請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76657
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃筱鈞(Hsiao-Chun Huang) | |
dc.contributor.author | Chi-Hou Ng | en |
dc.contributor.author | 吳志昊 | zh_TW |
dc.date.accessioned | 2021-07-10T21:34:36Z | - |
dc.date.available | 2021-07-10T21:34:36Z | - |
dc.date.copyright | 2016-10-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-20 | |
dc.identifier.citation | Aharonowiz, M., et al. (2008). 'Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis.' PLoS One 3(9): e3145.
Allen, N. J. and B. A. Barres (2009). 'Neuroscience: Glia - more than just brain glue.' Nature 457(7230): 675-677. Baer, A. S., et al. (2009). 'Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling.' Brain 132(Pt 2): 465-481. Belachew, S., et al. (2002). 'Cyclin-dependent kinase-2 controls oligodendrocyte progenitor cell cycle progression and is downregulated in adult oligodendrocyte progenitors.' J Neurosci 22(19): 8553-8562. Biswas, D. and P. Jiang (2016). 'Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.' Int J Mol Sci 17(2): 226. Bradl, M. and H. Lassmann (2010). 'Oligodendrocytes: biology and pathology.' Acta Neuropathol 119(1): 37-53. Bulic-Jakus, F., et al. (2016). 'Teratoma: from spontaneous tumors to the pluripotency/malignancy assay.' Wiley Interdiscip Rev Dev Biol 5(2): 186-209. Burns, T. C., et al. (2009). 'Stem cells for ischemic brain injury: a critical review.' J Comp Neurol 515(1): 125-144. Butler, C. and A. Z. Zeman (2005). 'Neurological syndromes which can be mistaken for psychiatric conditions.' J Neurol Neurosurg Psychiatry 76 Suppl 1: i31-38. Cao, N., et al. (2016). 'Conversion of human fibroblasts into functional cardiomyocytes by small molecules.' Science 352(6290): 1216-1220. Compston, A. and A. Coles (2008). 'Multiple sclerosis.' Lancet 372(9648): 1502-1517. Dehghan, S., et al. (2016). 'Oct4 transcription factor in conjunction with valproic acid accelerates myelin repair in demyelinated optic chiasm in mice.' Neuroscience 318: 178-189. Gallo, P., et al. (2015). 'Overview of the management of relapsing-remitting multiple Grigoriadis, N., et al. (2015). 'A basic overview of multiple sclerosis immunopathology.' Eur J Neurol 22 Suppl 2: 3-13. Groves, A. K., et al. (1993). 'Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells.' Nature 362(6419): 453-455. Guarino, A. T. and R. D. McKinnon (2013). 'Reprogramming cells for brain repair.' Brain Sci 3(3): 1215-1228. Imani, A. and M. Golestani (2012). 'Cost-utility analysis of disease-modifying drugs in relapsing-remitting multiple sclerosis in Iran.' Iran J Neurol 11(3): 87-90. Joubert, L., et al. (2010). 'Chemical inducers and transcriptional markers of oligodendrocyte differentiation.' J Neurosci Res 88(12): 2546-2557. Kawabata, S., et al. (2016). 'Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury.' Stem Cell Reports 6(1): 1-8. Lepeta, K., et al. (2016). 'Synaptopathies: synaptic dysfunction in neurological disorders.' J Neurochem. Liu, A., et al. (2007). 'The glial or neuronal fate choice of oligodendrocyte progenitors is modulated by their ability to acquire an epigenetic memory.' J Neurosci 27(27): 7339-7343. Love, S. (2006). 'Demyelinating diseases.' J Clin Pathol 59(11): 1151-1159. Marinelli, C., et al. (2016). 'Systematic Review of Pharmacological Properties of the Oligodendrocyte Lineage.' Front Cell Neurosci 10: 27. Mikaeili Agah, E., et al. (2014). 'Therapeutic effect of transplanted human Wharton's jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) in an animal model of multiple sclerosis.' Mol Neurobiol 49(2): 625-632. Najm, F. J., et al. (2013). 'Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells.' Nat Biotechnol 31(5): 426-433. Najm, F. J., et al. (2015). 'Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo.' Nature 522(7555): 216-220. Ning, M., et al. (2012). 'Application of proteomics to cerebrovascular disease.' Electrophoresis 33(24): 3582-3597. O'Rahilly, R. and F. Müller (1983). Basic human anatomy : a regional study of human structure. Philadelphia, Saunders. Ogawa, S., et al. (2011). 'Immunopanning selection of A2B5-positive cells increased the differentiation efficiency of induced pluripotent stem cells into oligodendrocytes.' Neurosci Lett 489(2): 79-83. Ohara, P. T., et al. (2009). 'Gliopathic pain: when satellite glial cells go bad.' Neuroscientist 15(5): 450-463. Pazhoohan, S., et al. (2014). 'Valproic Acid attenuates disease symptoms and increases endogenous myelin repair by recruiting neural stem cells and oligodendrocyte progenitors in experimental autoimmune encephalomyelitis.' Neurodegener Dis 13(1): 45-52. Pedraza, C. E., et al. (2014). 'Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase.' ASN Neuro 6(4). Piao, J., et al. (2015). 'Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation.' Cell Stem Cell 16(2): 198-210. Purves, D. and S. M. Williams (2001). Neuroscience. Sunderland, Mass., Sinauer Associates. Raciti, M., et al. (2013). 'Reprogramming fibroblasts to neural-precursor-like cells by structured overexpression of pallial patterning genes.' Mol Cell Neurosci 57: 42-53. Raff, M., et al. (2001). 'Timing cell-cycle exit and differentiation in oligodendrocyte development.' Novartis Found Symp 237: 100-107; discussion 107-112, 158-163. Ring, K. L., et al. (2012). 'Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor.' Cell Stem Cell 11(1): 100-109. Sarnat, H. B. and L. Flores-Sarnat (2013). 'Neuroembryology and brain malformations: an overview.' Handb Clin Neurol 111: 117-128. Schonfeldt-Lecuona, C., et al. (2016). 'Non-Invasive Brain Stimulation in Conversion (Functional) Weakness and Paralysis: A Systematic Review and Future Perspectives.' Front Neurosci 10: 140. Shen, S., et al. (2005). 'Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain.' J Cell Biol 169(4): 577-589. Swenson, R. S. (2006). 'Review of clinical and functional neuroscience.' from https://www.dartmouth.edu/~rswenson/NeuroSci/. Thoma, E. C., et al. (2014). 'Chemical conversion of human fibroblasts into functional Schwann cells.' Stem Cell Reports 3(4): 539-547. Tontsch, U., et al. (1994). 'Transplantation of an oligodendrocyte cell line leading to extensive myelination.' Proc Natl Acad Sci U S A 91(24): 11616-11620. Wehrwein, E. A., et al. (2016). 'Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System.' Compr Physiol 6(3): 1239-1278. Yang, N., et al. (2013). 'Generation of oligodendroglial cells by direct lineage conversion.' Nat Biotechnol 31(5): 434-439. Zack-Williams, S. D., et al. (2015). 'Current progress in use of adipose derived stem cells in peripheral nerve regeneration.' World J Stem Cells 7(1): 51-64. Zhang, M., et al. (2016). 'Pharmacological Reprogramming of Fibroblasts into Neural Stem Cells by Signaling-Directed Transcriptional Activation.' Cell Stem Cell 18(5): 653-667 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76657 | - |
dc.description.abstract | 寡突細胞是僅存在於中央神經系統中的膠質細胞,其主要的功能是提供神經細胞養分和結構上的支持及隔離 (髓鞘),保護並促進神經的信號傳遞。寡突細胞的受損或功能失調會導致不同的脫髓鞘病變。而其中以多發性硬化為最為常見的脫髓鞘病變之一。然而雖然抗發炎藥物的治療在疾病初期能有效地減緩多發性硬化的病情,可是越後期成效越不佳,且無法治癒由免疫細胞攻擊myelin basic protein (MBP)所造成的脫髓鞘病變。所以現今人們開始嘗試以細胞治療來解決脫髓鞘病變的問題。此係利用具有正常功能的寡突前驅細胞去取代或協助產生能正常進行髓鞘再生的寡突細胞,以重新進行髓鞘包覆來治療或減緩病情。
在過去的文獻中,人類寡突譜系的細胞主要從胚胎幹細胞或誘導性多功能幹細胞的分化來取得。然而胚胎幹細胞和誘導性多功能幹細胞分化產生寡突譜系細胞分化需耗時45天、為高成本、有致癌或病毒基因載體的殘留的可能等風險。 為了降低這些風險及降低細胞療法的成本,我們嘗試建立以化學藥物來誘導轉化人類纖維母細胞成寡突譜系細胞的方法。在呂仁老師實驗室中,已篩選出Y27632 (Rho-associated, coiled-coil containing protein kinase抑制劑)、basic fibroblast growth factor (bFGF)、SU9516 (cyclin-dependent kinase抑制劑) 是初步誘導皮膚纖維母細胞產生類似寡突譜系細胞型態上的變化的複合配方 (含九至十種成分)所必須的。本論文中,不使用複合配方時,我們進一步發現單一加入Y27632 或SU9516就足以產生細胞型態上的變化。且僅同時加入Y27632、bFGF及SU9516, 就足以產生表現寡突譜系細胞標誌O4的細胞。進一步以G06983 (protein kinase C抑制劑) 取代bFGF, 或前二天加入Valproic acid (VPA),就足以產生更多更分化的寡突譜系細胞,並表現O4表現標誌。 我們接著尋找在常用的23個藥物中,是否有藥物可進一步促進寡突譜系細胞的生成。我們發現Forskolin (Fsk)可促進化學藥物在三天內誘導轉化成寡突譜系細胞的能力。而其轉化效率超過八成。轉化而成的細胞能表現多個寡突細胞譜系的標記所染上,例如O4、Olig2、Sox10以及 Myelin basic protein (MBP)等。 依此研究結果,我們有望在三天內高效率取得病人自體皮膚細胞所轉分化的寡突譜系的細胞,並使之應用到脫髓鞘疾病的細胞治療或藥物篩選中。 | zh_TW |
dc.description.abstract | Oligodendrocytes are the glial cells reside in the central nervous system, which play critical roles in the transmission of neural signals and neural protection by myelinated the neurons. It supports the nutrients of neuron and provides physical barrier between different neurons. Dysfunction or loss of oligodendrocytes leads to many different demyelination diseases. Multiple sclerosis (MS) is one of the most common demyelination disease which is caused by autoimmunity or genetic mutation that the immune system target at myelin basic protein (MBP). Anti-inflammatory drugs can ameliorate the symptoms of MS at the early stage. However, anti-inflammatory drug doesn’t work effectively in later stage and cannot reverse the symptom that caused by demyelination. Thus, cell therapy with oligodendrocyte progenitor cells (OPCs) to regenerate the functional oligodendrocytes and then restore the myelination shed lights on the next generation treatment of MS.
In previous studies, human oligodendrocyte lineage cells are derived from embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs). However, the differentiation protocol required more than 45 days which is labor consuming and high cost. Besides, the ESC/iPSCs derived cells may have the biosafety risks of tumor formation and virus insertion mutagenesis. To reduce the cost and biosafety risk, we try to establish a method to convert human dermal fibroblasts into oligodendrocyte-lineage cells with defined chemicals. Previously, in Dr. Jean Lu’s laboratory, Y27632 (Rho-associated, coiled-coil containing protein kinase inhibitor), basic fibroblast growth factor (bFGF), and SU9516 (cyclin-dependent kinase 2) was suggested to be essential for a cocktail with nine to ten factors to induce morphological change of skin fibroblasts. Here, we further demonstrated that in the absence of 9-10 factor cocktail, only one chemical, Y27632 or SU9516, is sufficient to induce different morphological changes. Of note, combination of three factors, Y27632, bFGF, and SU9516 is sufficient to transdifferentiate fibroblasts into oligodendrocyte lineage cells which expressed O4 marker. To obtain O4 positive oligodendrocyte lineage cells with more differentiated morphology, we substitute bFGF with G06983 (protein kinase C inhibitor), and add Valproic acid [VPA, histone deacetylase (HDAC) inhibitor] in the first two days. Next, to further improve the protocol, we screen 23 common inhibitors or activators. We found the addition of Forskolin (Fsk) can reprogram the fibroblasts into oligodendrocyte lineage cells within 3 days with the efficacy more than 80%. The transdiffeneitated cells expressed multiple oligodendrocyte lineage markers, such as O4, Olig2, Sox10 and MBP. By this study, we can efficiently obtain the autologous oligodendrocyte-linage cells by transdifferentiating skin fibroblasts into oligodendrocyte lineage cells within 3 days. There cells can be applied in the cell therapy or drug screening of demyelination diseases. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:34:36Z (GMT). No. of bitstreams: 1 ntu-105-R03b43031-1.pdf: 3382096 bytes, checksum: 2556bc84724598183d0f3eb708a3234c (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書
誌謝…………………………………………………………………..........i 摘要……………………………………………………………………….ii Abstract……………………………………………………..………….....iv Table of Contents…………………………………………………...........vii List of Figures and Tables…………………………………………..........ix Chapter1. Introduction…………...…………………………………………...…1 1.1. Nervous system………………………………………………………..…..1 1.2. Neurological disorder…………………………………………………..….3 1.3. Disease in CNS………………………………………………….……..…..4 1.4. The cause of demyelination disease…………………….…………..……...5 1.5. Multiple sclerosis………………………………………………………......5 1.6. Treatment of MS……………………………………………………..….…6 1.7. Oligodendrocyte precursor cells and Oligodendrocyte obtainment…….....7 Chapter 2. Materials and Methods……………..…………………………..…....9 2.1. Cell lines and culture condition…………………………………….…..….9 2.2. Cell transdifferentiation…………………………………………..…….….9 2.3. Real-time quantitative PCR assays……………………………….…....…10 2.4. Immunofluorescence assay (IFA)………………………………….......…11 2.5. Materials……………………………………………………………...…..11 Chapter 3. Results…………………………………………………………12 3.1. Chemicals change the cell state of fibroblasts……………………12 3.2. Optimization of cocktail composition…………………………….…...…13 3.3. Different oligodendrocyte specific markers………………………….15 Chapter 4. Discussion…………………………………..………….…….17 References……………………………………..………….………………..…..23 Figure1. Optimization of Y27632 and SU9516 concentration……………………...27 Figure2. Y27632 and SU9516 are sufficient for fibroblasts to convert into oligodendrocyte lineage cells……………………………………………...28 Figure3. Go6983, Y27632 or SU9516 are all required for generating oligodendrocyte lineage cells……………………………………………………………..…29 Figure4. Pre-treatment of VPA can effectively enhance reprogramming…….……..30 Figure5. Forskolin (FSK) help to convert fibroblasts into more mature oligodendrocyte stage……………………………………………………………………..…31 Figure6. Low concentration of Forskolin (FSK) is sufficient for cell conversion….32 Figure7. The expression of different oligodendrocyte markers after a five chemical cocktail treatment……………………………………………….….…..….33 Figure8. Expressions of different oligodendrocyte-linage genes detected by qPCR…………………………………………………………………...….34 Appendix Fig1. ROCK inhibitor, bFGF and Cdk2 inhibitor induce morphological change in fibroblasts………………....……….…………...…….35 Appendix Fig2. 9 factors induced cells expressed oligodendrocyte lineage specific marker…………………………...…………..…………………..36 Appendix Fig3. Cell cycle regular induce morphological change………………....37 Appendix Fig4. Y27632, bFGF, SU9516 is sufficient to lead to transdifferentiation ……………..........………………………………………………..38 Table1. Primers for quantitative real-time PCR…………………………………...39 | |
dc.language.iso | en | |
dc.title | 利用化學藥物有效率地將皮膚纖維母細胞轉換成寡突細胞的譜系 | zh_TW |
dc.title | Efficient conversion of dermal fibroblasts into oligodendrocyte lineage cells with chemicals | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 呂仁(Jean Lu) | |
dc.contributor.oralexamcommittee | 林劭品(Shau-Ping Lin),朱家瑩(Chia-Ying Chu) | |
dc.subject.keyword | 纖維母細胞,寡突細胞,藥物誘導,脫髓鞘疾病,轉分化, | zh_TW |
dc.subject.keyword | Fibroblasts,oligodendrocytes,chemical induce,demyelination disease,transdifferentation, | en |
dc.relation.page | 39 | |
dc.identifier.doi | 10.6342/NTU201603206 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-08-21 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-R03b43031-1.pdf 目前未授權公開取用 | 3.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。