請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76679完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳信志(Shinn-Chih Wu) | |
| dc.contributor.author | Zhe-Hao Lee | en |
| dc.contributor.author | 李哲豪 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:34:56Z | - |
| dc.date.available | 2021-07-10T21:34:56Z | - |
| dc.date.copyright | 2020-09-23 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-20 | |
| dc.identifier.citation | Allahbadia, G. N. 2017. Intrauterine Insemination: Fundamentals Revisited. J. Obstet. Gynaecol. India 67:385-392. doi: 10.1007/s13224-017-1060-x
Aramaki, S., K. Hayashi, K. Kurimoto, H. Ohta, Y. Yabuta, H. Iwanari, Y. Mochizuki, T. Hamakubo, Y. Kato, K. Shirahige, and M. Saitou. 2013. A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants. Dev. Cell 27:516-529. doi: 10.1016/j.devcel.2013.11.001 Berruti, G., and C. Paiardi. 2011. Acrosome biogenesis: Revisiting old questions to yield new insights. Spermatogenesis 1:95-98. doi: 10.4161/spmg.1.2.16820 Bosteels, J., S. Weyers, C. Mathieu, B. W. Mol, and T. D'Hooghe. 2010. The effectiveness of reproductive surgery in the treatment of female infertility: facts, views and vision. Facts Views Vis. Obgyn. 2:232-252. Burridge, P. W., E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, and J. C. Wu. 2014. Chemically defined generation of human cardiomyocytes. Nat. Methods 11:855-860. doi: 10.1038/nmeth.2999 Byrne, J. A., D. A. Pedersen, L. L. Clepper, M. Nelson, W. G. Sanger, S. Gokhale, D. P. Wolf, and S. M. Mitalipov. 2007. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450:497-502. doi: 10.1038/nature06357 Callihan, P., J. Mumaw, D. W. Machacek, S. L. Stice, and S. B. Hooks. 2011. Regulation of stem cell pluripotency and differentiation by G protein coupled receptors. Pharmacol. Ther. 129:290-306. doi: 10.1016/j.pharmthera.2010.10.007 Chambers, S. M., C. A. Fasano, E. P. Papapetrou, M. Tomishima, M. Sadelain, and L. Studer. 2009. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27:275-280. doi: 10.1038/nbt.1529 Cho, H., K. H. Noh, J. Y. Chung, M. Takikita, E. J. Chung, B. W. Kim, S. M. Hewitt, T. W. Kim, and J. H. Kim. 2014. Synaptonemal complex protein 3 is a prognostic marker in cervical cancer. PLoS One 9:e98712.doi: 10.1371/journal.pone.0098712 Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987-1000. doi: 10.1016/0092-867490585-x Dudley, B. M., C. Runyan, Y. Takeuchi, K. Schaible, and K. Molyneaux. 2007. BMP signaling regulates PGC numbers and motility in organ culture. Mech. Dev. 124:68-77. doi: 10.1016/j.mod.2006.09.005 Evans, M. J., and M. H. Kaufman. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156. doi: 10.1038/292154a0 Extavour, C. G., and M. Akam. 2003. Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869-5884. doi: 10.1242/dev.00804 Farquhar, C., and J. Marjoribanks. 2018. Assisted reproductive technology: an overview of Cochrane Reviews. Cochrane Database Syst. Rev. 8:CD010537. doi: 10.1002/14651858.CD010537.pub5 Feng, X., J. Zhang, K. Smuga-Otto, S. Tian, J. Yu, R. Stewart, and J. A. Thomson. 2012. Protein kinase C mediated extraembryonic endoderm differentiation of human embryonic stem cells. Stem Cells 30:461-470. doi: 10.1002/stem.1018 Graf, T., and T. Enver. 2009. Forcing cells to change lineages. Nature 462:587-594. doi: 10.1038/nature08533 Group, E. C. W. 2004. Diagnosis and management of the infertile couple: missing information. Hum. Reprod. Update 10:295-307. doi: 10.1093/humupd/dmh024 Hayashi, K., H. Ohta, K. Kurimoto, S. Aramaki, and M. Saitou. 2011. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519-532. doi: 10.1016/j.cell.2011.06.052 Hosoya, N., M. Okajima, A. Kinomura, Y. Fujii, T. Hiyama, J. Sun, S. Tashiro, and K. Miyagawa. 2011. Synaptonemal complex protein SYCP3 impairs mitotic recombination by interfering with BRCA2. EMBO Rep. 13:44-51. doi: 10.1038/embor.2011.221 Houston, D. W., and M. L. King. 2000. Germ plasm and molecular determinants of germ cell fate. Curr. Top. Dev. Biol. 50:155-181. doi: 10.1016/s0070-215350008-8 Huang, S. X., M. N. Islam, J. O'Neill, Z. Hu, Y. G. Yang, Y. W. Chen, M. Mumau, M. D. Green, G. Vunjak-Novakovic, J. Bhattacharya, and H. W. Snoeck. 2014. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat. Biotechnol. 32:84-91. doi: 10.1038/nbt.2754 Ieda, M., J. D. Fu, P. Delgado-Olguin, V. Vedantham, Y. Hayashi, B. G. Bruneau, and D. Srivastava. 2010. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375-386. doi: 10.1016/j.cell.2010.07.002 Ikenishi, K. 1998. Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Dev. Growth Differ. 40:1-10. doi: 10.1046/j.1440-169x.1998.t01-4-00001.x Jeong, Y., and D. J. Mangelsdorf. 2009. Nuclear receptor regulation of stemness and stem cell differentiation. Exp. Mol. Med. 41:525-537. doi: 10.3858/emm.2009.41.8.091 Lawson, K. A., N. R. Dunn, B. A. Roelen, L. M. Zeinstra, A. M. Davis, C. V. Wright, J. P. Korving, and B. L. Hogan. 1999. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13:424-436. doi: 10.1101/gad.13.4.424 Li, P. Z., G. Y. Yan, L. Han, J. Pang, B. S. Zhong, G. M. Zhang, F. Wang, and Y. L. Zhang. 2017. Overexpression of stra8, boule, and dazl genes promotes goat bone marrow-derived mesenchymal stem cells in vitro transdifferentiation toward putative male germ cells. Reprod. Sci. 24:300-312. doi: 10.1177/1933719116654990 Lin, I. Y., F. L. Chiu, C. H. Yeang, H. F. Chen, C. Y. Chuang, S. Y. Yang, P. S. Hou, N. Sintupisut, H. N. Ho, H. C. Kuo, and K. I. Lin. 2014. Suppression of the SOX2 neural effector gene by PRDM1 promotes human germ cell fate in embryonic stem cells. Stem Cell Reports 2:189-204. doi: 10.1016/j.stemcr.2013.12.009 Liu, H., Z. Ye, Y. Kim, S. Sharkis, and Y. Y. Jang. 2010. Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology 51:1810-1819. doi: 10.1002/hep.23626 Liu, X., H. Sun, J. Qi, L. Wang, S. He, J. Liu, C. Feng, C. Chen, W. Li, Y. Guo, D. Qin, G. Pan, J. Chen, D. Pei, and H. Zheng. 2013. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nat Cell Biol. 15:829-838. doi: 10.1038/ncb2765 Ma, F., Z. Zhou, N. Li, L. Zheng, C. Wu, B. Niu, F. Tang, X. He, G. Li, and J. Hua. 2016. Lin28a promotes self-renewal and proliferation of dairy goat spermatogonial stem cells (SSCs) through regulation of mTOR and PI3K/AKT. Sci. Rep. 6:38805. doi: 10.1038/srep38805 Maffioletti, S. M., M. F. Gerli, M. Ragazzi, S. Dastidar, S. Benedetti, M. Loperfido, T. VandenDriessche, M. K. Chuah, and F. S. Tedesco. 2015. Efficient derivation and inducible differentiation of expandable skeletal myogenic cells from human ES and patient-specific iPS cells. Nat. Protoc. 10:941-958. doi: 10.1038/nprot.2015.057 Makoolati, Z., M. Movahedin, and M. Forouzandeh-Moghadam. 2016. Proliferation in culture of primordial germ cells derived from embryonic stem cell: induction by retinoic acid. Biosci. Rep. 36doi: 10.1042/BSR20160441 Malter, H. E. 2016. Micromanipulation in assisted reproductive technology. Reprod. Biomed. Online 32:339-347. doi: 10.1016/j.rbmo.2016.01.012 Matoba, S., and Y. Zhang. 2018. Somatic Cell Nuclear Transfer Reprogramming: Mechanisms and Applications. Cell Stem Cell 23:471-485. doi: 10.1016/j.stem.2018.06.018 Medrano, J. V., A. M. Martinez-Arroyo, J. M. Miguez, I. Moreno, S. Martinez, A. Quinonero, P. Diaz-Gimeno, A. I. Marques-Mari, A. Pellicer, J. Remohi, and C. Simon. 2016. Human somatic cells subjected to genetic induction with six germ line-related factors display meiotic germ cell-like features. Sci. Rep. 6:24956. doi: 10.1038/srep24956 Mendonca, L. L., M. A. Khamashta, C. Nelson-Piercy, B. J. Hunt, and G. R. Hughes. 2000. Non-steroidal anti-inflammatory drugs as a possible cause for reversible infertility. Rheumatology (Oxford) 39:880-882. doi: 10.1093/rheumatology/39.8.880 Merchant, R., G. Gandhi, and G. N. Allahbadia. 2011. In vitro fertilization/intracytoplasmic sperm injection for male infertility. Indian J. Urol. 27:121-132. doi: 10.4103/0970-1591.78430 Monsivais, D., M. M. Matzuk, and S. A. Pangas. 2017. The TGF-beta Family in the Reproductive Tract. Cold Spring Harb Perspect Biol. 9doi: 10.1101/cshperspect.a022251 Murry, C. E., and G. Keller. 2008. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661-680. doi: 10.1016/j.cell.2008.02.008 Nakaki, F., K. Hayashi, H. Ohta, K. Kurimoto, Y. Yabuta, and M. Saitou. 2013. Induction of mouse germ-cell fate by transcription factors in vitro. Nature 501:222-226. doi: 10.1038/nature12417 Nikolic, A., V. Volarevic, L. Armstrong, M. Lako, and M. Stojkovic. 2016. Primordial Germ Cells: Current Knowledge and Perspectives. Stem Cells Int. 2016:1741072. doi: 10.1155/2016/1741072 Ohinata, Y., B. Payer, D. O'Carroll, K. Ancelin, Y. Ono, M. Sano, S. C. Barton, T. Obukhanych, M. Nussenzweig, A. Tarakhovsky, M. Saitou, and M. A. Surani. 2005. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436:207-213. doi: 10.1038/nature03813 Qin, H., A. Zhao, C. Zhang, and X. Fu. 2016. Epigenetic Control of Reprogramming and Transdifferentiation by Histone Modifications. Stem Cell Rev. Rep. 12:708-720. doi: 10.1007/s12015-016-9682-4 Rose, N. R., and R. J. Klose. 2014. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim. Biophys. Acta. 1839:1362-1372. doi: 10.1016/j.bbagrm.2014.02.007 Saitou, M. 2009. Germ cell specification in mice. Curr. Opin. Genet. Dev. 19:386-395. doi: 10.1016/j.gde.2009.06.003 Saitou, M., and H. Miyauchi. 2016. Gametogenesis from Pluripotent Stem Cells. Cell Stem Cell 18:721-735. doi: 10.1016/j.stem.2016.05.001 Saitou, M., and M. Yamaji. 2012. Primordial germ cells in mice. Cold Spring Harb Perspect Biol. 4doi: 10.1101/cshperspect.a008375 Sasaki, H., and Y. Matsui. 2008. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat. Rev. Genet. 9:129-140. doi: 10.1038/nrg2295 Sekiya, S., and A. Suzuki. 2011. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475:390-393. doi: 10.1038/nature10263 Si-Tayeb, K., F. K. Noto, M. Nagaoka, J. Li, M. A. Battle, C. Duris, P. E. North, S. Dalton, and S. A. Duncan. 2010. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51:297-305. doi: 10.1002/hep.23354 Takahashi, K., and S. Yamanaka. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676. doi: 10.1016/j.cell.2006.07.024 Takasaki, N., R. McIsaac, and J. Dean. 2000. Gpbox (Psx2), a homeobox gene preferentially expressed in female germ cells at the onset of sexual dimorphism in mice. Dev. Biol. 223:181-193. doi: 10.1006/dbio.2000.9741 Takeuchi, T., Y. Tanigawa, R. Minamide, K. Ikenishi, and T. Komiya. 2010. Analysis of SDF-1/CXCR4 signaling in primordial germ cell migration and survival or differentiation in Xenopus laevis. Mech. Dev. 127:146-158. doi: 10.1016/j.mod.2009.09.005 Tripathi, A., and V. A. Bankaitis. 2017. Molecular Docking: From Lock and Key to Combination Lock. J. Mol. Med. Clin. Appl. 2doi: 10.16966/2575-0305.106 Vierbuchen, T., A. Ostermeier, Z. P. Pang, Y. Kokubu, T. C. Sudhof, and M. Wernig. 2010. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035-1041. doi: 10.1038/nature08797 Vincent, S. D., N. R. Dunn, R. Sciammas, M. Shapiro-Shalef, M. M. Davis, K. Calame, E. K. Bikoff, and E. J. Robertson. 2005. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132:1315-1325. doi: 10.1242/dev.01711 Ying, Y., X. M. Liu, A. Marble, K. A. Lawson, and G. Q. Zhao. 2000. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol. Endocrinol. 14:1053-1063. doi: 10.1210/mend.14.7.0479 Ying, Y., and G. Q. Zhao. 2001. Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev. Biol. 232:484-492. doi: 10.1006/dbio.2001.0173 Zhou, Q., M. Wang, Y. Yuan, X. Wang, R. Fu, H. Wan, M. Xie, M. Liu, X. Guo, Y. Zheng, G. Feng, Q. Shi, X. Y. Zhao, J. Sha, and Q. Zhou. 2016. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18:330-340. doi: 10.1016/j.stem.2016.01.017 Zwijsen, A., K. Verschueren, and D. Huylebroeck. 2003. New intracellular components of bone morphogenetic protein/Smad signaling cascades. FEBS Lett. 546:133-139. doi: 10.1016/s0014-579300566-0 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76679 | - |
| dc.description.abstract | 根據世界衛生組織研究統計,全球不孕症發生率約佔15%,且大多需人工輔助生殖,惟無精症或配子無法成熟患者迄今仍無生殖輔助策略可施,若能釐清體細胞於體外再程序化為生殖細胞之相關機轉,即可藉由體細胞誘導為生殖細胞予以輔助。本研究擬以NIH3T3細胞株(染色體XY)探討終端分化之體細胞能否依序透過短暫基因表現(transient gene expression)生殖細胞發育時期之不同關鍵基因,使細胞進行再程序化(reprogramming)回到相對原始狀態,並轉分化(trans-differentiation)為生殖細胞,同時釐清其相關分子機轉。 本研究擬將生殖細胞不同時期表現之基因分別構築於三個不同質體中,轉染時間係依照小鼠體內生殖細胞相關之基因變動進行調控,試驗擬依序將小鼠生殖細胞前期、中期及後期表現之基因以漸進式誘導方式將質體短暫轉染(transient transfection)至細胞內。其中第一組含綠螢光報導基因及始基生殖細胞(primordial germ cell, PGC)前期表現基因-T factor(Brachyury)、Blimp1、Prdm14及Lin28之質體,是希望讓NIH3T3細胞模擬回到胚胎發育上胚層 (epiblast) 剛形成PGC之狀態;第二組含紅螢光報導基因係三個生殖細胞相對中期之重要基因-Stella、Vasa及Dazl,期細胞能依序發育為遷移時期之生殖細胞,最後一組則加入含藍螢光及兩個減數分裂相關之基因- Stra8及Sycp3,期能促使細胞進一步進行減數分裂。轉染後分別收集不同天數之各組細胞,進行物理化學特性分析。試驗結果顯示轉染成功之細胞有如同PGC於體外培養時之明顯漂浮特性,細胞型態完整並持續表現螢光,初步推測誘導之細胞可能往PGC之譜系發展。轉染成功細胞之多能性基因-Oct4、Sox2和Nanog及受體基因-BmpR1A、BmpR1B及FGFR表現量皆有較未轉染者高之趨勢,而三胚層之不同代表基因也維持在很低的表現量,此外,生殖細胞相關基因-Tfap2c、Dnd1、Rhox9等之表現量與未轉染之細胞相比較亦有上調趨勢,減數分裂基因-Dmc1及Spo11之表現量有上升的趨勢。依上述結果顯示短暫基因轉染不同生殖細胞時期基因誘導之體細胞株,除了可能經歷再程序化外,同時也轉發育為生殖細胞譜系細胞,並啟動減數分裂相關之機轉。此外,我們進行了免疫染色觀測細胞蛋白質層次上之變動,結果發現轉染任何一組別之質體,經過七天的培養後皆能以免疫染色觀測到OCT4、TFAP2C及DMC1蛋白的表現,未來將進一步分析染色體套數之改變,將可更完整釐清誘導之細胞染色體套數是否有變動。 總括上述,研究結果顯示經過短暫基因轉染技術轉染生殖細胞不同時期表現基因之細胞,除了可誘導體細胞經歷再程序化回到相對原始之狀態外,並顯示往生殖細胞譜系發展之跡象。此小鼠體細胞誘導為生殖細胞之平台建立有助於了解體細胞往生殖細胞發展之相關機轉,未來可提供人類體細胞誘導生殖細胞之參考,期望將來可藉由體細胞於體外誘導為生殖細胞之技術輔助無精症患者治療。 | zh_TW |
| dc.description.abstract | According to the World Health Organization statistics in research, infertility affects an estimated 15% of all couples globally and requires assisted reproductive technology. In current technology, we still have no effective resolution to implement, on patients with azoospermia or one’s gametes cannot reach the maturity stage. If we can clarify the relevant mechanisms of reprogramming somatic cells into germ cells lineage in vitro, we can assist them by reprogramming somatic derived cells into germ cells. We are fully committed to explore the feasibility of terminally differentiated somatic derived cells NIH3T3 (chromosome XY) trans-differentiation into germ cell lineage. We hope to clarify whether we can use transient transfection technology to the sequential induction of different sets of germline critical genes, according to the developmental stages. We want to induce cells into a relatively primitive stage, directly transdifferentiate into germ cell lineage cells and clarify their related molecular mechanisms. we intend to construct the plasmid that contains different sets of genes, according to the developing stage of germ cells. The optimal transfection strategies are similar in vivo gene expression profiles in mice. In this study, we used a novel strategy for somatic derived cell by using the sequential induction in the early-term, middle-term, and late-term germ cell critical gene on the development. First of all, we overexpress plasmid in the NIH3T3 by early-term primordial germ cell gene, which contains green fluorescent reporter genes, and the early period primordial germ cells (PGC) genes - T factor, Blimp1, Prdm14, and Lin28. We hope to make NIH3T3 simulate the stage of epiblast forming PGC in the embryonic development. The second group contains a red fluorescent reporter gene and three important genes of the middle-term germ cell lineage gene - Stella, Vasa, and Dazl. We expected that the cells can develop into germ cells in the migration period through the sequential induction. Next, we regulate the plasmid contain blue fluorescence and two meiosis-related genes -Stra8 and Sycp3, which can promote further meiosis. After transfection, we collected cells of different days and different treatment groups to analyze the physical and chemical properties in different aspects. The results showed that the transfected cells had the same suspension characteristics as the germ cell culture in vitro. We observed that the cell membrane is complete and continues to express fluorescent genes. Therefore, we preliminarily speculate that the induced cells may develop into the germ cell lineage. According to our results, the transfected cells' pluripotency genes - Oct4, Sox2, Nanog, and the receptor genes - BmpR1A, BmpR1B and FGFR are higher than those without transfection. The genes of the three germ layers are also maintained at a very low expression level. In addition, the expression levels of germ cell-related genes ( Tfap2c, Dnd1, Rhox9, etc.) also have a significant upward trend compared with control group. Furthermore, the expression of meiotic genes - Dmc1 and Spo11 has an upward trend. These results implied the somatic derived cell transfected with different sets of plasmids had undergone reprogramming. Then, we performed immunostaining to detect the cell properties at the cellular protein level. We found that no matter which group of plasmids we transfected, the expression of OCT4, TFAP2C and DMC1 protein can be observed in every group by immunostaining after seven days of treatment. In the future, we will analyze the number of chromosome sets. In days to come, we will clarify whether the sets of the chromosome have changed. In summary, our study shows that using transient transfection to somatic derived cell, the cell underwent reprogramming, developed into germ cell lineages, and initiated meiosis mechanisms. We hope to clarify the mechanism of somatic cell inducing into germ cells in the future to help treating azoospermia disease. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:34:56Z (GMT). No. of bitstreams: 1 U0001-1908202011292100.pdf: 2677628 bytes, checksum: ce7dd6d28393fbcac2031f08c1ede2cf (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 I 謝誌 II 摘要 III ABSTRACT V 目錄 VIII 圖次 X 表次 XI 第一章-序論 1 第二章-文獻回顧 2 2.1不孕症 2 2.1.1不孕不育之簡介 2 2.1.2當今不孕症解決策略 2 2.2生殖細胞 5 2.2.1生殖細胞之簡介 5 2.2.2始基生殖細胞之分化 5 2.3細胞應用之潛力 6 2.3.1幹細胞之簡介 6 2.3.2細胞分化、再程序化與轉分化之簡介 10 2.3.3細胞誘導分化 11 2.4 PGC發展及研究近況 13 第三章-試驗設計 14 3.1.1試驗背景及假說 14 3.1.2材料與方法: 15 3.2試驗一 探討體細胞株NIH3T3分化成類生殖細胞之可行性 22 3.2.1前言 22 3.2.2結果與討論: 23 3.3試驗二 探討轉基因將體細胞誘導成類生殖細胞之可行性 25 3.3.1前言 25 3.3.2結果與討論 29 3.4試驗三 探討誘導出來之類生殖細胞功能性 42 3.4.1前言 42 3.4.2結果與討論 43 第四章-綜合討論 51 第五章-結論 55 第六章-未來展望 56 補充資料 57 REFERENCES 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生殖細胞 | zh_TW |
| dc.subject | 再程序化 | zh_TW |
| dc.subject | 誘導分化 | zh_TW |
| dc.subject | 轉分化 | zh_TW |
| dc.subject | 生殖醫學 | zh_TW |
| dc.subject | reproductive medicine | en |
| dc.subject | trans differentiation | en |
| dc.subject | reprogramming | en |
| dc.subject | induced differentiation | en |
| dc.subject | germ cells | en |
| dc.title | 以短暫基因表現策略將小鼠體細胞再程序化成生殖細胞之研究 | zh_TW |
| dc.title | Reprogramming of mouse somatic derived cells transdifferentiate into germ cells by the strategy of transient gene expression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳銘正(Ming-Cheng Chen),林佳靜(Chai-Ching Lin) | |
| dc.subject.keyword | 生殖細胞,誘導分化,再程序化,轉分化,生殖醫學, | zh_TW |
| dc.subject.keyword | germ cells,induced differentiation,reprogramming,trans differentiation,reproductive medicine, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU202004074 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1908202011292100.pdf 未授權公開取用 | 2.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
