基因 20
4.3 統合分析得來之差異表現基因的預測精密度優於單一團隊 21
4.4 基因本體論分析預測間葉幹細胞的功能性差異 21
4.5 生資分析篩選四種組織來源間葉幹細胞的標記基因 22
4.6 即時定量聚合酶連鎖反應驗證生資分析預測的標記基因 23
第五章 綜合討論與未來方向 24
第六章 圖表 28
圖一 主成分分析揭示間葉幹細胞之轉錄體以資料來源團隊分群 28
圖二 相同組織來源的間葉幹細胞在表現浮動基因中以資料來源團隊分群 29
圖三 階層式分群熱度圖揭示間葉幹細胞之轉錄體以資料來源團隊分群 32
圖四 經過篩選的 43 筆分析用資料之轉錄體仍以資料來源團隊分群 33
圖五  不同組織來源的人類間葉幹細胞間存在大量差異表現基因 34
圖六  差異表現基因對驗證用資料表現的預測精密度普遍在 60 % 之上 35
圖七  人類脂肪間葉幹細胞上調之差異表現基因的基因本體論分析 36
圖八  人類骨髓間葉幹細胞上調之差異表現基因的基因本體論分析 39
圖九  人類臍帶間葉幹細胞上調之差異表現基因的基因本體論分析 42
圖十  人類牙髓間葉幹細胞上調之差異表現基因的基因本體論分析 45
圖十一 人類不同組織來源間葉幹細胞的差異表現基因之文氏圖 47
圖十二 人類間葉幹細胞在明視野下呈現紡錘狀的型態 48
圖十三 人類間葉幹細胞表現正確的細胞表面標記分子 49
圖十四 14 個預測的標記基因在人類間葉幹細胞中有 11 個符合預測 50
表一  人類脂肪間葉幹細胞表現浮動基因列表 (前 300) 51
表二  人類骨髓間葉幹細胞表現浮動基因列表 (前 300) 53
表三  人類臍帶間葉幹細胞表現浮動基因列表 (前 300) 55
表四  人類牙髓間葉幹細胞表現浮動基因列表 (前 300) 57
表五  人類脂肪與骨髓間葉幹細胞差異表現基因列表 (部分) 59
表六  人類脂肪與臍帶間葉幹細胞差異表現基因列表 (部分) 60
表七  人類脂肪與牙髓間葉幹細胞差異表現基因列表 (部分) 61
表八  人類骨髓與臍帶間葉幹細胞差異表現基因列表 (部分) 62
表九  人類骨髓與牙髓間葉幹細胞差異表現基因列表 (部分) 63
表十  人類臍帶與牙髓間葉幹細胞差異表現基因列表 (部分) 64
表十一 人類脂肪間葉幹細胞標記基因列表 65
表十二 人類骨髓間葉幹細胞標記基因列表 66
表十三 人類臍帶間葉幹細胞標記基因列表 68
表十四 人類牙髓間葉幹細胞標記基因列表 72
參考文獻 74
附錄一 核糖核酸測序資料清單 i
附錄二 抗體列表 v
附錄三 qPCR 引子列表 vi
附錄四 期刊發表形式 vii
dc.language.isozh-TW
dc.subject統合分析zh_TW
dc.subject核糖核酸測序zh_TW
dc.subject生物資訊學zh_TW
dc.subject異質性zh_TW
dc.subject人類間葉幹細胞zh_TW
dc.subject組織來源zh_TW
dc.subjectbioinformaticsen
dc.subjecthuman mesenchymal stem cellen
dc.subjectheterogeneityen
dc.subjecttissue originen
dc.subjectmeta-analysisen
dc.subjectRNA-Seqen
dc.title以轉錄體分析探討人類不同組織來源間葉幹細胞之研究zh_TW
dc.titleTranscriptome Analysis of Human Mesenchymal Stem Cells from Different Tissue Originsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃兆祺(Eric Hwang),黃楓婷(Feng-Ting Hwang)
dc.subject.keyword人類間葉幹細胞,異質性,組織來源,統合分析,核糖核酸測序,生物資訊學,zh_TW
dc.subject.keywordhuman mesenchymal stem cell,heterogeneity,tissue origin,meta-analysis,RNA-Seq,bioinformatics,en
dc.relation.page81
dc.identifier.doi10.6342/NTU202003945
dc.rights.note未授權
dc.date.accepted2020-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
U0001-1808202012094200.pdf
  未授權公開取用
25.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved