Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76690
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志(Shinn-Chih Wu)
dc.contributor.authorYu-Jia Huangen
dc.contributor.author黃昱嘉zh_TW
dc.date.accessioned2021-07-10T21:35:08Z-
dc.date.available2021-07-10T21:35:08Z-
dc.date.copyright2020-08-28
dc.date.issued2020
dc.date.submitted2020-08-19
dc.identifier.citation李坤雄, 杜清富, 吳信志, and 徐維荃. 2003. 由小鼠胚幹細胞株產製表現綠色螢光且具高性腺遺傳能力嵌合小鼠. 中國畜牧學會會誌 32(2): 143-154
Barrangou, R., C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D. A. Romero, and P. Horvath. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709-1712. doi: 10.1126/science.1138140
Bouhassira, E. E. 2015. The SAGE encyclopedia of stem cell research. Sage Publications.
Capecchi, M. R. 1989. Altering the genome by homologous recombination. Science 244(4910):1288-1292. doi: 10.1126/science.2660260
Chen, J., R. Lansford, V. Stewart, F. Young, and F. W. Alt. 1993. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl. Acad. Sci. U S A 90(10):4528-4532. doi: 10.1073/pnas.90.10.4528
Christian, M., T. Cermak, E. L. Doyle, C. Schmidt, F. Zhang, A. Hummel, A. J. Bogdanove, and D. F. Voytas. 2010. Targeting DNA Double-Strand Breaks with TAL Effector Nucleases. Genetics 186(2):757-U476. doi: 10.1534/genetics.110.120717
Cong, L., F. A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P. D. Hsu, X. Wu, W. Jiang, L. A. Marraffini, and F. Zhang. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819-823. doi: 10.1126/science.1231143
Deltcheva, E., K. Chylinski, C. M. Sharma, K. Gonzales, Y. Chao, Z. A. Pirzada, M. R. Eckert, J. Vogel, and E. Charpentier. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602-607. doi: 10.1038/nature09886
Egli, D., J. Rosains, G. Birkhoff, and K. Eggan. 2007. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 447(7145):679-685.
Evans, M. J., and M. H. Kaufman. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154-156. doi: 10.1038/292154a0
Faa, G., and V. Fanos. 2014. Kidney Development in Renal Pathology. Springer.
Griffiths, J., and T. Brand. 2019. Early Mechanisms of Cardiac Development, Heart of the Matter. Springer. p. 13-23.
Gurdon, J. B., and A. Colman. 1999. The future of cloning. Nature 402(6763):743-746. doi: 10.1038/45429
Kang, E., G. Wu, H. Ma, Y. Li, R. Tippner-Hedges, M. Tachibana, M. Sparman, D. P. Wolf, H. R. Schöler, and S. Mitalipov. 2014. Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos. Nature 509(7498):101-104.
Kobayashi, T., M. Kato-Itoh, and H. Nakauchi. 2015. Targeted organ generation using Mixl1-inducible mouse pluripotent stem cells in blastocyst complementation. Stem Cells and Development 24(2):182-189.
Kobayashi, T., T. Yamaguchi, S. Hamanaka, M. Kato-Itoh, Y. Yamazaki, M. Ibata, H. Sato, Y. S. Lee, J. Usui, A. S. Knisely, M. Hirabayashi, and H. Nakauchi. 2010. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142(5):787-799. doi: 10.1016/j.cell.2010.07.039
Kouranova, E., K. Forbes, G. Zhao, J. Warren, A. Bartels, Y. Wu, and X. Cui. 2016. CRISPRs for Optimal Targeting: Delivery of CRISPR Components as DNA, RNA, and Protein into Cultured Cells and Single-Cell Embryos. Hum. Gene Ther. 27(6):464-475. doi: 10.1089/hum.2016.009
Lander, E. S. 2016. The Heroes of CRISPR. Cell 164(1-2):18-28. doi: 10.1016/j.cell.2015.12.041
Mali, P., L. Yang, K. M. Esvelt, J. Aach, M. Guell, J. E. DiCarlo, J. E. Norville, and G. M. Church. 2013. RNA-guided human genome engineering via Cas9. Science 339(6121):823-826. doi: 10.1126/science.1232033
Matsunari, H., M. Watanabe, K. Hasegawa, A. Uchikura, K. Nakano, K. Umeyama, H. Masaki, S. Hamanaka, T. Yamaguchi, M. Nagaya, R. Nishinakamura, H. Nakauchi, and H. Nagashima. 2020. Compensation of Disabled Organogeneses in Genetically Modified Pig Fetuses by Blastocyst Complementation. Stem Cell Reports 14(1):21-33. doi: 10.1016/j.stemcr.2019.11.008
Mojica, F. J., C. Diez-Villasenor, J. Garcia-Martinez, and E. Soria. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60(2):174-182. doi: 10.1007/s00239-004-0046-3
Mojica, F. J. M., C. Diez-Villasenor, J. Garcia-Martinez, and C. Almendros. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155(Pt 3):733-740. doi: 10.1099/mic.0.023960-0
Orban, P. C., D. Chui, and J. D. Marth. 1992. Tissue- and site-specific DNA recombination in transgenic mice. Proc. Natl. Acad. Sci. U S A 89(15):6861-6865. doi: 10.1073/pnas.89.15.6861
Pabo, C. O., E. Peisach, and R. A. Grant. 2001. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70:313-340. doi: 10.1146/annurev.biochem.70.1.313
Pourcel, C., G. Salvignol, and G. Vergnaud. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(Pt 3):653-663. doi: 10.1099/mic.0.27437-0
Qi, L. S., M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman, A. P. Arkin, and W. A. Lim. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173-1183. doi: 10.1016/j.cell.2013.02.022
Qin, W., S. L. Dion, P. M. Kutny, Y. Zhang, A. W. Cheng, N. L. Jillette, A. Malhotra, A. M. Geurts, Y. G. Chen, and H. Wang. 2015. Efficient CRISPR/Cas9-Mediated Genome Editing in Mice by Zygote Electroporation of Nuclease. Genetics 200(2):423-430. doi: 10.1534/genetics.115.176594
Schuchardt, A., V. DAgati, V. Pachnis, and F. Costantini. 1996. Renal agenesis and hypodysplasia in ret-k(-) mutant mice result from defects in ureteric bud development. Development 122(6):1919-1929.
Takahashi, K., and S. Yamanaka. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell 126(4):663-676.
Usui, J., T. Kobayashi, T. Yamaguchi, A. S. Knisely, R. Nishinakamura, and H. Nakauchi. 2012. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am. J. Pathol. 180(6):2417-2426. doi: 10.1016/j.ajpath.2012.03.007
Wang, H., H. Yang, C. S. Shivalila, M. M. Dawlaty, A. W. Cheng, F. Zhang, and R. Jaenisch. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910-918. doi: 10.1016/j.cell.2013.04.025
Wang, Q., Y. Lan, E. S. Cho, K. M. Maltby, and R. Jiang. 2005. Odd-skipped related 1 (Odd 1) is an essential regulator of heart and urogenital development. Dev. Biol. 288(2):582-594. doi: 10.1016/j.ydbio.2005.09.024
Wu, J., A. Platero-Luengo, M. Sakurai, A. Sugawara, M. A. Gil, T. Yamauchi, K. Suzuki, Y. S. Bogliotti, C. Cuello, M. Morales Valencia, D. Okumura, J. Luo, M. Vilarino, I. Parrilla, D. A. Soto, C. A. Martinez, T. Hishida, S. Sanchez-Bautista, M. L. Martinez-Martinez, H. Wang, A. Nohalez, E. Aizawa, P. Martinez-Redondo, A. Ocampo, P. Reddy, J. Roca, E. A. Maga, C. R. Esteban, W. T. Berggren, E. Nunez Delicado, J. Lajara, I. Guillen, P. Guillen, J. M. Campistol, E. A. Martinez, P. J. Ross, and J. C. Izpisua Belmonte. 2017. Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell 168(3):473-486 e415. doi: 10.1016/j.cell.2016.12.036
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76690-
dc.description.abstract因為現代的生活習慣的演進,腎臟衰竭愈發常見,相較於其他方式,目前最理想的治療方式為器官移植,而目前器官移植來源短缺的問題非常嚴重,如何另闢器官移植來源的途徑,儼然是再生醫學的重要目標之一。而利用多分化潛能幹細胞 (pluripotent stem cells, PSCs) 或許是可行的方法之一,但器官生成還需組織和細胞內部之間的複雜的相互溝通,難以僅用體外培養環境達到生成如腎臟等組成複雜的器官。而作為替代方案,科學家們開發了囊胚代償 (blastocyst complementation) 的技術,能夠經過基因編輯後的胚剔除掉生成特定器官的基因,以PSCs進行囊胚代償,期望能彌補該缺陷並生成缺少的器官,達到在體內環境誘導分化成目標器官的目標。
由Kobayashi等人於2012年以Sall1基因剔除進行囊胚代償的實驗中,小鼠的腎臟雖然完全由外源性的PSCs細胞所構成,但出生後的仔鼠卻因為此基因會影響到腦部發育,PSCs無法代償至腦部缺損的部位,導致仔鼠不具備尋找乳頭吸取乳汁的能力而早夭。因此本試驗挑選另一與腎臟發育有關,但不影響腦部發育的相關基因Osr1進行剔除並進行囊胚代償。首先確認Osr1的基因編輯效率,參考Wang於2005年發表的Osr1文章中提到,大部分的純合子剔除胎兒會在胚胎發育時間12.5-13.5天死亡,本試驗共移置了66個基因編輯後的囊胚至受胚母鼠,並於12.5或13.5天時取出分析生長狀況,而其中有34個著床點,仍有胎鼠形狀的有13個,正在被母鼠吸收者有21個。後續進行囊胚代償試驗,原預期囊胚代償能夠救援Osr1基因編輯的胚移置於受胚母鼠,並使其產下仔鼠,預計產下的組別中有三隻受胚母鼠都無產下子代,因此在12.5、13.5、15.5天提前進行取樣,以H E及免疫染色觀察代償後的胚胎之發育。在免疫染色的切片顯示有極低的機率成功代償出大部分由外源性細胞所組成的腎臟,但目前的試驗結果顯示以Osr1基因剔除進行囊胚代償的策略尚未成功產下具有外源性腎臟的胎兒。
綜觀上述,本試驗之結果將有助於了解Osr1進行囊胚代償之可行性,並提供再生醫學工程產製外源性腎臟相關研究之參考。顯示Osr1雖不影響到腦部發育,但剔除後造成其他器官的缺陷如心臟等,是否可能經由囊胚代償補足胎兒的發育所需仍有待進一步釐清。
zh_TW
dc.description.abstractDue to the evolution of morden lifestyle, kidney failure is becoming more common over time. Compared with other solution, the most ideal treatment of the kidney failure patients is organ transplantation. But the shortage for organ transplantation is a severe problem. The use of pluripotent stem cells (PSCs) may be one of the feasible methods, but organogenesis requires complex communication between tissues and cells. It is difficult to generate complex organs such as kidneys by using in vitro culture system. As an alternative, scientists have developed blastocyst complementation technology, first, to knockout the embryo’s ability to generate specific organs through gene editing tools, and via blastocyst compensation, it is expected that PSCs will rescue the defects and generate the deficient organs, in order to achieve the expectation of differentiation into target organs through the in vivo environment.
In Kobayashi et al.'s experiment of blastocyst compensation with the Sall1 gene knockout in 2012, although the kidney of the mouse was completely composed of exogenous PSCs cells, the neonate mice dead soon after birth because of this gene will affect the development of brain, PSCs cannot be compensated to the location of the brain defect, leading to the premature death of the pups without the ability to find nipples suckle. In this experiment, another gene Osr1 related to kidney development but not affecting brain development will be selected for blastocyst complementation. First experiment is to confirm the gene editing efficiency of Osr1, referring to the Osr1 article published by Wang in 2005, most of the homozygous knouckout fetuses died within E12.5-13.5 days. To confirm the efficiency of gene editing, 66 gene edited embryo were transferred in our experiment, and were harvested the fetus on E12.5 or 13.5 to analyze the growth status, and 34 of them were implanted, 13 were normal, and 21 were being resorbing by the mother. And then blastocyst complementaion experiment was expected to birth the Osr1 gene-edited embryos transferred to the pseudopregnancy mice and would allow them to give birth to pups. It is expected that three pseudopregnancy mice in the group but none of them gave birth to pups. For the next experiment, harvest the fetus in on E12.5, 13.5 and 15.5 days, and observe the development of the compensated embryos with H E and immunostaining. Immunostained sections show a very low probability of successfully complement to kidneys and mostly composed of exogenous cells, but the current test results show that the Osr1 gene knockout strategy for blastocyst complementation haven’t success so far of give birth to complement pups.
To sum up, the results of our experiment would like to help to understand the feasibility of Osr1 for blastocyst complementation, and provide a reference for the research on the production of exogenous kidneys by regenerative medicine engineering. Further data shows that Osr1 does not affect brain development, but the complement of defects in other organs such as the heart, and may still need more experiment to confirm.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:35:08Z (GMT). No. of bitstreams: 1
U0001-1908202010235500.pdf: 3449663 bytes, checksum: 969c2944018255ff0f5599442a98cf87 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
目次 vii
表次 ix
圖次 x
第一章 緒論 1
第二章 文獻探討 3
2.1 腎臟簡介 3
2.1.1 腎臟構造與功能 3
2.1.2 慢性腎臟病症及因素 4
2.1.3 腎臟衰竭治療方式 5
2.2 基因編輯系統簡介 6
2.2.1 基因編輯系統進展 6
2.2.2 CRISPR/Cas9 作用原理 7
2.2.3 CRISPR/Cas9 應用方式 8
2.3 多分化潛能幹細胞 11
2.3.1 各層級幹細胞定義 11
2.3.2 胚幹細胞 11
2.3.3 成體誘導多分化潛能幹細胞 12
2.4 囊胚代償 13
2.4.1 囊胚代償簡介 13
2.4.2 腎臟囊胚代償前人研究 14
2.4.3 囊胚代償基因、多分化潛能幹細胞之選擇 14
第三章 試驗研究 18
3.1 以CRISPR/Cas9進行Osr1基因剔除之效率 18
3.1.1 前言 18
3.1.2 材料與方法 19
3.1.3 結果與討論 25
3.2 胚幹細胞多能性分析 35
3.2.1前言 35
3.2.2 材料與方法 36
3.2.3 結果與討論 43
3.3 以Osr1-/-小鼠胚進行腎臟囊胚代償 47
3.3.1前言 47
3.3.2 材料與方法 48
3.3.3 結果與討論 49
第四章 綜合討論 66
第五章 結論與展望 68
附錄 參考文獻 70
dc.language.isozh-TW
dc.subjectOsr1zh_TW
dc.subject嵌合體zh_TW
dc.subject外源性腎臟zh_TW
dc.subject囊胚代償zh_TW
dc.subjectchimeraen
dc.subjectexogenous kidneyen
dc.subjectOsr1en
dc.subjectblastocyst complementationen
dc.title以Osr1基因剔除之小鼠胚及腎臟囊胚代償技術產生外源性腎臟之可行性zh_TW
dc.titleFeasibility of Generating Exogenous Kidney via Osr1(Odd-skip related 1) Knockout Mouse Embryo and Blastocyst Complementation Techniqueen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.advisor-orcid吳信志(0000-0001-8881-1550)
dc.contributor.oralexamcommittee朱志成(Jyh-Cherng Ju),宋麗英(Li-Ying Sung)
dc.subject.keyword外源性腎臟,囊胚代償,Osr1,嵌合體,zh_TW
dc.subject.keywordexogenous kidney,blastocyst complementation,Osr1,chimera,en
dc.relation.page73
dc.identifier.doi10.6342/NTU202004070
dc.rights.note未授權
dc.date.accepted2020-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
U0001-1908202010235500.pdf
  未授權公開取用
3.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved