Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76670
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳益群(Yi-Chun Wu)
dc.contributor.authorChia-Hong Yenen
dc.contributor.author嚴家鴻zh_TW
dc.date.accessioned2021-07-10T21:34:49Z-
dc.date.available2021-07-10T21:34:49Z-
dc.date.copyright2016-11-02
dc.date.issued2016
dc.date.submitted2016-08-18
dc.identifier.citationBrenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 71-94.
Chatterjee, N., Lin, Y., Santillan, B. A., Yotnda, P., & Wilson, J. H. (2015). Environmental stress induces trinucleotide repeat mutagenesis in human cells. Proc Natl Acad Sci U S A, 112(12), 3764-3769. doi:10.1073/pnas.1421917112
Chen, K. Y., Pan, H., Lin, M. J., Li, Y. Y., Wang, L. C., Wu, Y. C., & Hsiao, K. M. (2007). Length-dependent toxicity of untranslated CUG repeats on Caenorhabditis elegans. Biochem Biophys Res Commun, 352(3), 774-779. doi:10.1016/j.bbrc.2006.11.102
Cooper, T. A. (2006). A reversal of misfortune for myotonic dystrophy? N Engl J Med, 355(17), 1825-1827. doi:10.1056/NEJMcibr064708
Day, J. W., Ricker, K., Jacobsen, J. F., Rasmussen, L. J., Dick, K. A., Kress, W., . . . Ranum, L. P. (2003). Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology, 60(4), 657-664.
Dayalu, P., & Albin, R. L. (2015). Huntington disease: pathogenesis and treatment. Neurol Clin, 33(1), 101-114. doi:10.1016/j.ncl.2014.09.003
Du, H., Cline, M. S., Osborne, R. J., Tuttle, D. L., Clark, T. A., Donohue, J. P., . . . Ares, M., Jr. (2010). Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Nat Struct Mol Biol, 17(2), 187-193. doi:10.1038/nsmb.1720
Fire, L. T. A. (1998). Specific interference by ingested dsRNA. Nature, 854.
Fischer, S. E., Pan, Q., Breen, P. C., Qi, Y., Shi, Z., Zhang, C., & Ruvkun, G. (2013). Multiple small RNA pathways regulate the silencing of repeated and foreign genes in C. elegans. Genes Dev, 27(24), 2678-2695. doi:10.1101/gad.233254.113
Furling, D., Doucet, G., Langlois, M. A., Timchenko, L., Belanger, E., Cossette, L., & Puymirat, J. (2003). Viral vector producing antisense RNA restores myotonic dystrophy myoblast functions. Gene Ther, 10(9), 795-802. doi:10.1038/sj.gt.3301955
Garcia, S. M., Tabach, Y., Lourenco, G. F., Armakola, M., & Ruvkun, G. (2014). Identification of genes in toxicity pathways of trinucleotide-repeat RNA in C. elegans. Nat Struct Mol Biol, 21(8), 712-720. doi:10.1038/nsmb.2858
Guang, S., Bochner, A. F., Pavelec, D. M., Burkhart, K. B., Harding, S., Lachowiec, J., & Kennedy, S. (2008). An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science, 321(5888), 537-541. doi:10.1126/science.1157647
Ho, T. H., Savkur, R. S., Poulos, M. G., Mancini, M. A., Swanson, M. S., & Cooper, T. A. (2005). Colocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophy. J Cell Sci, 118(Pt 13), 2923-2933. doi:10.1242/jcs.02404
Ji, N., & van Oudenaarden, A. (2012). Single molecule fluorescent in situ hybridization (smFISH) of C. elegans worms and embryos. WormBook, 1-16. doi:10.1895/wormbook.1.153.1
Kamath, R. S. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol., Vol 2 No 1.
Kanadia, R. N., Shin, J., Yuan, Y., Beattie, S. G., Wheeler, T. M., Thornton, C. A., & Swanson, M. S. (2006). Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci U S A, 103(31), 11748-11753. doi:10.1073/pnas.0604970103
Lee, J. E., & Cooper, T. A. (2009). Pathogenic mechanisms of myotonic dystrophy. Biochem Soc Trans, 37(Pt 6), 1281-1286. doi:10.1042/BST0371281
Li, L. B., Yu, Z., Teng, X., & Bonini, N. M. (2008). RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature, 453(7198), 1107-1111. doi:10.1038/nature06909
Lu, R., Yigit, E., Li, W. X., & Ding, S. W. (2009). An RIG-I-Like RNA helicase mediates antiviral RNAi downstream of viral siRNA biogenesis in Caenorhabditis elegans. PLoS Pathog, 5(2), e1000286. doi:10.1371/journal.ppat.1000286
Mahadevan, M., Tsilfidis, C., Sabourin, L., Shutler, G., Amemiya, C., Jansen, G., . . . et al. (1992). Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene. Science, 255(5049), 1253-1255.
Malinina, L. (2005). Possible involvement of the RNAi pathway in trinucleotide repeat expansion diseases. J Biomol Struct Dyn, 23(3), 233-235. doi:10.1080/07391102.2005.10531230
Mankodi, A., Takahashi, M. P., Jiang, H., Beck, C. L., Bowers, W. J., Moxley, R. T., . . . Thornton, C. A. (2002). Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell, 10(1), 35-44.
Marmolino, D. (2011). Friedreich's ataxia: past, present and future. Brain Res Rev, 67(1-2), 311-330. doi:10.1016/j.brainresrev.2011.04.001
Mello, C., & Fire, A. (1995). DNA transformation. Methods Cell Biol, 48, 451-482.
Miller, J. W., Urbinati, C. R., Teng-Umnuay, P., Stenberg, M. G., Byrne, B. J., Thornton, C. A., & Swanson, M. S. (2000). Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. Embo j, 19(17), 4439-4448. doi:10.1093/emboj/19.17.4439
Montermini, L., Andermann, E., Labuda, M., Richter, A., Pandolfo, M., Cavalcanti, F., . . . Cocozza, S. (1997). The Friedreich ataxia GAA triplet repeat: premutation and normal alleles. Hum Mol Genet, 6(8), 1261-1266.
Nakamori, M., Taylor, K., Mochizuki, H., Sobczak, K., & Takahashi, M. P. (2016). Oral administration of erythromycin decreases RNA toxicity in myotonic dystrophy. Ann Clin Transl Neurol, 3(1), 42-54. doi:10.1002/acn3.271
Napierala, M., & Krzyzosiak, W. J. (1997). CUG repeats present in myotonin kinase RNA form metastable 'slippery' hairpins. J Biol Chem, 272(49), 31079-31085.
Orr, H. T., & Zoghbi, H. Y. (2007). Trinucleotide repeat disorders. Annu Rev Neurosci, 30, 575-621. doi:10.1146/annurev.neuro.29.051605.113042
Paul, S., Dansithong, W., Jog, S. P., Holt, I., Mittal, S., Brook, J. D., . . . Reddy, S. (2011). Expanded CUG repeats Dysregulate RNA splicing by altering the stoichiometry of the muscleblind 1 complex. J Biol Chem, 286(44), 38427-38438. doi:10.1074/jbc.M111.255224
Pavelec, D. M., Lachowiec, J., Duchaine, T. F., Smith, H. E., & Kennedy, S. (2009). Requirement for the ERI/DICER complex in endogenous RNA interference and sperm development in Caenorhabditis elegans. Genetics, 183(4), 1283-1295. doi:10.1534/genetics.109.108134
Qadota, H., Inoue, M., Hikita, T., Koppen, M., Hardin, J. D., Amano, M., . . . Kaibuchi, K. (2007). Establishment of a tissue-specific RNAi system in C. elegans. Gene, 400(1-2), 166-173. doi:10.1016/j.gene.2007.06.020
Richards, R. I., & Sutherland, G. R. (1997). Dynamic mutation: possible mechanisms and significance in human disease. Trends Biochem Sci, 22(11), 432-436.
Santillan, B. A., Moye, C., Mittelman, D., & Wilson, J. H. (2014). GFP-based fluorescence assay for CAG repeat instability in cultured human cells. PLoS One, 9(11), e113952. doi:10.1371/journal.pone.0113952
Siboni, R. B., Nakamori, M., Wagner, S. D., Struck, A. J., Coonrod, L. A., Harriott, S. A., . . . Berglund, J. A. (2015). Actinomycin D Specifically Reduces Expanded CUG Repeat RNA in Myotonic Dystrophy Models. Cell Rep, 13(11), 2386-2394. doi:10.1016/j.celrep.2015.11.028
Sicot, G., & Gomes-Pereira, M. (2013). RNA toxicity in human disease and animal models: from the uncovering of a new mechanism to the development of promising therapies. Biochim Biophys Acta, 1832(9), 1390-1409. doi:10.1016/j.bbadis.2013.03.002
Sijen, T., Fleenor, J., Simmer, F., Thijssen, K. L., Parrish, S., Timmons, L., . . . Fire, A. (2001). On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 107(4), 465-476.
Sobczak, K., Wheeler, T. M., Wang, W., & Thornton, C. A. (2013). RNA interference targeting CUG repeats in a mouse model of myotonic dystrophy. Mol Ther, 21(2), 380-387. doi:10.1038/mt.2012.222
Tabara, H., Yigit, E., Siomi, H., & Mello, C. C. (2002). The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell, 109(7), 861-871.
Turner, C., & Hilton-Jones, D. (2010). The myotonic dystrophies: diagnosis and management. J Neurol Neurosurg Psychiatry, 81(4), 358-367. doi:10.1136/jnnp.2008.158261
Udd, B., & Krahe, R. (2012). The myotonic dystrophies: molecular, clinical, and therapeutic challenges. The Lancet Neurology, 11(10), 891-905. doi:10.1016/s1474-4422(12)70204-1
Wang, G. S., Kuyumcu-Martinez, M. N., Sarma, S., Mathur, N., Wehrens, X. H., & Cooper, T. A. (2009). PKC inhibition ameliorates the cardiac phenotype in a mouse model of myotonic dystrophy type 1. J Clin Invest, 119(12), 3797-3806. doi:10.1172/jci37976
Wang, L. C., Chen, K. Y., Pan, H., Wu, C. C., Chen, P. H., Liao, Y. T., . . . Hsiao, K. M. (2011). Muscleblind participates in RNA toxicity of expanded CAG and CUG repeats in Caenorhabditis elegans. Cell Mol Life Sci, 68(7), 1255-1267. doi:10.1007/s00018-010-0522-4
Wheeler, T. M., Lueck, J. D., Swanson, M. S., Dirksen, R. T., & Thornton, C. A. (2007). Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J Clin Invest, 117(12), 3952-3957. doi:10.1172/jci33355
White, J. Q., Nicholas, T. J., Gritton, J., Truong, L., Davidson, E. R., & Jorgensen, E. M. (2007). The sensory circuitry for sexual attraction in C. elegans males. Curr Biol, 17(21), 1847-1857. doi:10.1016/j.cub.2007.09.011
Zhuang, J. J., & Hunter, C. P. (2011). Tissue specificity of Caenorhabditis elegans enhanced RNA interference mutants. Genetics, 188(1), 235-237. doi:10.1534/genetics.111.127209
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76670-
dc.description.abstract第一型肌強直萎縮症(Myotonic dystrophy type 1)是一種顯性遺傳的罕見疾病,往往會造成病患有肌強直、白內障和心律不整的症狀。這些症狀起因於信使核糖核酸(massage RNA)發生了異常的選擇性剪接(Alternative splicing),這些異常選擇性剪接之所以發生,是因為伴隨著擴增CUG重複片段在三端非轉譯區(3’-UTR)的DMPK基因信使核糖核酸會累積在細胞核內成為核糖核酸聚集物(RNA foci)。目前,針對這樣重複三核苷酸型異常(Trinucleotide repeat disorder)的疾病沒有任何有效的治療方式,為了調查這個疾病詳細的致病機制和潛在的治療方式,我們與蕭光明老師及潘惠錦老師實驗室合作,建立了一種線蟲模型(Caenorhabditis elegans)可以表現在三端非轉譯區伴隨CUG重複片段的報導基因,我們可以在這個線蟲模型當中觀察到有明顯核糖核酸聚集物累積在肌肉細胞的細胞核內,這個現象與病患是相符合。進一步的,為了找尋可以調節CUG重複的毒性,蕭老師實驗室利用這模型進行了核糖核酸干擾(RNA interference)的篩選,我們進一步發現有一些具有調節毒性作用的基因,像是drh-1, rde-4 和wrn-1,可以有效的影響含有CUG重複片段的報導基因之表現,特別是drh-1對於CUG重複片段具有專一性。drh-1編譯著一種與切丁酶相關的解旋酶(Dicer-related helicase),對於核糖核酸干擾生合成路徑(RNAi synthesis pathway)的啟動扮演關鍵的角色,而drh-1的突變會造成細胞核和細胞質內的含CUG重複片段的信使核糖核酸增加,並縮短了線蟲模型的壽命。根據drh-1核糖核酸干擾生合成路徑所扮演的角色,我們選出了這條路徑中的一些基因並解調查這些基因與CUG重複片段的關聯,結果顯示這些基因大部分都會影響含有CUG重複片段的報導基因,屬於增強核糖核酸干擾的基因突變會減少含有CUG重複片段的報導基因之表現,如ergo-1,另一方面,核糖核酸干擾缺失的基因突變會加強含有CUG重複片段的報導基因之表現,如rrf-1。簡而言之,我們的研究結果指出CUG重複片段的毒性可以被我們所發現的調節基因向上或是向下的調控。zh_TW
dc.description.abstractMyotonic dystrophy type 1, an autosomal dominant disease, torments patients with myotonia, cataracts and cardiac arrhythmia. These symptoms are caused by the abnormal alternative splicing, resulting from the RNA foci formation of the aberrant DMPK mRNA with expanded CUG repeats in 3’UTR. There is no treatment conducted specific to this trinucleotide repeat disorder up to date. In order to investigate the detail of the mechanism and the potential cure, we collaborated with Kuang-Ming Hsiao’s lab to generate the worm model expressed the reporter gene with CUG repeats in 3’UTR. Like myotonic dystrophy patients, the obvious RNA foci were detected in the nucleus of muscular cells in C. elegans. Further, Dr. Hsiao lab performed an RNAi and identify rde-4 that modulate the expansion of a gfp reporter with CUG repeats. We have expanded the list of modulator genes, including drh-1 and wrn-1. Among these, the effect of drh-1 is specific to CUG repeats. DRH-1, a dicer-related helicase, is required for the initiation phase of RNA interference synthesis pathway. Loss of drh-1 would increase the amount of CUG mRNA in nucleus and cytosol and the shorten life span. Some other members of the RNA interference pathway were found to influence the reporter with expanded CUG repeat. In summary, we demonstrated C. elegans as a valuable disease model to study CUG toxicity. Our results revealed a potential modulatory role of RNAi synthesis pathway on MD pathogenesis.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:34:49Z (GMT). No. of bitstreams: 1
ntu-105-R03b43033-1.pdf: 3021029 bytes, checksum: 0b678aa5f06c4f0228c2a117ca0ebd2d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝................................................................................................................................. i
摘要................................................................................................................................ ii
Abstract ......................................................................................................................... iv
Introduction .................................................................................................................... 4
Trinucleotide Repeat Diseases ............................................................................... 4
Myotonic Dystrophy .............................................................................................. 5
The mechanism of myotonic dystrophy ................................................................. 6
Current treatments of myotonic dystrophy ............................................................ 7
Modeling Myotonic Distrophy in Caenorhabditis elegans (Collaboration with
Dr. Kuang-Ming Hsiao) ......................................................................................... 8
Materials and Methods ................................................................................................. 11
Strains .................................................................................................................. 11
Transgenic worms ................................................................................................ 11
DNA constructs .................................................................................................... 12
Single molecule fluorescence in situ hybridization (smFISH) ............................ 12
Probes ................................................................................................................... 12
Quantify the smFISH signal ................................................................................. 13
Bacterial ring assay .............................................................................................. 13
Average speed assay ............................................................................................ 13
Fluorescent reporter quantification ...................................................................... 13
RNAi feeding ....................................................................................................... 14
Quantitative real-time reverse transcriptase (RT)-PCR ....................................... 14
Results .......................................................................................................................... 15
The transgenic worms with CUG125 repeats displayed DM-like phenotypes .... 15
The CUG211 worms were generated for MD-modulator screen ......................... 17
The CUG211 worms showed severe DM-like phenotypes .................................. 18
Knockdown of drh-1, rde-4 or wrn-1 influenced GFP reporter intensity in
CUG211 transgenic animals ................................................................................ 19
Disruption of drh-1 increased fluorescent intensity specifically in CUG211
animals ................................................................................................................. 20
drh-1 and rde-4 mutations increased the overall amount of GFP mRNA in
CUG211 animals and wrn-1 mutation showed decreased nucleus to cytosol ratio
of CUG mRNA .................................................................................................... 22
Disruption of drh-1 in CUG211 worms resulted in a shorter life span ................ 23
Some members of RNAi synthesis pathway could specifically influence the GFP
reporter with CUG211 ......................................................................................... 24
Discussions .................................................................................................................. 26
The worm model of CUG repeats provides a quick way to screen the modulator
genes which influence the CUG toxicity ............................................................. 27
DRH-1 plays a positive role to moderate CUG toxicity ...................................... 28
The RNAi synthesis pathway may help to degrade the accumulated mRNA
through the hairpin structure of CUG repeats to relieve the CUG toxicity ......... 29
The detailed mechanism of RNAi synthesis pathway participating in the CUG
toxicity is not clear ............................................................................................... 30
WRN-1 might be a modulator to increase CUG toxicity in nucleus ................... 31
Figures.......................................................................................................................... 33
Figure 1. Generation of Myotonic Dystrophy disease model worms which
express the mRNA with 125 CUG repeat ............................................................ 33
Figure 2. Both GFP- and mCherry- CUG125 worms showed RNA foci in the
nucleus ................................................................................................................. 34
Figure 3. mCherry CUG125 worms showed motility defect by both bacterial ring
assay and average speed assay ............................................................................. 35
Figure 4. The average fluorescence of CUG211 worms is decreased when they
grow to adult ........................................................................................................ 37
Figure 5. CUG211 worms have obvious RNA accumulation in nucleus ............. 40
Figure 6. CUG211 have some severe physiological defects, such as slow
motility, short life span and less progenies .......................................................... 41
Figure 7. RNAi knockdown of drh-1, F11C31.1, rde-4, or wrn-1 in CUG211
animals changed the expression of GFP reporter ................................................. 43
Figure 8. drh-1 mutation specifically regulated the expression of fluorescent
reporter in CUG211 but not in CUG0 control animals ........................................ 45
Figure 9. Both drh-1 and rde-4 mutation increased the reporter mRNA in the
nucleus and cytosol, and wrn-1 mutation decreased the mRNA in the nucleus but
increased in the cytosol ........................................................................................ 46
Figure 10. drh-1 and rde-4 mutations increased the amount of CUG mRNA and
wrn-1 mutation may facilitate the export of nuclear CUG mRNA to cytosol ..... 48
Figure 11. The CUG211 worms with drh-1 mutation would have shorter life span
.............................................................................................................................. 49
Figure 12. rrf-1, ergo-1 and nrde-3, the members of RNAi synthesis pathway,
could specifically influence the GFP reporter with CUG211 .............................. 50
Figure 13. The illustration of RNAi synthesis pathway participating in CUG
toxicity ................................................................................................................. 52
Table ............................................................................................................................. 54
Table 1. the information of candidate modulator genes ....................................... 54
Reference ..................................................................................................................... 56
dc.language.isoen
dc.subject重複片段zh_TW
dc.subject強直性肌肉失養症zh_TW
dc.subject核醣核酸干擾zh_TW
dc.subjectmyotonic dystrophyen
dc.subjectCUG repeaten
dc.subjectRNA interferenceen
dc.title探討可調節擴增CUG重複片段毒性之基因zh_TW
dc.titleInvestigation of genes modulating expanded CUG repeat toxicityen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee潘惠錦(Hui-Chin Pan),蔡欣祐(Hsin-Yue Tsai)
dc.subject.keyword強直性肌肉失養症,核醣核酸干擾,重複片段,zh_TW
dc.subject.keywordmyotonic dystrophy,RNA interference,CUG repeat,en
dc.relation.page59
dc.identifier.doi10.6342/NTU201602817
dc.rights.note未授權
dc.date.accepted2016-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-R03b43033-1.pdf
  未授權公開取用
2.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved