Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76701
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江宏仁(Hong-Ren Jiang)
dc.contributor.authorChun-Yen Wuen
dc.contributor.author吳俊諺zh_TW
dc.date.accessioned2021-07-10T21:35:20Z-
dc.date.available2021-07-10T21:35:20Z-
dc.date.copyright2020-08-28
dc.date.issued2020
dc.date.submitted2020-08-19
dc.identifier.citation1. Agiwal, M., N. Saxena, and A. Roy, Towards connected living: 5g enabled internet of things (iot). IETE Technical Review, 2019. 36(2): p. 190-202.
2. Bravyi, S., D. Gosset, and R. Koenig, Quantum advantage with shallow circuits. Science, 2018. 362(6412): p. 308-311.
3. Miraz, M.H., et al. A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT). in 2015 Internet Technologies and Applications (ITA). 2015.
4. Srinivasan, C., et al., A review on the different types of Internet of Things (IoT). Journal of Advanced Research in Dynamical and Control Systems, 2019. 11(1): p. 154-158.
5. Hu, J., et al., A review of stimuli-responsive polymers for smart textile applications. Smart Materials and Structures, 2012. 21(5): p. 053001.
6. Mäthger, L.M., et al., Mechanisms and behavioural functions of structural coloration in cephalopods. Journal of the Royal Society Interface, 2008. 6(suppl_2): p. S149-S163.
7. Patanè, L., et al., An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation. Frontiers in neurorobotics, 2012. 6: p. 8.
8. Su, B., et al., Mimosa‐inspired design of a flexible pressure sensor with touch sensitivity. Small, 2015. 11(16): p. 1886-1891.
9. Zhang, J. and Y. Yin, SMA-based bionic integration design of self-sensor–actuator-structure for artificial skeletal muscle. Sensors and Actuators A: Physical, 2012. 181: p. 94-102.
10. Lehmann, W., et al., Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature, 2001. 410(6827): p. 447-450.
11. Baughman, R., Conducting polymer artificial muscles. Synthetic metals, 1996. 78(3): p. 339-353.
12. Yoon, S.G., et al., Swelling and electroresponsive characteristics of interpenetrating polymer network hydrogels. Polymer international, 2005. 54(8): p. 1169-1174.
13. Li, Y., et al., Biomimetic thermo-responsive star diblock gelators. Chemical communications, 2004(23): p. 2746-2747.
14. Sun, H., C.P. Kabb, and B.S. Sumerlin, Thermally-labile segmented hyperbranched copolymers: Using reversible-covalent chemistry to investigate the mechanism of self-condensing vinyl copolymerization. Chemical Science, 2014. 5(12): p. 4646-4655.
15. Firestone, M.A., P. Thiyagarajan, and D.M. Tiede, Structure and optical properties of a thermoresponsive polymer-grafted, lipid-based complex fluid. Langmuir, 1998. 14(17): p. 4688-4698.
16. Mo, B., et al., Facile synthesis of photolabile dendritic-unit-bridged hyperbranched graft copolymers for stimuli-triggered topological transition and controlled release of Nile red. Polymer Chemistry, 2015. 6(18): p. 3489-3501.
17. Church, D.C., G.I. Peterson, and A.J. Boydston, Comparison of mechanochemical chain scission rates for linear versus three-arm star polymers in strong acoustic fields. Acs Macro Letters, 2014. 3(7): p. 648-651.
18. Ahn, S.-k., et al., Stimuli-responsive polymer gels. Soft Matter, 2008. 4(6): p. 1151-1157.
19. Heskins, M. and J.E. Guillet, Solution properties of poly (N-isopropylacrylamide). Journal of Macromolecular Science—Chemistry, 1968. 2(8): p. 1441-1455.
20. Kim, B., et al., Microfluidic fabrication of photo-responsive hydrogel capsules. Chemical Communications, 2013. 49(18): p. 1865-1867.
21. Breuer, L., et al., Towards light-addressable flow control: Responsive hydrogels with incorporated graphene oxide as laser-driven actuator structures within microfluidic channels. Sensors and Actuators B: Chemical, 2019. 288: p. 579-585.
22. Ebara, M., et al., Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels. Lab on a Chip, 2006. 6(7): p. 843-848.
23. Das, D., et al., Stimulus-responsive, biodegradable, biocompatible, covalently cross-linked hydrogel based on dextrin and poly (N-isopropylacrylamide) for in vitro/in vivo controlled drug release. ACS Applied Materials Interfaces, 2015. 7(26): p. 14338-14351.
24. Ohya, S., Y. Nakayama, and T. Matsuda, In vivo evaluation of poly (N-isopropylacrylamide)(PNIPAM)-grafted gelatin as an in situ-formable scaffold. Journal of Artificial Organs, 2004. 7(4): p. 181-186.
25. Lanzalaco, S. and E. Armelin, Poly (n-isopropylacrylamide) and copolymers: A review on recent progresses in biomedical applications. Gels, 2017. 3(4): p. 36.
26. Chang, C., K. Han, and L. Zhang, Structure and properties of cellulose/poly (N‐isopropylacrylamide) hydrogels prepared by IPN strategy. Polymers for Advanced Technologies, 2011. 22(9): p. 1329-1334.
27. Wang, J., X. Zhou, and H. Xiao, Structure and properties of cellulose/poly (N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydrate polymers, 2013. 94(2): p. 749-754.
28. Zheng, W.J., et al., Tough Al-alginate/poly (N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics. ACS applied materials interfaces, 2015. 7(3): p. 1758-1764.
29. Petrusic, S., et al., Development and characterization of thermosensitive hydrogels based on poly (N‐isopropylacrylamide) and calcium alginate. Journal of applied polymer science, 2012. 124(2): p. 890-903.
30. Zhang, H., et al., Thermal-responsive poly (N-isopropyl acrylamide)/sodium alginate hydrogels: preparation, swelling behaviors, and mechanical properties. Colloid and Polymer Science, 2016. 294(12): p. 1959-1967.
31. Tirumala, V.R., et al., Molecular model for toughening in double-network hydrogels. The Journal of Physical Chemistry B, 2008. 112(27): p. 8024-8031.
32. Baumberger, T., C. Caroli, and D. Martina, Solvent control of crack dynamics in a reversible hydrogel. Nature materials, 2006. 5(7): p. 552-555.
33. Okumura, K., Toughness of double elastic networks. EPL (Europhysics Letters), 2004. 67(3): p. 470.
34. Harmon, M.E., M. Tang, and C.W. Frank, A microfluidic actuator based on thermoresponsive hydrogels. Polymer, 2003. 44(16): p. 4547-4556.
35. Dragan, E.S., et al., Macroporous composite IPN hydrogels based on poly (acrylamide) and chitosan with tuned swelling and sorption of cationic dyes. Chemical engineering journal, 2012. 204: p. 198-209.
36. Wang, T., et al., Rapid cell sheet detachment from alginate semi-interpenetrating nanocomposite hydrogels of PNIPAm and hectorite clay. Reactive and Functional Polymers, 2011. 71(4): p. 447-454.
37. Kim, S.J., et al., Bending behavior of hydrogels composed of poly (methacrylic acid) and alginate by electrical stimulus. Polymer international, 2004. 53(10): p. 1456-1460.
38. Li, X., et al., Structure and characterization of amphoteric semi-IPN hydrogel based on cationic starch. Carbohydrate Polymers, 2009. 75(4): p. 688-693.
39. Murthy, P.K., et al., Semi-IPNs of starch and poly (acrylamide-co-sodium methacrylate): Preparation, swelling and diffusion characteristics evaluation. Reactive and Functional Polymers, 2006. 66(12): p. 1482-1493.
40. Wu, W., et al., Smart core− shell hybrid nanogels with Ag nanoparticle core for cancer cell imaging and gel shell for pH-regulated drug delivery. Chemistry of Materials, 2010. 22(6): p. 1966-1976.
41. Toma, M., et al., Active control of SPR by thermoresponsive hydrogels for biosensor applications. The Journal of Physical Chemistry C, 2013. 117(22): p. 11705-11712.
42. Pelah, A., R. Seemann, and T.M. Jovin, Reversible cell deformation by a polymeric actuator. Journal of the American Chemical Society, 2007. 129(3): p. 468-469.
43. Wang, J., et al., Thermo-responsive textiles. Handbook of Smart Textiles; Tao, X., Ed.; Springer Science+ Business Media: Singapore, 2015: p. 919-951.
44. Flory, P.J., Thermodynamics of high polymer solutions. The Journal of chemical physics, 1941. 9(8): p. 660-660.
45. Huggins, M.L., Solutions of long chain compounds. The Journal of chemical physics, 1941. 9(5): p. 440-440.
46. Scott, R.L., Thermodynamics of high polymer solutions. VI. The compatibility of copolymers. Journal of Polymer Science, 1952. 9(5): p. 423-432.
47. Fennell, E. and J.M. Huyghe, Chemically responsive hydrogel deformation mechanics: A review. Molecules, 2019. 24(19): p. 3521.
48. Hu, Y., P.C. Painter, and M.M. Coleman, On the infrared spectroscopic determination of self‐and interassociation equilibrium constants used in the prediction of the phase behavior of hydrogen bonded polymer blends. Macromolecular Chemistry and Physics, 2000. 201(4): p. 470-477.
49. Ashbaugh, H.S. and M.E. Paulaitis, Monomer hydrophobicity as a mechanism for the LCST behavior of poly (ethylene oxide) in water. Industrial engineering chemistry research, 2006. 45(16): p. 5531-5537.
50. Flory, P.J. and J. Rehner Jr, Statistical mechanics of cross‐linked polymer networks I. Rubberlike elasticity. The journal of chemical physics, 1943. 11(11): p. 512-520.
51. Flory, P. and J. Rehner, Statistial mechanics of cross-linked polymer networks II. Swelling. textitJ. Chem. Phys, 1943. 11: p. 521-526.
52. Quesada-Pérez, M., et al., Gel swelling theories: the classical formalism and recent approaches. Soft Matter, 2011. 7(22): p. 10536-10547.
53. Bromberg, L., et al., Thermodynamics of temperature-sensitive polyether-modified poly (acrylic acid) microgels. Langmuir, 2004. 20(14): p. 5683-5692.
54. Hirotsu, S., Y. Hirokawa, and T. Tanaka, Volume‐phase transitions of ionized N‐isopropylacrylamide gels. The Journal of chemical physics, 1987. 87(2): p. 1392-1395.
55. Frank, H.S. and M.W. Evans, Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. The Journal of Chemical Physics, 1945. 13(11): p. 507-532.
56. Lauvergnat, D., et al., H2, HD, and D2 in the small cage of structure II clathrate hydrate: Vibrational frequency shifts from fully coupled quantum six-dimensional calculations of the vibration-translation-rotation eigenstates. The Journal of chemical physics, 2019. 150(15): p. 154303.
57. Lele, A., I. Devotta, and R. Mashelkar, Predictions of thermoreversible volume phase transitions in copolymer gels by lattice-fluid-hydrogen-bond theory. The Journal of chemical physics, 1997. 106(11): p. 4768-4772.
58. Poschlad, K. and S. Enders, Thermodynamics of aqueous solutions containing poly (N-isopropylacrylamide). The Journal of Chemical Thermodynamics, 2011. 43(3): p. 262-269.
59. Rzaev, Z.M., S. Dincer, and E. Pişkin, Functional copolymers of N-isopropylacrylamide for bioengineering applications. Progress in Polymer Science, 2007. 32(5): p. 534-595.
60. Nistor, V., et al., Stimuli-responsive cylindrical hydrogels mimic intestinal peristalsis to propel a solid object. Soft Matter, 2016. 12(15): p. 3582-3588.
61. He, Z.Y.A.S.H., J.L.Y. Li, and X.L.Z. Sun, Preparation and characterisation of fire-resistant PNIPAAm/SA/AgNP thermosensitive network hydrogels and laminated cotton fabric used in firefighter protective clothing. CELLULOSE, 2020. 27(9): p. 5391-5406.
62. Lanzalaco, S., et al., Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable. Advanced Functional Materials, 2020: p. 2004145.
63. Zhu, Y., et al., Seawater-enhanced tough agar/poly (N-isopropylacrylamide)/clay hydrogel for anti-adhesion and oil/water separation. Soft Matter, 2020. 16(9): p. 2199-2207.
64. Wu, M., et al., Spectrally selective smart window with high near-infrared light shielding and controllable visible light transmittance. ACS applied materials interfaces, 2018. 10(46): p. 39819-39827.
65. Dragan, E.S., Design and applications of interpenetrating polymer network hydrogels. A review. Chemical Engineering Journal, 2014. 243: p. 572-590.
66. Haq, M.A., Y. Su, and D. Wang, Mechanical properties of PNIPAM based hydrogels: A review. Materials Science and Engineering: C, 2017. 70: p. 842-855.
67. Peak, C.W., J.J. Wilker, and G. Schmidt, A review on tough and sticky hydrogels. Colloid and Polymer Science, 2013. 291(9): p. 2031-2047.
68. Serwer, P., Agarose gels: Properties and use for electrophoresis. Electrophoresis, 1983. 4(6): p. 375-382.
69. Xiong, J.-Y., et al., Topology evolution and gelation mechanism of agarose gel. The Journal of Physical Chemistry B, 2005. 109(12): p. 5638-5643.
70. Aymard, P., et al., Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers: Original Research on Biomolecules, 2001. 59(3): p. 131-144.
71. Normand, V., et al., New insight into agarose gel mechanical properties. Biomacromolecules, 2000. 1(4): p. 730-738.
72. DeKosky, B.J., et al., Hierarchically designed agarose and poly (ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Engineering Part C: Methods, 2010. 16(6): p. 1533-1542.
73. Ingavle, G.C., S.H. Gehrke, and M.S. Detamore, The bioactivity of agarose–PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan. Biomaterials, 2014. 35(11): p. 3558-3570.
74. Ingavle, G.C., et al., Using chondroitin sulfate to improve the viability and biosynthesis of chondrocytes encapsulated in interpenetrating network (IPN) hydrogels of agarose and poly (ethylene glycol) diacrylate. Journal of Materials Science: Materials in Medicine, 2012. 23(1): p. 157-170.
75. Amici, E., et al., Interpenetrating network formation in Gellan− agarose gel composites. Biomacromolecules, 2000. 1(4): p. 721-729.
76. Amici, E., et al., Interpenetrating Network Formation in Agarose− κ-Carrageenan Gel Composites. Biomacromolecules, 2002. 3(3): p. 466-474.
77. Zhang, J. and C. Rochas, Interactions between agarose and κ-carrageenans in aqueous solutions. Carbohydrate polymers, 1990. 13(3): p. 257-271.
78. Sun, T., et al., Reversible switching between superhydrophilicity and superhydrophobicity. Angewandte Chemie International Edition, 2004. 43(3): p. 357-360.
79. Chen, L., et al., Thermal-responsive hydrogel surface: tunable wettability and adhesion to oil at the water/solid interface. Soft Matter, 2010. 6(12): p. 2708-2712.
80. Satarkar, N.S., et al., Magnetic hydrogel nanocomposites as remote controlled microfluidic valves. Lab on a Chip, 2009. 9(12): p. 1773-1779.
81. Ebara, M., et al., Surface modification of microfluidic channels by UV-mediated graft polymerization of non-fouling and ‘smart’polymers. Radiation Physics and Chemistry, 2007. 76(8-9): p. 1409-1413.
82. Malmstadt, N., et al., A smart microfluidic affinity chromatography matrix composed of poly (N-isopropylacrylamide)-coated beads. Analytical chemistry, 2003. 75(13): p. 2943-2949.
83. Lai, J.J., et al., Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays. Langmuir, 2007. 23(13): p. 7385-7391.
84. Grier, D.G., A revolution in optical manipulation. nature, 2003. 424(6950): p. 810-816.
85. Yun, H., K. Kim, and W.G. Lee, Cell manipulation in microfluidics. Biofabrication, 2013. 5(2): p. 022001.
86. Psaltis, D., S.R. Quake, and C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 2006. 442(7101): p. 381-386.
87. Hirokawa, Y. and T. Tanaka. Volume phase transition in a non‐ionic gel. in AIP Conference Proceedings. 1984. American Institute of Physics.
88. Koch, R., The etiology of tuberculosis. Berl Klin Wochenschr, 1882. 15: p. 221-30.
89. Bertasa, M., et al., Cleaning materials: A compositional multi-analytical characterization of commercial agar powders. Journal of Analytical and Applied Pyrolysis, 2017. 125: p. 310-317.
90. Duckworth, M. and W. Yaphe, The structure of agar: Part I. Fractionation of a complex mixture of polysaccharides. Carbohydrate Research, 1971. 16(1): p. 189-197.
91. Son, K.H. and J.W. Lee, Synthesis and characterization of poly (ethylene glycol) based thermo-responsive hydrogels for cell sheet engineering. Materials, 2016. 9(10): p. 854.
92. Pernodet, N., M. Maaloum, and B. Tinland, Pore size of agarose gels by atomic force microscopy. Electrophoresis, 1997. 18(1): p. 55-58.
93. Kubota, K., et al., Characterization of poly (N-isopropylmethacrylamide) in water. Polymer journal, 1990. 22(12): p. 1051-1057.
94. Pluen, A., et al., Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophysical journal, 1999. 77(1): p. 542-552.
95. Ogston, A., The spaces in a uniform random suspension of fibres. Transactions of the Faraday Society, 1958. 54: p. 1754-1757.
96. Ogston, A.G., B. Preston, and J. Wells, On the transport of compact particles through solutions of chain-polymers. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1973. 333(1594): p. 297-316.
97. Tietz, D. and A. Chrambach, Concave ferguson plots of DNA fragments and convex ferguson plots of bacteriophages: evaluation of molecular and fiber properties, using desktop computers. Electrophoresis, 1992. 13(1): p. 286-294.
98. Taiwan energy saving film co. [https://greenfilm.tw/product/t73%e7%84%a1%e8%86%a0-%e9%9d%9c%e9%9b%bb%e9%9a%94%e7%86%b1%e8%86%9c/].
99. VAISSIÉ, L., Bright laser diodes combat cancer. 2009.
100. Benoy, M., et al., Thickness dependence of the properties of indium tin oxide (ITO) FILMS prepared by activated reactive evaporation. Brazilian Journal of Physics, 2009. 39(4): p. 629-632.
101. Wiederseiner, S., et al., Refractive-index and density matching in concentrated particle suspensions: a review. Experiments in fluids, 2011. 50(5): p. 1183-1206.
102. Wang, Y. and R.K. Wang, High-resolution computed tomography of refractive index distribution by transillumination low-coherence interferometry. Optics letters, 2010. 35(1): p. 91-93.
103. Philipp, M., et al., Molecular versus macroscopic perspective on the demixing transition of aqueous PNIPAM solutions by studying the dual character of the refractive index. Soft Matter, 2014. 10(37): p. 7297-7305.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76701-
dc.description.abstract自1956年來聚(N-異丙基丙烯醯胺)在生醫領域的研究不斷地推陳出新,其受溫度刺激響應的特性也使對它的應用與研究跨足了其它如物理學、環境科學、能源等領域,聚(N-異丙基丙烯醯胺)是屬於一種具有可逆體積相變過程的材料,因為其結構上的功能性官能基團會受溫度高低而選擇與水分子或自身產生氫鍵,由此達到親疏水性轉換與發生體積相變。為了提高應用性,先前的研究將其合成互穿式高分子網路的水凝膠,同時保有溫敏性與加強機械性質或增加其他的響應模式。
本研究開發出兩種不同型式的水凝膠,一種是用浸潤法使聚(N-異丙基丙烯醯胺)分子擴散進瓊脂糖的網路基底形成半互穿式高分子網路,另一種是採用紫外線誘導共聚合法合成出聚(N-異丙基丙烯醯胺-co-聚乙二醇二甲基丙烯酸酯)與瓊脂糖的互穿式高分子網路水凝膠,兩種水凝膠都是將瓊脂糖與聚(N-異丙基丙烯醯胺)做結合,來開拓與以往不同的研究方向。
在本研究中主要分為兩個部分,第一部分為研究了瓊脂糖基底的聚(N-異丙基丙烯醯胺)互穿式高分子網路水凝膠的性質,發現當聚(N-異丙基丙烯醯胺)會改變瓊脂糖水凝膠的溶脹特性,比起純的瓊脂糖水凝膠在溶脹平衡時可以保有更多水分。另外,聚(N-異丙基丙烯醯胺)也會改變透射度與機械性質,並且可以用溫度去操控其變化,我們提出了一個模型去解釋這個獨特的現象,當聚(N-異丙基丙烯醯胺)進入水凝膠網路時會因為氫鍵膠護作用而與瓊脂糖支架結合,加強其結構並使折射率匹配,造成有較大的彈性模數與透射度變化,但當溫度高於聚(N-異丙基丙烯醯胺)的濁點時,聚(N-異丙基丙烯醯胺)會改變成與自身或同類分子產生氫鍵,進而改變自身的折射率,而與此同時因為與瓊脂糖網路分離,進而造成機械性質改變。
第二部分為基於前一部分觀測的性質,設計三種不同的加熱方式與應用。第一種應用是基於通過溫度變化可逆地切換機械性能,以通過圖案化加熱系統生產具有不同局部機械強度的材料。第二種應用是智慧隔熱窗戶,它包含了一個可調節透射率的內層,其受紅外線加熱到相變溫度就會自動關閉,使室內不會接收過多的紅外線而升溫。第三種應用則是在水凝膠的表面輸送膠體粒子,當水凝膠表面的聚(N-異丙基丙烯醯胺)分子相變時會將水分排出,故可利用紅外雷射掃描加熱水凝膠表面產生不對稱的流場,發現半互穿式高分子網路水凝膠與互穿式高分子網路水凝膠的產生的流場模式不同。並利用這種不對稱流場加以設計雷射掃描路徑製造出可以排開、聚集與單向輸送膠體粒子的表面流場,最後將材料做成微流道的基底,測試此材料輸送粒子的在微流道中的可行性。
zh_TW
dc.description.abstractThe research of poly(N-isopropylacrylamide) (PNIPAAm) has been persistently innovated in the biomedicine field since 1956. Because of the unique thermoresponsivity, the field of research has been also stepped into others, such as physics, environmental science and energy. PNIPAAm is a kind of polymers which exhibit reversible switching between swollen state and shrunken state. Through the functional groups of its structure bounds to water molecules or themselves by hydrogen bonds depending on the temperature, it can achieve hydrophilic-hydrophobic conversion and volume phase transition process. For improving its applicability, the research in previous studies is synthesizing of an interpenetrating polymer network hydrogel to enhance its mechanical properties or add other response modes and maintain thermoresponsivity simultaneously.
In this study, two types of IPN hydrogels were developed. One is forming semi-IPN hydrogels by making the PNIPAAm molecules diffuse into the agarose networks as immersing method, the other is synthesized of IPN hydrogels from agarose, NIPAAm monomer and polyethylene glycol dimethacrylate (PEGDA) by ultraviolet‐radiation induced graft‐copolymerization. Both of these hydrogels are combined agarose network with PNIPAAm or its derivative to extend different research directions from the past.
In this study, it has been mainly divided into two parts. The first part start with observing the properties of agarose/PNIPAAm s-IPNs or agarose/P(NIPAAm-co-PEGDA) IPNs. PNIPAAm molecules change the swelling properties of hydrogels, and conduce to s-IPNs retaining more water than pure agarose hydrogels when swelling are balanced. In addition, they also change the transmittance and mechanical properties, and both of the properties are switchable by temperature changes. We have proposed a model to explain this unique phenomenon. When PNPAAm molecules diffuse into the agarose network, they will be combined with the agarose scaffold due to the hydrogen bond interaction, leading to strengthen its structure and lead to the refractive index matching, resulting in a large change in elastic modulus and transmittance. If the temperature is higher than the cloud point of this system, PNIPAAm will change hydrogen bonds formation from with water molecules to itself or other the same molecules, thereby changing the hydrogel’s refractive index and mechanical properties.
The other part is based on the observed properties of the previous part, designing three kinds of applications by different heating methods. The first application is based on the reversibly switching mechanical properties by temperature changing to produce the material with different local mechanical strengths by patterned heating systems. The second one is smart thermal insulation window, which is involves an interlayer designed by the characteristic of switchable transmittance. When the window is heated to the phase transition temperature by infrared, the interlayer will be automatically close, so that the room will not receive too much the infrared to heat up. The last one is transporting colloidal particles on the surface of the hydrogel. When the PNIPAAm on the surface of the hydrogel change phase by using infrared laser scanning heating, the water will be discharged to generate an asymmetric flow field on the surface. It is found that the flow fields generated on the s-IPN or IPN surface are different. Based on these asymmetric flow fields, the laser scanning path is designed to create their kinds of surface flow fields which lead to colloidal particles repulsion, aggregation or unidirectional delivery. Finally, the material is made into the base of the micro-channel, and the feasibility of particle transport in the micro-channel has been tested.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:35:20Z (GMT). No. of bitstreams: 1
U0001-1908202000201500.pdf: 8827093 bytes, checksum: 2728d51e5ad637604429578ad96e52b7 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents論文口試委員會審定書 #
致謝 i
中文摘要 iii
ABSTRACT v
目錄 vii
圖目錄 x
表目錄 xvi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 論文架構 5
第二章 文獻回顧與理論背景 6
2.1 溫度響應聚合物水凝膠 6
2.1.1 溫度響應機制 6
2.1.2 溶脹性質 10
2.1.3 聚(N-異丙基丙烯醯胺)水凝膠的設計與合成方式 13
2.1.4 聚(N-異丙基丙烯醯胺)水凝膠的應用 15
2.2 互穿式高分子網絡 16
2.2.1 互穿式高分子網絡水凝膠設計方法 17
2.2.2 水凝膠的機械性質 19
2.2.3 與瓊脂糖相關之互穿式高分子網絡水凝膠 20
2.3 微流體裝置 22
2.3.1 與聚(N-異丙基丙烯醯胺)相關的微流體裝置 23
2.3.2 雷射微流體 24
第三章 實驗方法與器材準備 26
3.1 製備水凝膠 26
3.1.1 聚(N-異丙基丙烯醯胺) 26
3.1.2 瓊脂糖 26
3.1.3 水凝膠之製備過程 27
3.1.4 水凝膠樣品的命名 30
3.1.5 水凝膠之模具設計 30
3.2 水凝膠性質量測 31
3.2.1 量測擴散係數 31
3.2.2 量測溶脹性質 33
3.2.3 光譜分析 34
3.2.4 量測彈性模數 36
3.2.5 以凝膠電泳分析水凝膠的有效孔徑 39
3.3 水凝膠的應用系統 41
3.3.1 圖案化加熱以製造水凝膠局部相變 41
3.3.2 智慧窗戶 43
3.3.3 雷射掃描操作膠體粒子系統 48
3.4 儀器、器材與藥品 55
第四章 實驗結果與討論 58
4.1 水凝膠的性質討論 58
4.1.1 熱重分析 58
4.1.2 低溫差示掃描量熱分析 61
4.1.3 擴散係數 62
4.1.4 溶脹性質 63
4.1.5 透射係數 69
4.2 水凝膠的壓縮測試 70
4.2.1 壓縮測試 71
4.2.2 以凝膠電泳分析水凝膠的有效孔徑 73
4.2.3 溫度刺激響應模型 75
4.2.4 局部相變水凝膠的壓縮測試 77
4.3 智慧窗戶 79
4.3.1 不同試片的透射係數 79
4.3.2 系統內不同位置的溫度量測 80
4.3.3 可重複性驗證 81
4.4 雷射掃描操作膠體粒子 82
4.4.1 表面流場的觀察與驗證 82
4.4.2 不同掃描模式下粒子輸送觀察 86
4.4.3 微流體裝置的可行性驗證 89
第五章 結論 91
參考文獻 94
dc.language.isozh-TW
dc.title具熱響應之聚(N-異丙基丙烯醯胺)/瓊脂糖互穿式水凝膠的特性與應用zh_TW
dc.titleCharacterization and Application of Thermoresponsive Poly(N-isopropylacrylamide)/Agarose Interpenetrating Hydrogelen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃仲仁(Jung-Ren Huang),陳志鴻(Chih-Hung Chen)
dc.subject.keyword瓊脂糖,聚(N-異丙基丙烯醯胺),互穿式高分子網路,熱響應性,機械性質,智慧窗戶,微流場,zh_TW
dc.subject.keywordagarose,poly(N-isopropylacrylamide),interpenetrating polymer network,thermoresponsivity,mechanical properties,smart window,microfluidic field,en
dc.relation.page100
dc.identifier.doi10.6342/NTU202004045
dc.rights.note未授權
dc.date.accepted2020-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-1908202000201500.pdf
  目前未授權公開取用
8.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved