請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76660
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林郁真 | |
dc.contributor.author | Kuan-Wen Hsiao | en |
dc.contributor.author | 蕭冠文 | zh_TW |
dc.date.accessioned | 2021-07-10T21:34:39Z | - |
dc.date.available | 2021-07-10T21:34:39Z | - |
dc.date.copyright | 2016-10-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-19 | |
dc.identifier.citation | Babić, S., M. Periša and I. Škorić (2013). 'Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media.' Chemosphere 91(11): 1635-1642.
Balmer, M. E., K.-U. Goss and R. P. Schwarzenbach (2000). 'Photolytic Transformation of Organic Pollutants on Soil SurfacesAn Experimental Approach.' Environmental Science & Technology 34(7): 1240-1245. Bossio, J. P., J. Harry and C. A. Kinney (2008). 'Application of ultrasonic assisted extraction of chemically diverse organic compounds from soils and sediments.' Chemosphere 70(5): 858-864. Brown, K. D., J. Kulis, B. Thomson, T. H. Chapman and D. B. Mawhinney (2006). 'Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico.' Science of The Total Environment 366(2–3): 772-783. Burhenne, J., M. Ludwig, P. Nikoloudis and M. Spiteller 'Primary photoproducts and half-lives.' Environmental Science and Pollution Research 4(1): 10-15. Burhenne, J., M. Ludwig and M. Spiteller (1997). 'Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution.' Environmental Science and Pollution Research 4(2): 61-67. Burkhard, N. and J. A. Guth (1979). 'Photolysis of organophosphorus insecticides on soil surfaces.' Pesticide Science 10(4): 313-319. Ciani, A., K.-U. Goss and R. P. Schwarzenbach (2005). 'Determination of molar absorption coefficients of organic compounds adsorbed in porous media.' Chemosphere 61(10): 1410-1418. Ciani, A., K.-U. Goss and R. P. Schwarzenbach (2005). 'Photodegradation of Organic Compounds Adsorbed in Porous Mineral Layers: Determination of Quantum Yields.' Environmental Science & Technology 39(17): 6712-6720. Ciani, A., K. U. Goss and R. P. Schwarzenbach (2005). 'Light penetration in soil and particulate minerals.' European Journal of Soil Science 56(5): 561-574. Ding, W., Y. Wang, Y. Yu, X. Zhang, J. Li and F. Wu (2015). 'Photooxidation of arsenic(III) to arsenic(V) on the surface of kaolinite clay.' Journal of Environmental Sciences 36: 29-37. Ferdig, M., A. Kaleta and W. Buchberger (2005). 'Improved liquid chromatographic determination of nine currently used (fluoro)quinolones with fluorescence and mass spectrometric detection for environmental samples.' Journal of Separation Science 28(13): 1448-1456. Ferrari, B. t., N. Paxéus, R. L. Giudice, A. Pollio and J. Garric (2003). 'Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac.' Ecotoxicology and Environmental Safety 55(3): 359-370. Ge, L., J. Chen, X. Wei, S. Zhang, X. Qiao, X. Cai and Q. Xie (2010). 'Aquatic Photochemistry of Fluoroquinolone Antibiotics: Kinetics, Pathways, and Multivariate Effects of Main Water Constituents.' Environmental Science & Technology 44(7): 2400-2405. Golet, E. M., A. C. Alder and W. Giger (2002). 'Environmental Exposure and Risk Assessment of Fluoroquinolone Antibacterial Agents in Wastewater and River Water of the Glatt Valley Watershed, Switzerland.' Environmental Science & Technology 36(17): 3645-3651. Greenberg, R., D. Kennedy, P. Reilly, K. Luppen, W. Weinandt, M. Bollinger, F. Aguirre, F. Kodesch and A. Saeed (1987). 'Treatment of bone, joint, and soft-tissue infections with oral ciprofloxacin.' Antimicrobial agents and chemotherapy 31(2): 151-155. Gu, C. and K. G. Karthikeyan (2005). 'Sorption of the Antimicrobial Ciprofloxacin To Aluminum and Iron Hydrous Oxides.' Environmental Science & Technology 39(23): 9166-9173. Hirsch, R., T. Ternes, K. Haberer and K.-L. Kratz (1999). 'Occurrence of antibiotics in the aquatic environment.' Science of The Total Environment 225(1–2): 109-118. Jia, H., H. Chen, G. Nulaji, X. Li and C. Wang (2015). 'Effect of low-molecular-weight organic acids on photo-degradation of phenanthrene catalyzed by Fe(III)–smectite under visible light.' Chemosphere 138: 266-271. Jia, H., L. Li, H. Chen, Y. Zhao, X. Li and C. Wang (2015). 'Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light.' Journal of Hazardous Materials 287(0): 16-23. Jia, H., L. Li, X. Fan, M. Liu, W. Deng and C. Wang (2013). 'Visible light photodegradation of phenanthrene catalyzed by Fe(III)-smectite: Role of soil organic matter.' Journal of Hazardous Materials 256–257: 16-23. Jia, H., J. Zhao, X. Fan, K. Dilimulati and C. Wang (2012). 'Photodegradation of phenanthrene on cation-modified clays under visible light.' Applied Catalysis B: Environmental 123–124(0): 43-51. Kümmerer, K., A. Al-Ahmad and V. Mersch-Sundermann (2000). 'Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test.' Chemosphere 40(7): 701-710. Kümmerer, K. and A. Henninger (2003). 'Promoting resistance by the emission of antibiotics from hospitals and households into effluent.' Clinical Microbiology and Infection 9(12): 1203-1214. Kobayashi, H. (1987). 'Clinical efficacy of ciprofloxacin in the treatment of patients with respiratory tract infections in Japan.' The American journal of medicine 82(4A): 169-173. López Zavala, M. Á. and L. Reynoso-Cuevas (2015). 'Simultaneous extraction and determination of four different groups of pharmaceuticals in compost using optimized ultrasonic extraction and ultrahigh pressure liquid chromatography–mass spectrometry.' Journal of Chromatography A 1423: 9-18. Li, Z., H. Hong, L. Liao, C. J. Ackley, L. A. Schulz, R. A. MacDonald, A. L. Mihelich and S. M. Emard (2011). 'A mechanistic study of ciprofloxacin removal by kaolinite.' Colloids and Surfaces B: Biointerfaces 88(1): 339-344. Lin, A. Y.-C., T.-H. Yu and C.-F. Lin (2008). 'Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan.' Chemosphere 74(1): 131-141. Martin, S., A. Shchukarev, K. Hanna and J.-F. Boily (2015). 'Kinetics and Mechanisms of Ciprofloxacin Oxidation on Hematite Surfaces.' Environmental Science & Technology 49(20): 12197-12205. McClellan, K. and R. U. Halden (2010). 'Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey.' Water Research 44(2): 658-668. Menager, M. and M. Sarakha (2013). 'Simulated Solar Light Phototransformation of Organophosphorus Azinphos Methyl at the Surface of Clays and Goethite.' Environmental Science & Technology 47(2): 765-772. Menager, M., M. Siampiringue and M. Sarakha (2009). 'Photochemical behaviour of phenylbenzoquinone at the surface of the clays: Kaolinite, bentonite and montmorillonite.' Journal of Photochemistry and Photobiology A: Chemistry 208(2–3): 159-163. Mountacer, H., A. Atifi, P. Wong-Wah-Chung and M. Sarakha (2014). 'Degradation of the pesticide carbofuran on clay and soil surfaces upon sunlight exposure.' Environmental Science and Pollution Research 21(5): 3443-3451. Nowara, A., J. Burhenne and M. Spiteller (1997). 'Binding of Fluoroquinolone Carboxylic Acid Derivatives to Clay Minerals.' Journal of Agricultural and Food Chemistry 45(4): 1459-1463. Pei, Z., X.-Q. Shan, J. Kong, B. Wen and G. Owens (2010). 'Coadsorption of Ciprofloxacin and Cu(II) on Montmorillonite and Kaolinite as Affected by Solution pH.' Environmental Science & Technology 44(3): 915-920. Phillips, G., B. E. Johnson and J. Ferguson (1990). 'The loss of antibiotic activity of ciprofloxacin by photodegradation.' Journal of Antimicrobial Chemotherapy 26(6): 783-789. Picó, Y. and V. Andreu (2007). 'Fluoroquinolones in soil—risks and challenges.' Analytical and Bioanalytical Chemistry 387(4): 1287-1299. Ramirez, C. A., J. Bran, C. Mejia and J. Garcia (1985). 'Open, prospective study of the clinical efficacy of ciprofloxacin.' Antimicrobial agents and chemotherapy 28(1): 128-132. Razuc, M., M. Garrido, Y. S. Caro, C. M. Teglia, H. C. Goicoechea and B. S. Fernández Band (2013). 'Hybrid hard- and soft-modeling of spectrophotometric data for monitoring of ciprofloxacin and its main photodegradation products at different pH values.' Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 106: 146-154. Sanderson, H., D. J. Johnson, C. J. Wilson, R. A. Brain and K. R. Solomon (2003). 'Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening.' Toxicology Letters 144(3): 383-395. Si, Y., S. Wang, D. Zhou and H. Chen (2004). 'Adsorption and Photo-reactivity of Bensulfuron-Methyl On Homoionic Clays.' Clays and Clay Minerals 52(6): 742-748. Sithole, B. B. and R. D. Guy (1987). 'Models for tetracycline in aquatic environments.' Water, Air, and Soil Pollution 32(3): 303-314. Sturini, M., A. Speltini, F. Maraschi, L. Pretali, A. Profumo, E. Fasani and A. Albini (2014). 'Environmental photochemistry of fluoroquinolones in soil and in aqueous soil suspensions under solar light.' Environmental Science and Pollution Research 21(23): 13215-13221. Sturini, M., A. Speltini, F. Maraschi, A. Profumo, L. Pretali, E. Fasani and A. Albini (2010). 'Photochemical Degradation of Marbofloxacin and Enrofloxacin in Natural Waters.' Environmental Science & Technology 44(12): 4564-4569. Sturini, M., A. Speltini, F. Maraschi, A. Profumo, L. Pretali, E. Fasani and A. Albini (2012). 'Sunlight-induced degradation of soil-adsorbed veterinary antimicrobials Marbofloxacin and Enrofloxacin.' Chemosphere 86(2): 130-137. Sturini, M., A. Speltini, F. Maraschi, A. Profumo, L. Pretali, E. A. Irastorza, E. Fasani and A. Albini (2012). 'Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight.' Applied Catalysis B: Environmental 119–120: 32-39. Sturini, M., A. Speltini, F. Maraschi, E. Rivagli, L. Pretali, L. Malavasi, A. Profumo, E. Fasani and A. Albini (2015). 'Sunlight photodegradation of marbofloxacin and enrofloxacin adsorbed on clay minerals.' Journal of Photochemistry and Photobiology A: Chemistry 299(0): 103-109. Sukul, P. and M. Spiteller (2007). Fluoroquinolone Antibiotics in the Environment. Reviews of Environmental Contamination and Toxicology, Springer New York. 191: 131-162. Sunderland, J., C. M. Tobin, A. J. Hedges, A. P. MacGowan and L. O. White (2001). 'Antimicrobial activity of fluoroquinolone photodegradation products determined by parallel-line bioassay and high performance liquid chromatography.' Journal of Antimicrobial Chemotherapy 47(3): 271-275. Tajeddine, L., M. Nemmaoui, H. Mountacer, A. Dahchour and M. Sarakha (2010). 'Photodegradation of fenamiphos on the surface of clays and soils.' Environmental Chemistry Letters 8(2): 123-128. Tolls, J. (2001). 'Sorption of Veterinary Pharmaceuticals in Soils: A Review.' Environmental Science & Technology 35(17): 3397-3406. Turiel, E., G. Bordin and A. R. Rodriguez (2005). 'Study of the evolution and degradation products of ciprofloxacin and oxolinic acid in river water samples by HPLC-UV/MS/MS-MS.' Journal of Environmental Monitoring 7(3): 189-195. Turiel, E., A. Martín-Esteban and J. L. Tadeo (2006). 'Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV.' Analytica Chimica Acta 562(1): 30-35. Turiel, E., A. Martín-Esteban and J. L. Tadeo (2007). 'Molecular imprinting-based separation methods for selective analysis of fluoroquinolones in soils.' Journal of Chromatography A 1172(2): 97-104. Vasudevan, D., G. L. Bruland, B. S. Torrance, V. G. Upchurch and A. A. MacKay (2009). 'pH-dependent ciprofloxacin sorption to soils: Interaction mechanisms and soil factors influencing sorption.' Geoderma 151(3–4): 68-76. Vazquez-Roig, P., R. Segarra, C. Blasco, V. Andreu and Y. Picó (2010). 'Determination of pharmaceuticals in soils and sediments by pressurized liquid extraction and liquid chromatography tandem mass spectrometry.' Journal of Chromatography A 1217(16): 2471-2483. Wang, C.-J., Z. Li, W.-T. Jiang, J.-S. Jean and C.-C. Liu (2010). 'Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite.' Journal of Hazardous Materials 183(1–3): 309-314. Wei, X., J. Chen, Q. Xie, S. Zhang, L. Ge and X. Qiao (2013). 'Distinct Photolytic Mechanisms and Products for Different Dissociation Species of Ciprofloxacin.' Environmental Science & Technology 47(9): 4284-4290. Werner, J. J., K. McNeill and W. A. Arnold (2009). 'Photolysis of Chlortetracycline on a Clay Surface.' Journal of Agricultural and Food Chemistry 57(15): 6932-6937. Xiao, X., X. Zeng and A. T. Lemley (2010). 'Species-Dependent Degradation of Ciprofloxacin in a Membrane Anodic Fenton System.' Journal of Agricultural and Food Chemistry 58(18): 10169-10175. Zhang, H. and C.-H. Huang (2005). 'Oxidative Transformation of Fluoroquinolone Antibacterial Agents and Structurally Related Amines by Manganese Oxide.' Environmental Science & Technology 39(12): 4474-4483. Zhou, J. and N. Broodbank (2014). 'Sediment-water interactions of pharmaceutical residues in the river environment.' Water Research 48(0): 61-70. Zhou, L.-J., G.-G. Ying, J.-L. Zhao, J.-F. Yang, L. Wang, B. Yang and S. Liu (2011). 'Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China.' Environmental Pollution 159(7): 1877-1885. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76660 | - |
dc.description.abstract | 環丙沙星(ciprofloxacin)為奎諾酮類抗生素之一,其廣泛應用於人類與動物等細菌感染之醫療,因而易由醫院廢水及生活污水等排放管道進入表面水體中。自然光解為環丙沙星於環境之主要降解機制之一,其於自然水體中之半衰期為1~3分鐘,然其與固相介質(如礦物、有機物質、氧化鐵等)有極佳親和性,容易積存於底泥或土壤等環境中,若環丙沙星進入固相介質之環境,其自然光解之機制可能受到介質中物質之作用而與水相光解有所不同,故本研究以高嶺土為固相介質,進行環丙沙星於固相環境之光化學反應研究並探討其與水相光解之差異。
本研究建立超音波萃取方法結合吹氮濃縮之技術,分析高嶺土中之環丙沙星偵測極限可至10 μg g-1,回收率為96.6%~113.4%。而研究發現環丙沙星與高嶺土間的作用,可能使環丙沙星的光化學特性有所不同;其於高嶺土之莫耳吸收常數以Kubelka-Munk公式推算為5.8×106 mole-1 L cm-1,遠高於其於水中之莫耳吸收常數(3×104 mole-1 L cm-1)。 研究發現環丙沙星存於高嶺土表面時較為穩定;其於不同高嶺土厚度之光降解試驗,以擬一階反應計算其於第一小時內的光反應速率。當高嶺土厚度(Z)由14 μm增厚至199 μm,環丙沙星之光反應速率由0.0154 min-1降至0.0016 min-1;kp×Z於厚度範圍14 μm至199 μm為一定值(0.30 μm×min-1),表面光降解反應速率(kp0)藉由Balmer理論推得為0.034 min-1,其半衰期約為水相環境中之20倍,故環丙沙星於固相環境之潛在危害風險可能因而提高。 研究亦發現環丙沙星與高嶺土的交互作用抑制環丙沙星之直接光解機制,而非促進間接光解的反應,故其降解途徑相似於水相直接光解之降解途徑;其中哌嗪環(piperazine ring)之去除為環丙沙星於高嶺土之主要光降解途徑,其副產物(P2, MW=262)以擬定量法(semi-quantification)定量,產率於90分鐘光照後高達38.6%;其他降解途徑分別為哌嗪環之氧化(P3, MW=290)、丙環基之破壞(諾佛沙星以及P4, MW=293);而諾佛沙星(norfloxacin)之產率於水中及高嶺土中分別為17.6%以及0.95%。水相中之脫氟降解途徑則因高嶺土中缺乏水分未於固相光解中發現相關副產物(P5, MW=329)。 實際環境中底泥與土壤之質地組成區域變異性大且均質性不一,抗生素於其中的宿命亦將更為複雜。本研究已針對抗生素於固相介質之光降解宿命進行初探,其他環境因子對固相光解之影響宜進一步深入研究探討。 | zh_TW |
dc.description.abstract | Ciprofloxacin is a fluoroquinolone antibiotic that is widely used in the treatment of serious bacterial infections, and it is often released into surface water through hospital wastewater and wastewater treatment plant effluent. The literature has demonstrated its photodegradation potential in natural surface water, but there is limited information about its photochemical behavior in the sorbed state. Ciprofloxacin interacts strongly with solid matrices (e.g., clay minerals, humic substances, and hematite) with potentially different photolysis mechanisms. Therefore, the objective of this study is to investigate the photochemistry of ciprofloxacin in a solid-phase system compared to a water-phase system.
Kaolinite was used as the model matrix in this study, and methods were established for the pretreatment, extraction, purification and analysis of ciprofloxacin in kaolinite at the μg g-1 level. The recovery of the extraction method ranged from 96.6% to 113.4%, and the limit of detection was 10 μg g-1. The interaction between ciprofloxacin and kaolinite surface might affect photochemical property of ciprofloxacin. The molar extinction coefficient of ciprofloxacin in kaolinite was 5.8×106 mole-1 L cm-1 at 330 nm based on the Kubelka-Munk function, which was greater than in the water phase (maximum value of 3×104 mole-1 L cm-1 at 271 nm at pH 7). Moreover, ciprofloxacin is more persistent when it is adsorbed onto kaolinite under irradiation. Photolysis of ciprofloxacin in kaolinite with various depths were conducted and photolysis rate constants (kp) were determined by fitting pseudo-first order in the first hour. kp dramatically decreased from 0.0154 min-1 to 0.0016 min-1 as the layer thickness (Z) increased from 14 μm to 199 μm. kp×Z was constant (0.30 μm×min-1), and kp0 (pseudo-first order constant at the surface of the kaolinite layer, where Z=0 μm) was 0.034 min-1 according to Balmer’s model. The half-life of ciprofloxacin in kaolinite was 20 times longer than in the water phase under simulated sunlight, thus increasing the potential environmental risk. Furthermore, the interaction between ciprofloxacin and kaolinite did not result in other photosensitization reactions, and it reduced the direct photolysis; therefore, similar photodegradation pathways were identified from direct photolysis of water phase. The amounts of byproducts were semi-quantified by the calibration curve of standard ciprofloxacin and cleavage of the piperazine ring is the main degradation pathway of ciprofloxacin in kaolinite (38.6% yield of P2, MW=262); other initial degradation pathways include oxidation of the piperazine ring (P3, MW=290) and cleavage of the cyclopropyl group (norfloxacin and P4, MW=293). Norfloxacin was produced with a 17.6% yield in the water phase and a 0.95% yield in kaolinite. Defluorination caused by the addition of OH- resulted in P5 (MW=329) and was only observed in the water phase, likely due to the absence of water in kaolinite. This study indicated that ciprofloxacin is more environmentally persistent in kaolinite than in water. However, the fate of antibiotics in natural sediments and soils is more complicated since the matrix is highly heterogeneous; our knowledge is far from complete in this field. Future work should focus on additional factors, such as humic substances and metal ions, in the solid phase to investigate the photochemical reaction of ciprofloxacin in sediment and in the water/solid phase. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:34:39Z (GMT). No. of bitstreams: 1 ntu-105-R03541102-1.pdf: 1886608 bytes, checksum: b9fe289ddbf46bd29de252e402eb35d7 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 摘要 II
Abstract IV Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and Objectives 3 Chapter 2 Literature Review 5 2.1 Target compound: ciprofloxacin 5 2.2 Natural attenuation 7 2.3 Photolysis in the solid phase 8 2.4 Molar adsorption coefficient 10 2.5 Quantum Yields 11 2.6 Studies on photolysis in solid phase 12 2.7 Ultrasonic-assisted extraction 17 Chapter 3 Materials and Methods 19 3.1 Chemicals and Standards 19 3.2 Ultrasonic extraction 20 3.3 UV-vis spectra and diffusive reflectance spectra 22 3.4 Preparation of the kaolinite film 22 3.5 Irradiation experiments 23 3.6 High performance liquid chromatography 24 3.7 Byproducts Identification 24 Chapter 4 Results and Discussion 25 4.1 Optimized extraction method for the analysis of ciprofloxacin in kaolinite 25 4.1.1 Content of methanol in the extraction solution 25 4.1.2 Optimized extraction method with a combined air-drying and reconstitution of ciprofloxacin in kaolinite. 26 4.2 Diffusive reflectance spectrum of ciprofloxacin on the surface of kaolinite. 29 4.2.1 Diffusive reflectance spectrum of different ciprofloxacin concentrations. 29 4.2.2 Molar extinction coefficient 31 4.3 Photodegradation kinetics 33 4.3.1 Effect of the kaolinite depth on the photolysis rate of ciprofloxacin 33 4.3.2 Quantum yields of ciprofloxacin in kaolinite 38 4.3.3 Effect of the initial ciprofloxacin concentrations on the photolysis rate in kaolinite 38 4.4 Phototransformation of ciprofloxacin in kaolinite compared with phototransformation in the water phase. 40 4.4.1 Phototransformation of ciprofloxacin in MilliQ water under direct photolysis. 40 4.4.2 Yields of byproducts of ciprofloxacin in kaolinite under irradiation. 45 4.4.3 Photodegradation pathways of ciprofloxacin in the water phase and solid phase. 47 4.5 Environmental relevance 50 Chapter 5 Conclusion and Suggestion 52 5.1 Conclusion 52 5.2 Suggestion for future work. 55 Acknowledgement 56 Reference 57 | |
dc.language.iso | en | |
dc.title | 環丙沙星抗生素於高嶺土之光降解機制 | zh_TW |
dc.title | photolysis of ciprofloxacin in kaolinite | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 康佩群,林逸彬,侯嘉洪 | |
dc.subject.keyword | 奎若酮抗生素,環丙沙星,光降解,高嶺土, | zh_TW |
dc.subject.keyword | fluoroquinolone antibiotics,ciprofloxacin,photolysis,kaolinite, | en |
dc.relation.page | 60 | |
dc.identifier.doi | 10.6342/NTU201603116 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-08-21 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-R03541102-1.pdf 目前未授權公開取用 | 1.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。