請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76708
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳亮嘉(Liang-Chia Chen) | |
dc.contributor.author | Tse-Lung Yu | en |
dc.contributor.author | 尤澤龍 | zh_TW |
dc.date.accessioned | 2021-07-10T21:35:26Z | - |
dc.date.available | 2021-07-10T21:35:26Z | - |
dc.date.copyright | 2016-10-14 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-08 | |
dc.identifier.citation | [1] D. Malacara, “Chapter 1: Fizeau interferometer”, in Optical Shop Testing 3rd edition, A John Wiley & Sons, Inc., Publication, 2007, pp. 17-20.
[2] P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm”, Applied Optics. 26, 2504 (1987). [3] K. Creath, “Step height measurement using two-wavelength phase-shifting interferometry”, Applied Optics 26, 2810 (1987). [4] J. C. Wyant, “Extended range two-wavelength Interferometry”, Chapter note, Ch5. [5] F. Bien, M. Camac, H.J. Caulfield, and S. Ezekiel, “Absolute distance measurement by variable wavelength interferometry”, Applied Optics 20, 400 (1981) [6] J. Schmitt, P. Hariharan, “Two-wavelength interferometric profilometry with a phase-step error-compensating algorithm”, Optical Engineering 45, 115602 (2006) [7] K. Creath and J. C. Wyant, “Direct phase measurement of aspheric surface contours”, Proceeding of SPIE 645 (1986), pp. 101-106. [8] P. K. Upputuri, N. K. Mohan, and M. P. Kothiyal, “Measurement of discontinuous surfaces using multiple-wavelength interferometry”, Optical Engineering 48, 093603 (2009) [9] Y. Y. Cheng and J. C. Wyant, “Multiple-wavelength phase shifting interferometry”, Applied Optics 24, 804 (1985) [10] Y. Y. Cheng and J. C. Wyant, “Two-wavelength phase shifting interferometry”, Applied Optics 23, 4539 (1984) [11] K. Houairi and F. Cassaing, “Two-wavelength interferometry: extended range and accurate optical path difference analytical estimator”, Optical Society of America A 26, 2503 (2009) [12] M. G. Lofdahl and H. Eriksson, “Algorithm for resolving 2π ambiguities in interferometric measurements by use of multiple wavelengths”, Optical Engineering 40, 984 (2001) [13] J. Petter and G. Berger, “Non-contact Profiling for high precision fast asphere topology measurement”, Proceeding of SPIE 8788 (2013), pp. 878819-1 – 878819-7 [14] C. Weimann, M. Fratz, H. Wolfelschneider, W. Freude, H. Hofler, and C. Koos, “Synthetic-wavelength interferometry improved with frequency calibration and unambiguity range extension”, Applied Optics 54, 6334 (2015) [15] P.C. Huang, “Displacement measurement by multi-wavelength heterodyne interferometry”, Univ. of Tsing Hua in Taiwan, Institute of Photonics Technologies, Master Thesis, 2012. [16]. U. P. Kumar, N. K. Mohan and M. P. Kothiyal, “Multiple wavelength interferometry for surface profiling”, Proceeding of SPIE 7063 (2008), pp. 70630W-1 – 70630W-10. [17] J. Schmit, “Two-wavelength interferometry combined with N-point technique”, Proceeding of SPIE 3744 (1999), pp. 200-206. [18] G. Berger, and J. Petter, “Non-contact metrology of aspheric surfaces based on MWLI technology”, Proceeding SPIE 8884, 88840V (2013) [19] S.T. Lin, K.T. Lin, and Y.C. Liao, “Shearing interferometer using low-coherent light source and calcite prism”, Optic Communication 276 (2007), pp. 201-205. [20] X. Guo, A. Zeng, and H. Huang, “Spatial phase-shifting lateral shearing interferometer”, Proceeding of SPIE 7160 (2008), pp. 71602D-1 – 71602D-8. [21] R. Nave, “Fraunhofer Single Slit”, http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslit.html#c1 [22] E. Hecht, “Chapter 10: Diffraction”, in Optics 4th edition, Publication of Pearson, 2013, pp. 443-485 [23] B. L. Swinkels, A. Latoui, N. Bhattacharya, Arno A. Wielders and Joseph J. J. Braat, “Absolute distance metrology for space interferometers”, Proceeding of SPIE 5879 (2005), pp. 58790N-1 – 58790N-7. [24] J. A. Stone, A. Stejskal, and L. Howard, “Absolute interferometry with a 670-nm external cavity diode laser”, Applied Optics 38, 5981 (1999) [25] H. Kikuta, K. Iwata, and R. Nagata, “Distance measurement by the wavelength shift of laser diode light”, Applied Optics 25, 2976 (1986) [26] H. J. Yang, J. Deibel, S. Nyberg, and K. Riles, “High-precision absolute distance and vibration measurement with frequency scanned interferometry”, Applied Optics 44, 3937 (2005) [27] L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry”, Applied Optics 33, 7334 (1994) [28] Thorlabs. Inc, “BD40 beam displace performance”, http://www.thorlabs.hk/newgrouppage9.cfm?objectgroup_id=745&pn=BD40 [29] D. P. Hand, T. A. Carolan, J. S. Barton, and J. D. C. Jones, “Profile measurement of optically rough surface by fiber-optic interferometry”, Optics Letters 18, 1361 (1993) [30] S. Sumriddetchkajorn, “Polarization-insensitive tunable-contrast fiber-optic polarization interferometers with a polarization controller”, Optic Communication 217, 197 (2003) [31] C. W. Chang, M. T. Hou, and I.J. Hsu, “High sensitivity dynamical profilometry with a fiber-based interferometer”, Optic Letters 38, 2434 (2013) [32] E. Hecht, “Chapter 9: Interference”, in Optics 4th edition, Publication of Pearson, 2013, pp. 385-442. [33] Renishaw Inc., “XL-80 量測光學鏡組”, http://www.renishaw.com.tw/tw/measurement-optics-for-xl-80--8427 [34] Keysight Inc., “10770A Angular Interferometer”, http://www.keysight.com/en/pd-1000001039:epsg:pro-pn-10770A/angular-interferometer?cc=TW&lc=cht [35] Physik Instrumente GmbH, “S-316 Tilt Platforms and Z-sxis Positioners User Manual” (2003) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76708 | - |
dc.description.abstract | 本研究研發一套運用雙波長菲佐干涉術之距離及角度同步量測系統,本研究之技術發展成功整合雙波長干涉術、雙折射晶體之分光效應、相移術及角度量測等原理達成同時量測距離與角度之目標。此量測系統包含光纖及探頭兩部分,由偏極態保持光纖 (PM fiber)、偏振片耦合器、高密度波長分波多工器、光循環器、偏極態分光器和光偵測器等元件作為光纖系統組成元件;準直鏡、Savart 稜鏡、分光鏡和壓電位移平台作為探頭系統組成元件,光源部分利用紅外光頻譜找出兩個相近的波段,進行雙波長干涉並減少相位模糊問題,並使用Savart稜鏡作為雙折射晶體進行分光以量測角度,再加上精密奈米級壓電位移平台進行相移術,最後以光纖作為訊號傳遞元件所形成的二對P與S偏極態形成光干涉訊號後,用光偵測器及電腦進行訊號處理同時得到距離及角度資訊。
經過多次實驗證明後,本系統於良好環境控制下進行單波長位移距離量測時可得到0.43 %的誤差;進行雙波長位移距離量測時,可得到1.0 %的誤差;進行傾斜角度量測時,可得到小於全量測範圍之3.55 %的誤差。此系統除前述優點外,亦具備開發成為小型化探頭的潛力,未來亦可應用此量測系統於工具機之三軸位移量測。 | zh_TW |
dc.description.abstract | The research is aimed to develop a simultaneous distance and tilting angle measuring method by using two-wavelength Fizeau interference with a birefringent crystal (Savart prism) as a beam splitter. In addition, this system features of small size, easy-to-build and high feasibility. Besides, the fiber part in the system is established by using a polarization-maintaining optical fiber (PMF or PM fiber), polarizer, dense wavelength division multiplexing (DWDM), circulator and polarized beam splitter (PBS). Probe part in this system is built by using a collimator, a Savart prism, a beam splitter and a piezoelectric transducer (PZT).
The developed measuring method employs Fizeau-based two-wavelength interference, light splitting by birefringent crystal and multi-step phase shifting to achieve the simultaneous measurement of positioning distance and tilting angle. Also, two specific wavelengths, which are close to each other, are used to form two wavelength interference with reduced phase ambiguity. A Savart plate is used to make two parallel beams so that tilting angle of an object can be measured. A multi-step phase-shifting principle by modulating the beam splitter with a PZT is used determine phase information from two pairs of p- and s-polarization interference beams, so the distance and tilting angle signal can be detected and processed by using photon detectors and personal computer, respectively. As proved by experiments, the developed measuring method can detect a distance with 0.43 % uncertainty of the overall measuring range under environmental-controlled conditions by using single wavelength; 1.00 % uncertainty of the total measuring range by using two wavelength, respectively. Meanwhile, the tilting angle of the stage can be measured with error less than 3.55% of the total measuring angle range. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:35:26Z (GMT). No. of bitstreams: 1 ntu-105-R03522707-1.pdf: 4008629 bytes, checksum: 84fde9657824edd35a7e801edb23a05d (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 第1章 緒論 1
1.1 研究背景 1 1.2 研究目的 2 1.3 研究目標 3 1.4 論文架構 3 第2章 文獻探討 5 2.1 Fizeau干涉術 5 2.2 相移術 6 2.3 多波長干涉術 8 2.4 多波長Fizeau干涉儀 10 2.5 Savart稜鏡 12 2.6 頻率掃描干涉術 13 2.7 白光干涉術 15 2.8 傾斜角量測系統 17 2.9 總結 18 第3章 研究方法 20 3.1 整體系統架構 21 3.2 探頭內部架構 22 3.3 干涉原理與相移術的應用 22 3.4 距離量測系統訊號處理 31 3.5 傾斜角量測系統訊號處理 35 第4章 系統架構與實驗設計 39 4.1 系統架構設計 39 4.2 光線準直測試 49 4.3 光強穩定度測試 50 4.4 距離量測實驗 50 4.5 傾斜角量測實驗 51 第5章 實驗結果及誤差分析 56 5.1 光線準直測試 56 5.2 光強穩定度測試 56 5.3 距離量測實驗 – 順向掃描 57 5.4 距離量測實驗 – 往返掃描 59 5.5 距離量測實驗 – 雙波長量測 62 5.6 傾斜角量測實驗 – 單一方解石晶體 68 5.7 傾斜角量測實驗 – 方解石晶體Savart稜鏡 72 5.8 傾斜角量測實驗 – 支撐機構 74 5.9 誤差分析 80 5.9.1 系統誤差 80 5.9.2 外部干擾 83 5.9.3 光學設計 84 第6章 結論與展望 86 6.1 結論 86 6.2 未來展望 87 參考文獻 90 | |
dc.language.iso | zh-TW | |
dc.title | 以雙波長菲佐干涉術進行距離及角度同步量測法之研發 | zh_TW |
dc.title | Development of a simultaneous distance and angle measuring method using two-wavelength Fizeau interferometry | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李朱育(Ju-Yi Lee),林世聰(Shyh-Tsong Lin),葉勝利(Sheng-Lih Yeh) | |
dc.subject.keyword | 雙波長干涉,距離量測,角度量測,光纖量測,菲佐干涉術, | zh_TW |
dc.subject.keyword | Two-wavelength interference,distance measurement,angle measurement,fiber-based measuring system,Fizeau interferometry, | en |
dc.relation.page | 93 | |
dc.identifier.doi | 10.6342/NTU201602063 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-08-09 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-R03522707-1.pdf 目前未授權公開取用 | 3.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。