請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76737完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳安宇(An-Yeu Wu) | |
| dc.contributor.author | Po-Hung Chen | en |
| dc.contributor.author | 陳柏宏 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:35:59Z | - |
| dc.date.available | 2021-07-10T21:35:59Z | - |
| dc.date.copyright | 2016-10-14 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-27 | |
| dc.identifier.citation | [1] ,American Heart Association, Available: http://www.heart.org/HEARTORG/Conditions/More/MyHeartandStrokeNews/All-About-Heart-Rate-Pulse_UCM_438850_Article.jsp#.VwOq3_l96Uk
[2] ACHTEN, J., and A. E. JEUKENDRUP., “Heart rate monitoring: applications and limitations, ” Sports Med. 33:517–538, 2003 [3] Foreseen, Jill, and Michael I. Lambert. “Autonomic control of heart rate during and after exercise,” Sports medicine 38.8 (2008): 633-646. [4] Y. Lee, H. Han, and J. Kim, “Influence of Motion Artifacts on Photoplethysmographic Signals for Measuring Pulse Rates, ” International Conference on Control, Automation and Systems, pp. 962-965, Oct 2008 [5] J. Pan, and W. J. Tompkins, “A Real-Time QRS Detection Algorithm,” Biomedical Engineering, IEEE Transactions on, vol. BME-32, pp. 230-236, 1985. [6] J. Allen. “Photoplethysmography and its application in clinical physiological measurement,” Physiological Measurement, vol. 28, 2007. [7] Y. H. Yang, and K. T. Tang, “A Pulse Oximetry System with Motion Artifact Reduction based on Fourier Analysis,” IEEE International Symposium on Bioelectronics and Bioinformatics, pp. 1-4, 2014. [8] J. M. Cho, K. W. Shin, Y. K. Sung, D. J. Jung. “Reduction of Motion Artifact of photoplethysmogram Signal Based on Its Frequency Distribution,” IEEE EMBS Conference on Biomedical Engineering and Sciences, pp. 40-45, DEC, 2012. [9] R. Yousefi, M. Nourani, S. Ostadabbas, and I. Panahi, “A motion-tolerant adaptive algorithm for wearable photoplethysmographic biosensors,” IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 2, pp. 670–681, 2014. [10] H. Fukushima, H. Kawanaka, M. S. Bhuiyan, and K. Oguri, “Estimating heart rate using wrist-type photoplethysmography and acceleration sensor while running,” in Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 2012, pp. 2901–2904. [11] Z. Zhang, Z. Pi and B. Liu, “TROIKA: A General Framework for Heart Rate Monitoring Using Wrist-Type Photoplethysmographic Signals During Intensive Physical Exercise, ” in IEEE Transactions on Biomedical Engineering, vol. 62, no. 2, pp. 522-531, Feb. 2015 [12] N. Golyandina, V. Nekrutkin, and A. A. Zhigljavsky, Analysis of time series structure: SSA and related techniques. CRC Press, 2001. [13] Q. Wang, P. Yang, and Y. Zhang, “Artifact reduction based on empirical mode decomposition (EMD) in photoplethysmography for pulse rate detection,” in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 31 2010-sept. 4 2010, pp. 959 –962. [14] B Widrow, R. C. Goodlin et al., “Adaptive Noise Canceling: Principles and Applications,” Proceedings of the IEEE, vol. 63, pp. 1692-1716, Dec. 1975. [15] S. Haykin, Adaptive Filter Theory, 3rd, 1996. [16] Asada, H. Harry, Hong-Hui Jiang, and Peter Gibbs. “Active noise cancellation using MEMS accelerometers for motion-tolerant wearable bio-sensors,” Engineering in Medicine and Biology Society, 2004. IEMBS'04. 26th Annual International Conference of the IEEE. Vol. 1. IEEE, 2004. [17] J. Chen, Z. Lin and R. W. McCallum, “Cancellation of motion artifacts in electrogastrogram - a comparison of time-, transform, and frequency-domain adaptive filtering,” Southeastcon '93, Proceedings., IEEE, Charlotte, NC, 1993, pp. 7 [18] M.I. Ribeiro, Kalman and Extended Kalman Filters: Concept, Derivation and Properties, Institute for Systems and Robotics, Instituto Superior Tecnico, Av. Rovisco Pais, 1, February 2004. [19] Tamer Basar, “A New Approach to Linear Filtering and Prediction Problems, ” in Control Theory:Twenty-Five Seminal Papers (1932-1981) , 1, Wiley-IEEE Press, 2001, pp.167-179 [20] R. Faragher, “Understanding the basis of the Kalman filter via a simple and intuitive derivation,” IEEE Signal Process. Mag., vol. 29, no. 5, pp. 128–132, Sep. 2012 [21] G. Frigo et al., “Efficient tracking of heart rate under physical exercise from photoplethysmographic signals,” Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), 2015 IEEE 1st International Forum on, Turin, 2015, pp. 306-311. [22] W.C. Levy, M. D. Cerqueira, G.D. Harp, “Effect of endurance exercise training on heart rate variability at rest in healthy young and older men,” The American journal of cardiology, vol. 82, pp. 1236-1241, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76737 | - |
| dc.description.abstract | 在臨床醫療中,對醫生而言心跳速率是一項重要的生命跡象來診斷人的基本健康狀況。心跳速率會根據各種不同的生理現象而產生變化,如心律不整,焦慮等等。更重要的是,正常的心跳速率因人而異。因此充分掌握個人心跳速率狀況是一項很重要的健康評估指標。除了在臨床醫療中,在運動當中即時監控心跳速率能夠有效的幫助我們達到最大的運動效率以及有效地防止受傷。根據上述的好處,近年來心跳速率監控器的需求越來越多的趨勢。
即時的心跳速率監控應用中,傳統的心跳速率監控是以心電圖來量測,然而心電圖的成本高及其使用上有所不便。目前心跳速率監控的新趨勢是利用光體積描述訊號,其有成本低,使用方便及能整合在穿戴式裝置上。然而光體積描述訊號在使用上遭遇最大的困難為晃動(Motion Artifacts)的干擾,過去相關的解決方法應用在實際上並不可行導致結果不準確。因此,我們需要有額外的訊息來分析訊號當中屬於晃動所造成的成分。三軸加速器的訊號能夠幫助分析晃動成分並且在受干擾的訊號當中抑制該晃動成分。在這篇論文中,我們提出了以光體積描述訊號及三軸加速器建立的抗晃動心跳速率監控系統。該系統具有兩個重要的部分,晃動消除和頻譜峰值追蹤。我們提出了一個基於可適性雜訊消除的低複雜度晃動消除法來有效地抑制晃動成分和基於卡爾曼濾波器的穩固頻譜峰值追蹤法來追蹤心跳在頻譜上的峰值。這個系統在心跳速率監控上有很好的準確度,展現出實際應用在穿戴式裝置上的潛力。 | zh_TW |
| dc.description.abstract | In clinical medical, heart rate (HR) is an important vital sign for doctors to access the general health of a person. Depending on the various physiological condition, like arrhythmia, anxiety and so forth, the HR changes accordingly. What’s more, normal HR varies from person to person. Knowing yours can be an important heart-healthy gauge. In addition to clinical medical, monitoring HR when exercising can help us to maximize the effect of exercising and prevent from getting injured. Benefits from the advantages mentioned above, the demands for HR monitors have increased in the recent years.
In the application of real-time HR monitoring, Electrocardiogram (EKG) is traditional ways to monitor heart rate. EKG encounters high cost and inconvenience. Recent trend for HR monitoring is Photoplethysmography (PPG), which is low-cost, user-friendly and can be integrated into wearable devices. However, PPG will be interfered by motion artifacts (MA). Past works for HR monitoring from motion-corrupted PPG is not workable in real applications. As a result, we require additional information to analyze the signal components corresponding to MA. Tri-axis accelerometer is helpful to analyze the components of MA and suppress them from the corrupted PPG signal. In this work, we propose a motion-tolerant HR monitoring system with PPG signal and tri-axis accelerometer. The system has two key parts, motion artifact cancellation and spectral peak tracking. We propose a low-complexity motion artifact cancellation based on adaptive noise cancellation (ANC) to suppress the MA components effectively and a robust spectral peak tracking based on Kalma filter to track the peak corresponding to HR on the spectrum. This work has good accuracy of HR monitoring and show the potential to apply on wearable device in real application. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:35:59Z (GMT). No. of bitstreams: 1 ntu-105-R02943117-1.pdf: 3446193 bytes, checksum: 5673abf1d7508f966b7a0dc7b8ae3cae (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 致謝 vi
摘要 viii Abstract x List of Figures xvi List of Tables xix Chapter1 Introduction 1 1.1 Introduction of Heart Rate Monitors 1 1.1.1 Physiological Signals and Devices in Heart Rate Monitoring 3 1.2 Heart Rate Monitoring with PPG Signal 5 1.2.1 Introduction of PPG 5 1.2.2 Reflective PPG 7 1.2.3 Heart Rate Detection 8 1.2.4 Spectrum of PPG Signals 9 1.3 Motivation and Contribution 10 1.4 Thesis Organization 11 Chapter2 Related Works of Heart Rate Monitoring with PPG signal and Accelerometer 12 2.1 Motion Artifact of PPG 12 2.1.1 Influence of PPG Signals 12 2.2 Heart Rate Monitoring with PPG Suffered from Motion Artifact 14 2.3 Heart Rate Monitoring with PPG and Accelerometer in Intensive Exercise Scenario 17 2.3.1 Benchmark Datasets 19 2.3.2 Motion Artifact Cancellation 20 2.3.3 Spectrum Peak Tracking 22 2.4 Problems of related works 23 2.5 Summary 24 Chapter3 Low-complexity Motion Artifact Cancellation by Ordering Weighted-axis of Accelerometer 25 3.1 Adaptive Noise Cancellation 26 3.2 Ordering Weighted-axis Adaptive Noise Cancellation 31 3.2.1 Pre-processing Stage 32 3.2.2 Correlation Analysis and Weight Allocation 34 3.2.3 Ordering-stage Adaptive Noise Cancellation 35 3.2.4 Spectrum Estimation 37 3.3 Simulation Results 38 3.4 Summary 43 Chapter4 Robust Spectral Peak Tracking Based on Kalman Filter 44 4.1 Simple Concept of Kalman Filter 46 4.2 Kalman Filter Based Peak Tracking with Modification Mechanism 50 4.2.1 Heart Rate Evolution Model 50 4.2.2 Optimal Heart Rate Tracking 52 4.2.3 Modification Mechanism 56 4.3 Heart Rate Monitoring System 60 4.4 Simulation Result 61 4.4.1 Performance of Proposed Heart Rate Monitoring System 62 4.4.2 Comparison between Proposed work and TROIKA 66 4.5 Summary 68 Chapter5 Conclusion and Future Work 69 5.1 Main Contribution 69 5.2 Future Direction 69 Reference 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 心率監控 | zh_TW |
| dc.subject | 光體積描述訊號 | zh_TW |
| dc.subject | 三軸加速器 | zh_TW |
| dc.subject | HR monitor | en |
| dc.subject | Accelerometer | en |
| dc.subject | Photoplethysmography | en |
| dc.title | 以光體積描述訊號及三軸加速器之抗晃動心率監控 | zh_TW |
| dc.title | Motion-tolerant Heart Rate Monitoring Based on Photoplethysmography Signal and Accelerometer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曹恆偉(Hen-Wai Tsao),盧奕璋(Yi-Chang Lu),李仁貴(Ren-Guey Lee) | |
| dc.subject.keyword | 光體積描述訊號,三軸加速器,心率監控, | zh_TW |
| dc.subject.keyword | Photoplethysmography,Accelerometer,HR monitor, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU201601389 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-07-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-R02943117-1.pdf 未授權公開取用 | 3.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
