請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7673完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳宗霖 | |
| dc.contributor.author | Ting-Zi Liu | en |
| dc.contributor.author | 劉庭孜 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:49:44Z | - |
| dc.date.available | 2021-11-04 | |
| dc.date.available | 2021-05-19T17:49:44Z | - |
| dc.date.copyright | 2019-11-04 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-10-16 | |
| dc.identifier.citation | [1]Y. Niu, Y. Li, D. Jin, L. Su, A. Vasilakos, 'A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges', Wireless Netw., pp. 1-20, Apr. 2015.
[2]B. Yang, Z. Yu, Y. Dong, J. Zhou and W. Hong, 'Compact Tapered Slot Antenna Array for 5G Millimeter-Wave Massive MIMO Systems,' in IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6721-6727, Dec. 2017. [3]S. Yamamoto, J. Hirokawa and M. Ando, 'A beam switching slot array with a 4-way Butler matrix installed in a single layer post-wall waveguide,' IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), San Antonio, TX, USA, 2002, pp. 138-141 vol.1. [4]P. Chen, W. Hong, Z. Kuai and J. Xu, 'A Double Layer Substrate Integrated Waveguide Blass Matrix for Beamforming Applications,' in IEEE Microwave and Wireless Components Letters, vol. 19, no. 6, pp. 374-376, June 2009. [5]T. Djerafi, N. J. G. Fonseca and K. Wu, 'Planar Ku-Band 4×4 Nolen Matrix in SIW Technology,' in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 2, pp. 259-266, Feb. 2010. [6]S. Yamamoto, J. Hirokawa, M. Ando, 'A half-sized post-wall short-slot directional coupler with hollow rectangular holes in a dielectric substrate', IEICE Trans. Electron., vol. 88, no. 7, pp. 1387-1394, Jul. 2005. [7]F. F. He, K. Wu, W. Hong, L. Han and X. Chen, 'Low-Cost 60-GHz Smart Antenna Receiver Subsystem Based on Substrate Integrated Waveguide Technology,' in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 4, pp. 1156-1165, April 2012. [8]P. Chen et al., 'A Multibeam Antenna Based on Substrate Integrated Waveguide Technology for MIMO Wireless Communications,' in IEEE Transactions on Antennas and Propagation, vol. 57, no. 6, pp. 1813-1821, June 2009. [9]Y. Cao, K. Chin, W. Che, W. Yang and E. S. Li, 'A Compact 38 GHz Multibeam Antenna Array With Multifolded Butler Matrix for 5G Applications,' in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2996-2999, 2017. [10]J. Lian, Y. Ban, J. Zhu, K. Kang and Z. Nie, 'Compact 2-D Scanning Multibeam Array Utilizing the SIW Three-Way Couplers at 28 GHz,' in IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 10, pp. 1915-1919, Oct. 2018. [11]J. Lian, Y. Ban, Q. Yang, B. Fu, Z. Yu and L. Sun, 'Planar Millimeter-Wave 2-D Beam-Scanning Multibeam Array Antenna Fed by Compact SIW Beam-Forming Network,' in IEEE Transactions on Antennas and Propagation, vol. 66, no. 3, pp. 1299-1310, March 2018. [12]A. A. M. Ali, N. J. G. Fonseca, F. Coccetti and H. Aubert, 'Design and Implementation of Two-Layer Compact Wideband Butler Matrices in SIW Technology for Ku-Band Applications,' in IEEE Transactions on Antennas and Propagation, vol. 59, no. 2, pp. 503-512, Feb. 2011. [13]X. Cheng et al., 'A Compact Multi-Beam End-Fire Circularly Polarized Septum Antenna Array for Millimeter-Wave Applications,' in IEEE Access, vol. 6, pp. 62784-62792, 2018. [14]H. J. Riblet, 'The Short-Slot Hybrid Junction,' in Proceedings of the IRE, vol. 40, no. 2, pp. 180-184, Feb. 1952. [15]F. Carrera, D. Navarro, M. Baquero-Escudero and V. M. Rodrigo-Peñarrocha, 'Compact substrate integrated waveguide directional couplers in Ku and K bands,' The 40th European Microwave Conference, Paris, 2010, pp. 1178-1181. [16]S. Karamzadeh, V. Rafii, M. Kartal and B. S. Virdee, 'Compact and Broadband 4×4 SIW Butler Matrix With Phase and Magnitude Error Reduction,' in IEEE Microwave and Wireless Components Letters, vol. 25, no. 12, pp. 772-774, Dec. 2015. [17]Q. Yang, Y. Ban, J. Lian, Z. Yu and B. Wu, 'SIW Butler Matrix with Modified Hybrid Coupler for Slot Antenna Array,' in IEEE Access, vol. 4, pp. 9561-9569, 2016. [18]T. Djerafi, N. J. G. Fonseca and K. Wu, 'Design and implementation of a planar 4×4 butler matrix in SIW technology for wideband applications,' The 40th European Microwave Conference, Paris, 2010, pp. 910-913. [19]C. Chen and T. Chu, 'Design of a 60-GHz Substrate Integrated Waveguide Butler Matrix—A Systematic Approach,' in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 7, pp. 1724-1733, July 2010. [20]T. Djerafi and K. Wu, 'A Low-Cost Wideband 77-GHz Planar Butler Matrix in SIW Technology,' in IEEE Transactions on Antennas and Propagation, vol. 60, no. 10, pp. 4949-4954, Oct. 2012. [21]M. K. Khattak, S. Kahng, M. S. Khattak, A. Rehman, C. Lee and D. Han, 'A low profile, wideband and high gain beam-steering antenna for 5G mobile communication,' 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, 2017, pp. 2575-2576. [22]N. Tiwari and T. R. Rao, 'A switched beam antenna array with butler matrix network using substrate integrated waveguide technology for 60 GHz communications,' 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, 2015, pp. 2152-2157. [23]Z. Chen, X. Wu and F. Yang, 'A compact SIW butler matrix with straight delay lines at 60 GHz,' 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, 2017, pp. 2141-2142. [24]O. Kramer, T. Djerafi and K. Wu, 'Dual-layered substrate-integrated waveguide six-port with wideband double-stub phase shifter,' in IET Microwaves, Antennas & Propagation, vol. 6, no. 15, pp. 1704-1709, 11 December 2012. [25]J. Dittloff, F. Arndt and D. Grauerholz, 'Optimum design of waveguide E-plane stub-loaded phase shifters,' in IEEE Transactions on Microwave Theory and Techniques, vol. 36, no. 3, pp. 582-587, March 1988. [26]D. M. Pozar, Microwave Engineering, 4th Edition New York: Wiley, 2011. [27]Z. C. Hao, W. Hong, J. X. Chen, H. X. Zhou and K. Wu, 'Single-layer substrate integrated waveguide directional couplers,' in IEE Proceedings - Microwaves, Antennas and Propagation, vol. 153, no. 5, pp. 426-431, Oct. 2006. [28]Feng Xu and Ke Wu, 'Guided-wave and leakage characteristics of substrate integrated waveguide,' in IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 1, pp. 66-73, Jan. 2005. [29]J. E. Rayas-Sanchez and V. Gutierrez-Ayala, 'A general EM-based design procedure for single-layer substrate integrated waveguide interconnects with microstrip transitions,' 2008 IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 2008, pp. 983-986. [30]J. D. Kraus and R. J. Marhefka, Antennas for All Applications, 3rd Edition, McGraw Hill, New York, 2003. [31]Zhubenko, V., 'Passive microwave components and antennas,' In-Tech, India, 2010. [32]X. Huang and K. Wu, 'A Broadband U-Slot Coupled Microstrip-to-Waveguide Transition,' in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 5, pp. 1210-1217, May 2012. [33]N. Marcuvitz, Waveguide Handbook, New York:McGraw-Hill, 1951. [34]P. Rizzi, Microwave Engineering Passive Circuits, NJ, Englewood Cliffs:Prentice-Hall, 1988. [35]T. A. Milligan, Modern Antenna Design, New York:McGraw-Hill, 1985. [36]X. Chen, S. Zhang and Q. Li, 'A Review of Mutual Coupling in MIMO Systems,' in IEEE Access, vol. 6, pp. 24706-24719, 2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7673 | - |
| dc.description.abstract | 隨著時代的進步及行動通訊需求大量增加,第五代行動通訊技術利用毫米波段中的部分頻譜來增加通信容量、降低功耗、提高資料傳輸速率和減少延遲。其中透過波束成形技術可以鎖定特定區域,來改善基地站無法涵蓋之區域的傳輸速率,而波束成形是藉由調整多個天線的輸入訊號大小與相位權重,以控制主波束的方向。巴特勒矩陣是其中一種可以達到此種目的的電路,且巴特勒矩陣使用元件數較少、損耗較小、以及較便宜。另外,為了降低功耗,需減少傳輸路徑上的損耗,因此本文採用空氣填充式基板集成波導結構來設計巴特勒矩陣饋入陣列天線,以達到波束成形功能,以及降低損耗之特性。
傳統波導管之體積較笨重、耗費較高又無法與平面集成。為了有利於封裝整合,因此衍生出基板集成波導結構的設計。該結構利用基板上下兩層的全金屬,配合兩側穿層的金屬柱作為金屬牆,形成一個可以與平面集成體積較小又低成本的平面波導結構。由於基板集成波導在傳輸過程中會接觸到有損介質,且在高頻時,有損介質材料的損耗大,因此造成能量在傳輸過程大量損耗。為了降低損耗,因而衍生出本文採用之空氣填充式基板集成波導結構。該結構將傳統基板集成波導之有損介質基板改為空氣基板,由於有損介質材料的損耗大於空氣,因此空氣填充式基板集成波導結構可以降低傳輸過程產生的損耗。 巴特勒矩陣是由耦合器、交叉耦合器以及相移器所組成的,其中本論文所使用的相移器為短截線相移器。本論文針對此相移器進行分析,並建立其等效電路模組,以此模組設計出可應用於空氣填充式基板集成波導結構的巴特勒矩陣之相移器。 為了驗證空氣填充式基板集成波導結構損耗較低,因此利用空氣填充式基板集成波導結構設計四乘四巴特勒矩陣饋入陣列天線,經模擬得知,在60 GHz時,此設計電路之損耗低於1 dB,與參考文獻中,使用傳統基板集成波導設計之巴特勒矩陣相比明顯小1 dB,因此證實使用空氣填充式基板集成波導結構設計出來之四乘四巴特勒矩陣之損耗較低,而將此電路饋入陣列天線,不但具有波束成形功能,又低損耗,且應用於毫米波頻段。 | zh_TW |
| dc.description.abstract | With the advancement of the times and the increasing demand for mobile communications, the fifth-generation mobile networks will utilize part of the spectrum in the millimeter-wave (mm-Wave) band to increase communication capacity, reduce power consumption, increase data transmission rate, and reduce delay. The beamforming technology can specify a specific area to improve the transmission rate of an area that cannot be covered by the base station. And beamforming controls the direction of the main beam by adjusting the input signal magnitude and phase weight of multiple antennas. The Butler Matrix is one of the circuits that can achieve beamforming. The Butler Matrix uses fewer components, less loss, and is less expensive. In addition, in order to reduce power consumption, it is necessary to reduce the loss on the transmission path. Therefore, this thesis uses an air-filled substrate integrated waveguide (AFSIW) structure to design an extremely low loss Butler matrix feeding beamforming antenna array.
Traditional waveguides are bulky, expensive, and can’t be integrated with the plane. In order to make package integration easy, the design of the substrate integrated waveguide (SIW) structure is evolved. The structure utilizes the full metal of the upper and lower layers of the substrate, and the through-hole via on the two sides is used as the metal wall to form a planar waveguide structure which can be integrated with the plane and has a small size and low cost. However, due to the contact with the lossy substrate or air during the transmission, there is still a non-negligible power loss when applied in high frequencies. In order to further reduce losses, the AFSIW structure is evolved on this thesis. The AFSIW structure changes the lossy dielectric substrate of the conventional SIW into the air. Therefore, the AFSIW structure can avoid the loss from substrate and achieve better performance than traditional SIW. Butler matrix is composed of the coupler, the crossover and the phase shifter. The stub phase shifter is used in this thesis. In this thesis, the stub phase shifter is analyzed and the equivalent circuit module of the stub phase shifter is established. The module is designed to apply in the phase shifter of the Butler matrix on AFSIW structure. In order to verify that the structure of the AFSIW has low loss, a 4×4 Butler matrix feeding array antenna is designed by using an AFSIW structure. The simulation shows that the loss of this design circuit is less than 1 dB at 60 GHz, which is significantly smaller than the traditional SIW Butler matrix 1 dB. Therefore, it is confirmed that the loss of the 4×4 Butler matrix designed using the AFSIW is low. And the extremely low loss Butler matrix feeding beamforming antenna array is applied in the millimeter-wave band. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:49:44Z (GMT). No. of bitstreams: 1 ntu-108-R06942021-1.pdf: 8358094 bytes, checksum: 1546810e87acb0272873765dc270aa83 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 國立台灣大學碩士學位論文口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Literature Survey 2 1.3 Contributions 4 1.4 Organization of This Thesis 4 Chapter 2 Introduction of SIW and Butler Matrix 7 2.1 Introduction of Waveguide 7 2.2 Introduction of SIW 13 2.3 Introduction of antenna array 15 2.4 Introduction of Butler Matrix 17 Chapter 3 Novel Structure of AFSIW 23 3.1 AFSIW Fabrication 23 3.2 AFSIW Feeding 30 Chapter 4 AFSIW Stub Phase Shifter 33 4.1 Introduction of Stub Phase Shifter 34 4.2 Analysis of Stub Phase Shifter in AFSIW 40 4.2.1 Design Procedure 44 4.3 AFSIW Stub Phase Shifter Design 48 4.4 Measurement and Discussion 55 4.5 Sensitivity About Fabrication 57 Chapter 5 AFSIW 4x4 Butler Matrix Antenna Array 61 5.1 Coupler Design 62 5.2 Crossover Design 70 5.3 Slot Antenna Array Design 74 5.3.1 Slot Antenna Design 74 5.3.2 Slot Antenna Array 78 5.4 AFSIW 4x4 Butler Matrix Antenna Array 83 5.4.1 Butler Matrix 83 5.4.2 Proposed Beamforming Antenna Array Using AFSIW Structure 89 5.5 Measured result and discussion 91 5.5.1 Coupler and Crossover 91 5.5.2 Butler Matrix and Butler Matrix Antenna Array 100 5.5.3 Comparison and Discussion 102 Chapter 6 Conclusions 105 REFERENCE 108 | |
| dc.language.iso | zh-TW | |
| dc.title | 使用空氣填充式基板集成波導結構之毫米波波束成形天線陣列 | zh_TW |
| dc.title | mm-Wave Beamforming Antenna Array Using AFSIW Structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林丁丙,黃建彰,鄭文鋒,周錫增 | |
| dc.subject.keyword | 巴特勒矩陣,充滿空氣基板集成波導,毫米波,相移器,陣列天線, | zh_TW |
| dc.subject.keyword | Butler matrix,air-filled substrate integrated waveguide (AFSIW),millimeter-wave (mm-Wave),phase shifter,array antenna, | en |
| dc.relation.page | 113 | |
| dc.identifier.doi | 10.6342/NTU201904216 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-10-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 8.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
