請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76676完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡睿哲 | |
| dc.contributor.author | Yi-Hua Liang | en |
| dc.contributor.author | 梁逸華 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:34:53Z | - |
| dc.date.available | 2021-07-10T21:34:53Z | - |
| dc.date.copyright | 2016-11-02 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-17 | |
| dc.identifier.citation | [1] D. L. Wilcox, and L. L. Howell, 'Fully compliant tensural bistable micromechanisms (FTBM),' Journal of Microelectromechanical Systems, Vol. 14, No. 6, pp. 1223-1235, Dec. (2005)
[2] B. Halg, “On a micro-electro-mechanical nonvolatile memory cell,” IEEE Transactions on Electron Devices, Vol. 37, No.10, pp. 2230-2236, Oct. (1990) [3] J. Qiu, J. H. Lang, and A. H. Slocum, “A centrally-clamped parallelbeam bistable MEMS mechanism,” in Proc. 14th IEEE International Conference on Micro Electro Mechanical Systems, pp. 353-356, Jan. (2001) [4] N. Chang, I. Choi, and H. Shim, “DLS: Dynamic backlight luminance scaling of liquid crystal display,” IEEE Transactions On Very Large Scale Integration (VLSI) Systems, Vol. 12, No. 8, pp. 837-846, Aug. (2004) [5] C. Vazquez, J. M. S Pena, and A. L. Aranda, “Broadband 1 x 2 polymer optical fiber switches using nematic liquid-crystals”, Optics Communications, Vol.224, No.1-3, pp. 57-62, Aug. (2003) [6] K. Fan, W. Lin, T. Chung, H. Wang, and L. Wu, “A miniature low cost and high reliability 1 × 2 mechanical optical switch,” Journal of Micromechanics and Microengineering, Vol. 15, No.8, pp. 1565-1570, Jun. (2005) [7] W. Lin, K. Fan, L. Chiang, Y. Yang, W. Kuo, and T. Chung, “A novel micro/nano 1 × 4 mechanical optical switch,” Journal of Micromechanics and Microengineering, Vol. 16, No. 7, pp. 1408-1415, Jun. (2006) [8] K.-C. Fan, W.-L. Lin, L.-H. Chiang, S.-H. Chen, T.-T. Chung, and Y.-J. Yang, “A 2 × 2 mechanical optical switch with a thin MEMS mirror” Journal of Lightwave Technology, Vol. 27, No. 9, pp.1155-1161, May (2009) [9] T. Brosnihan, R. Payne, J. Gandhi, S. Lewis, L. Steyn, M. Halfman, and N. Hagood, 'Pixtronix digital micro shutter display technology – A MEMS display for low power mobile multimedia displays,' Proceedings of SPIE 7594, MOEMS and Miniaturized Systems, 759408, pp. 1-9, Feb. (2010) [10] N. Hagood, R. Barton, T. Brosnihan, J. Fijol, J. Gandhi, M. Halfman, R. Payne, and J. L. Steyn, 'A direct-view MEMS display for mobile applications,' SID Symposium Digest of Technical Papers, vol. 38, pp. 1278-1281, Jul. (2007) [11] J. Gandhi, J. H. Kim, N. Hagood, L. Steyn, J. Fijol, T. Brosnihan, S. Lewis, G. Fike, R. Barton, and M. Halfman, R. Payne, 'High image quality of ultra-low power digital micro-shutter based display technology,' SID Symposium Digest of Technical Papers, vol. 40, pp. 532-535, Jul. (2009) [12] J. L. Steyn, T. Brosnihan, J. Fijol, J. Gandhi, N. Hagood, M. Halfman, S. Lewis, R. Payne, and J. Wu, 'A MEMS digital microshutter (DMS™) for low-power high brightness displays,' Proceedings Optical MEMS Nanophoton, pp. 73-74, Aug. (2010) [13] J. Gandhi, J. H. Kim, N. Hagood, L. Steyn, J. Fijol, T. Brosnihan, S. Lewis, G. Fike, M. Halfman, and R. Payne, 'Sunlight readability of digital micro shutter based display technology,' SID Symposium Digest of Technical Papers, vol. 41, pp. 834-837, May (2010) [14] E. Buckley, 'Pixtronix DMS technology for head-up displays,' SID Vehicles and Interfaces Conference, Oct. (2011) [15] D. Shim, 'MEMS based micro optical switch for display devices,' Proceedings of SPIE 8475, Liquid Crystals, 84750L, pp. 1-6, Oct. (2012) [16] D. Shim, W. Kim, and H. Choi, 'Fabrication of vertical moving micro-optical switch for display applications,' Proceedings of SPIE 8616, MOEMS and Miniaturized Systems, 86160J, pp.1-6, Mar. (2013) [17] Y. Kogita, Y. Hirai, O. Tabata, and T. Tsuchiya, 'Double-side-drive electrostatic optical chopper for time-resolved Raman spectroscopy,' in Optical MEMS and Nanophotonics, Glasgow, 2014, pp. 65-66, Aug. (2014) [18] D. E. Burns, L. H. Oh, M. J. Li, D. P. Kelly, A. S. Kutyrev, and S. H. Moseley, “2-D Electrostatic Actuation of Microshutter Arrays,” Journal of Microelectromechanical Systems, Vol. 25, No. 1, pp.101-107, Feb. (2016) [19] R. A. M. Receveur, C. R. Marxer, R. Woering, V. C. M. H. Larik, and N. F. de Rooij, “Laterally moving bistable MEMS DC switch for biomedical applications,” Journal of Microelectromechanical Systems, Vol. 14, No. 5, pp. 89–98, Oct. (2005) [20] J. C. Terre, A. F. Marques, and A. M. Shkel, “Snap-action bistable micromechanics actuated by nonlinear resonance, ” Journal of Microelectromechanical Systems, Vol. 17, No. 5, pp. 1082–1093, Oct (2008) [21] A. Cao, J. Kim, L. Lin, “Bi-directional electrothermal electromagnetic actuators,” Journal of Micromechanics and Microengineering, Vol.17, No.5, pp. 975–982, Apr. (2007) [22] D. A. Wang, H. T. Pham and Y. H. Hsieh, “Dynamical switching of an electromagnetically driven compliant bistable mechanism,” Sensors Actuators A: Physical, Vol. 149, No.1, pp.143–151, Jan. (2009) [23] L. L. Howell, T. W. McLain, M. S. Baker, C. D. Lott, “Techniques in the Design of Thermomechanical Microactuators,” Chapter 7, MEMS/NEMS Handbook, Techniques and Applications, vol. 4, Editor: C.T. Leondes, Springer US, pp. 187-200, (2006) [24] S. Pal and H. Xie, 'Distributed and lumped element models for a bimorph-actuated micromirror,' Journal of Micromechanics and Microengineering, vol. 20, pp. 1-11, Apr. (2010) [25] L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-beam electrothermal actuators -I: single beam and cascaded devices,” Journal of Microelectromechanical Systems, Vol. 10, No.2, pp. 247–254, Jun. (2001) [26] M. J. Sinclair, 'A high force low area MEMS thermal actuator,' in Thermal and Thermomechanical Phenomena in Electronic Systems Intersociety Conference, Las Vegas, pp. 127-132, May (2000) [27] D. Girbau, A. Lkaro, and L. Pradell, 'RF MEMS switches based on the buckle-beam thermal actuator,' in Microwave Conference, Munich, pp. 651-654, Oct. (2003) [28] L. Que, J. S. Park, and Y. B. Gianchandani, 'Bent-beam electro-thermal actuators for high force applications,' Micro Electro Mechanical Systems, Orlando, pp. 31-36, Jan. (1999) [29] Y.-Y. Yang, B.-T. Liao, W.-C. Kuo, “A novel 2 × 2 MEMS optical switch using the split cross-bar design,” Journal of Micromechanics and Microengineering, Vol.17, No.5, pp.875–882, Apr. (2007) [30] J. H. Comtois, V. M. Bright, and M. W. Phipps, 'Thermal microactuators for surface-micromachining processes,' Proceedings of SPIE 2624, Micromachined Devices and Components, pp.10-21, Sept. (1995) [31] J. R. Reid, V. M. Bright, and J. H. Comtois, 'Force measurements of a polysilicon thermal micro-actuator,' Proceedings SPIE 2882, Micromachined Devices and Components II, pp.296-306, Sep. (1996) [32] J.H. Comtois, M.A. Michalicek, C.C. Barron, “Fabricating Micro-Instruments in Surface-Micromachined Polycrystalline Silicon”, Proceedings of the 4Yd International Symposium Instrument Society of America, pp.169-179, Apr. (1997) [33] J.H. Comtois, M.A. Michalicek, and C.C. Barron, “Electrothermal actuators fabricated in four-level planarized surface micromachined polycrystalline silicon,” Sensors and Actuators A: Phyical, Vol. 70, No.1-2, pp. 23-31, Oct. (1998) [34] Q.A. Huang and N.K.S. Lee, “Analysis and Design of Polysilicon Thermal Flexure Actuator,” Journal of Micromechanics and Microengineering, Vol. 9, No.1, pp. 64-70, Mar. (1999) [35] S. A. Chien, 'Electrothermally Actuated Micro Electro Optical Switches with Double Equilibrium Positions for Displays - Designs and Measurement,' M.S. thesis, National Taiwan University, Taipei, Taiwan, July. (2015) [36] Qiao Chen, “Microrobotique numerique fondee sur l'utilisation de modules bistables : conception, fabrication et commande de modules monolithiques”, Ph.D. thesis, Universite de Franche-Comte (2010) [37] J. Qiu, J. Lang, and A. Slocum, “A curved-beam bistable mechanism,” Journal of Microelectromechanical Systems, Vol. 13, No.2, pp. 137–146, Apr. (2004) [38] C. C. Wu, 'Fabrication, testing and characterization on micro compliant bistable micromechanism and study on properties of microspring,' Ph.D. thesis, National Tsing Hua University, (2013) [39] A. Cowen, B. Hardy, R. Mahadevan, and S. Wilcenski, ' PolyMUMPs Design Rules - MEMSCAP,' Rev. 13.0:MEMSCAP Inc.. [40] A. Cowen, G. Hames, D. Monk, S. Wilcenski, and B. Hardy, 'SOIMUMPs Design Handbook,' Rev. 8.0:MEMSCAP Inc.. [41] S. A. Chien, Y.H. Liang, and J. C. Tsai, 'Miniature optical switches for flat-panel displays,' in Optical MEMS and Nanophotonics, Jerusalem, 2015, Mo5.09-1- Mo5.09-2, Aug. (2015) [42] Y. Kogita, Y. Hirai, O. Tabata, and T. Tsuchiya, 'Double-side-drive electrostatic optical chopper for time-resolved Raman spectroscopy,' in Optical MEMS and Nanophotonics, Glasgow, 2014, pp. 65-66, Aug. (2014) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76676 | - |
| dc.description.abstract | 本研究將開發一微型雙平衡位置機構,未來期望將此技術應用於平面顯示器之光開關,使平面顯示器更加輕薄。此外,雙平衡位置機構可以在不供應能量下,保持其穩定位置,具有省能的效果,相較傳統液晶面板耗電量能大幅降低。本文將探討雙穩態結構樑於不同長短、粗細、厚度的結構設計,以及閂鎖卡榫式結構的實驗結果,並且針對電熱閂鎖卡榫式微機電開關之溫度分佈、位移量、臨界電壓等加以討論,最後是光開關之功率量測。在本研究已成功設計出具有雙穩態特性的雙穩態結構樑及閂鎖卡榫式微機電開關,對比度相較之前的研究提升至約17.3。 | zh_TW |
| dc.description.abstract | This research will develop a micro optical bistable switching mechanism. In the future, we want to use the technique to apply to displays. Than, this device can make displays thinner and lighter. In addition, the bistable mechanism can maintain its stability position without supplying power. It can more reduce power consumption effectively than traditional liquid crystal display. This article will discuss the structural of bistable beams and latches for different length, thickness, material bistable structural beam. In the experiment, we have designed bistable structure beams successfully and bistable latch optical switches. The power will be only consumed when the stable state being changed. The contrast ratio of optical power of the optical switch has improved to about 17.3. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:34:53Z (GMT). No. of bitstreams: 1 ntu-105-R03941057-1.pdf: 5350726 bytes, checksum: bd6c6b0c0c2c1abe341f6de314a54e52 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii Chapter 1 緒論 1 1.1 微機電系統 1 1.2 雙穩態機構 1 1.3 光開關種類 2 1.3.1 液晶光開關 3 1.3.2 機械光開關 4 1.3.3 微機電光開關 5 1.4 微機電光開關驅動方法 8 1.4.1 靜電驅動 9 1.4.2 電磁驅動 10 1.4.3 電熱驅動 11 1.5 研究動機 14 Chapter 2 設計原理及製程 15 2.1 雙穩態結構之設計 15 2.1.1 雙穩態結構樑設計原理 16 2.1.2 閂鎖卡榫式結構設計原理 19 2.2 驅動原理及設計分析 20 2.2.1 電熱驅動原理 20 2.2.2 U字型電熱驅動器設計分析 21 2.3 元件設計及製程方法 22 2.3.1 PolyMUMPs 23 2.3.2 SOIMUMPs 25 Chapter 3 實驗量測與討論 27 3.1 V字型雙穩態結構樑 27 3.2 閂鎖卡榫式結構 33 3.2.1 探針驅動之閂鎖卡榫式結構 34 3.2.2 U字型電熱驅動器 35 Chapter 4 微機電開關光功率量測 42 Chapter 5 結論及建議 48 REFERENCE 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電熱驅動 | zh_TW |
| dc.subject | 微機電系統 | zh_TW |
| dc.subject | 雙穩態結構樑 | zh_TW |
| dc.subject | 光開關 | zh_TW |
| dc.subject | 閂鎖卡榫 | zh_TW |
| dc.subject | Microelectromechanical systems | en |
| dc.subject | latching mechanism | en |
| dc.subject | electrothermal actuation | en |
| dc.subject | bistable beam structure | en |
| dc.subject | optical switch | en |
| dc.subject | MEMS | en |
| dc.title | 可應用於微型光開關之雙平衡位置機構設計與分析 | zh_TW |
| dc.title | Designs and Analyses of Dual-Position Mechanisms for Micro Optical Switches | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫家偉,鐘仁傑 | |
| dc.subject.keyword | 微機電系統,雙穩態結構樑,光開關,閂鎖卡榫,電熱驅動, | zh_TW |
| dc.subject.keyword | Microelectromechanical systems,MEMS,optical switch,bistable beam structure,electrothermal actuation,latching mechanism, | en |
| dc.relation.page | 54 | |
| dc.identifier.doi | 10.6342/NTU201602895 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-R03941057-1.pdf 未授權公開取用 | 5.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
