請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76653完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林恭如 | |
| dc.contributor.author | Shih-Chang Syu | en |
| dc.contributor.author | 許世昌 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:34:32Z | - |
| dc.date.available | 2021-07-10T21:34:32Z | - |
| dc.date.copyright | 2016-10-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-21 | |
| dc.identifier.citation | [1] Soref, R. The Past, Present, and Future of Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[2] Farsaei, A. et al. A review of wireless-photonic systems: Design methodologies and topologies, constraints, challenges, and innovations in electronics and photonics. Opt. Commun. 373, 16-34 (2016). [3] Bogaerts, W. et al. Silicon microring resonators. Laser Photon. Rev. 6, 47-73 (2012). [4] Hsieh, I. W. et al. Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires. Opt. Express 15, 1135-1146 (2007). [5] Bauters, J. F. et al. Ultralow-loss planar Si3N4 waveguide polarizers. IEEE Photonics J. 5, 6600207 (2013). [6] Turner, A. C. et al. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express 14, 4357-4362 (2006). [7] Chen, X., Panoiu, N. C., Hsieh, I., Dadap, J. I. & Osgood, R. M. Third-order dispersion and ultrafast-pulse propagation in silicon wire waveguides. IEEE Photonics Technol. Lett. 18, 2617-2619 (2006). [8] Dulkeith, E., Xia, F., Schares, L., Green, W. M., & Vlasov, Y. A. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 14, 3853-3863 (2006). [9] Vlasov, Y., & McNab, S.. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12, 1622-1631 (2004). [10] Dinu, M., Quochi, F., & Garcia, H. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett. 82, 2954-2956 (2003). [11] Martínez, A. et al. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett. 10, 1506-1511 (2010). [12] Guider, R., Daldosso, N., Pitanti, A., Jordana, E., Fedeli, J. M., & Pavesi, L. NanoSi low loss horizontal slot waveguides coupled to high Q ring resonators. Opt. Express 17, 20762-20770 (2009). [13] Lin, G.-R. et al. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s. Sci. Rep. 5, 9611 (2015). [14] Fan, G. et al. Optical Waveguides on Three Material Platforms of Silicon-on-Insulator, Amorphous Silicon and Silicon Nitride. IEEE J. Sel. Top. Quantum Electron. 22, 1-7. (2016). [15] Cheng, C.-H. et al. Strong optical nonlinearity of the nonstoichiometric silicon carbide. J. Mater. Chem. C 3, 10164-10176 (2015). [16] Cardenas, J. et al. Optical nonlinearities in high-confinement silicon carbide waveguides. Opt. Lett. 40, 4138-4141 (2015). [17] Su, S.-P. et al. Nonstoichiometric SiC Bus/Ring Waveguide Based All-Optical Data Format Follower and Inverter. ACS Photonics 3, 806-818 (2016). [18] Tanabe, T. et al. Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities. Appl. Phys. Lett. 90, 031115 (2007). [19] Wright, N. M. et al. Free carrier lifetime modification for silicon waveguide based devices. Opt. Express 16, 19779-19784 (2008). [20] Turner-Foster, A. C. et al. Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides. Opt. Express 18, 3582-3591 (2010). [21] Kekatpure, R. D. & Brongersma, M. L. Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity. Nano Lett. 8, 3787-3793 (2008). [22] Wu, C.-L., Su, S.-P. & Lin, G.-R. All-optical modulation based on silicon quantum dot doped SiOx:Si-QD waveguide. Laser Photon. Rev. 8, 766–776 (2014). [23] Marchena, E., Redding, B., Creazzo, T. & Prather, D. W. Mitigation of Si nanocrystal free carrier absorption loss at 1.5 μm in a concentric microdisk structure. Opt. Lett. 35, 2182-2184 (2010). [24] Su, S.-P., Wu, C.-L., Lin, Y.-H. & Lin, G.-R. All-optical modulation in Si quantum dot doped SiOx micro-ring waveguide resonator. IEEE J. Sel. Top. Quantum Electron. 22, 40-48 (2016). [25] Dai, D., Bauters, J. & Bowers, J. E. Passive technologies for future large-scale photonic integrated circuits on silicon: Polarization handling, light non-reciprocity and loss reduction. Light-Sci. Appl. 1, e1 (2012). [26] Bauters, J. F. et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. Express 19, 3163-3174 (2011). [27] Zhang, H. et al. Polarization splitter using horizontal slot waveguide. Opt. Express 21, 3363-3369 (2013). [28] Gao, L., Hu, F., Wang, X., Tang, L. & Zhou, Z. Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic–dielectric coupling. Appl. Phys. B 113, 199-203 (2013). [29] Kaur, S. & Kaler, R.-S. Ultrahigh speed reconfigurable logic operations based on single semiconductor optical amplifier. J. Opt. Soc. Korea. 16, 13-16 (2012). [30] Lee, Y. et al. All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide. Opt. Expess 14, 2776-2782 (2006). [31] Chen, W. et al. Electro-optical logic gates based on graphene–silicon waveguides. Opt. Commun. 372, 85-90 (2016). [32] Gao, S., Wang, X., Xie, Y., Hu, P. & Yan, Q. Reconfigurable dual-channel all-optical logic gate in a silicon waveguide using polarization encoding. Opt. Lett. 40, 1448-1451 (2015). [33] Sethi, P. & Roy, S. All-optical ultrafast XOR/XNOR logic gates, binary counter, and double-bit comparator with silicon microring resonators. Appl. Opt. 53, 6527–6536 (2014). [34] Lin, S., Ishikawa, Y. & Wada, K. Demonstration of optical computing logics based on binary decision diagram. Opt. Express 20, 1378–1384 (2012). [35] Yang, L., Zhang, L., Guo, C. & Ding, J. XOR and XNOR operations at 12.5 Gb/s using cascaded carrier-depletion microring resonators. Opt. Express 22, 2996–3012 (2014). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76653 | - |
| dc.description.abstract | 近年來,矽光子晶片電路具備多功能運算能力受到許多關注,因為它符合下世代全光資料傳輸處理的迫切需求。在此論文中,我們利用了非對稱富碳碳化微共振腔實現TE/TM極化資料的解調、雙埠克爾開關與全光邏輯閘。
首先,利用最小波導截面的富碳碳化矽非對稱微共振腔增強了非線性克爾開關,設計當中考慮波導尺寸、對稱性對波導的影響,並優化了間距與錐狀反向波導結構。富碳碳化矽非對稱波導有較好的光侷限性,以及非線性折射率至.44×10-12 cm2/W,此外TE模態有較好的光侷限性與雙折射的特性。利用此優化的非對稱波導可提供有效非線性全光開光,並應用於未來晶片上光電元件上。 接著,富含碳-碳鍵結碳化矽雙埠共振腔可為多功能矽光子集成電路上應用。首先,利用極化選擇性的共振腔可實行12-Gbit/sTE/TM極化資料的解調;由於雙埠共振腔有互補的穿透譜,可應用於克爾開關,同時實現正相與反相資料轉換;另外由於極化相關的TE/TM穿透譜,雙埠共振腔也可應用於全光及邏輯閘。 最後,TE/TM極化相依的碳化矽環波導結構可用於加載於幫浦光源上的振幅鍵、相位偏移鍵間的全光及邏輯閘應用,僅當幫浦光源在開啟,與其極化平行於環波導的模態,偵測光源可被調變。 | zh_TW |
| dc.description.abstract | In past few years, the on-chip photonic circuits with versatile gating functionality has received more attention to meet urgent requirement of high-speed all-optical data transmission and processing on chip in the coming era. In his thesis, we demonstrated the asymmetric C-rich SixC1-x micro-ring with optimized waveguide structure for TE/TM polarized data decoding, dull-port Kerr switching and all-optical logic gates.
First of all, the smallest asymmetric channel waveguide with 500-nm width and 350-nm height based C-rich SixC1-x micro-ring for enhancing the nonlinear optical Kerr switching is demonstrated by carefully considering the effect of size and symmetry of channel waveguide and designing the gap spacing and the inverted tapper. The C-rich SixC1-x based asymmetric channel waveguide provides the tight optical confinement and strong nonlinearity of up to 2.44×10-12 cm2/W for efficient nonlinear optical Kerr switching. Furthermore, the asymmetric channel waveguide prefers the TE mode due to the better modal confinement and presents birefringent property. Such an optimized asymmetric channel waveguide based C-rich SixC1-x micro-ring serves an efficient nonlinear optical switching for the future on-chip optoelectronic devices. Afterwards, a C-C bond enriched SiC based add-drop micro-ring is utilized to demonstrate the multi-functional photonic circuits. Firstly, the asymmetric add-drop micro-ring with a polarization-selective property enables to implement the 12-Gbit/s TE/TM polarized data decoding. Furthermore, the transmission spectrum in the bus port is basically complementary to that in the ring port for the add-drop micro-ring, which demonstrates the dual-port Kerr switch for both data conversion and inversion at 10 Gbit/s. Owing to the different polarization-dependent transmission spectra on TE and TM modes, the add-drop micro-ring with asymmetric waveguide structure promises the all-optical AND gate application. Eventually, the TE/TM-mode spectral-separated C-rich SiC ring waveguide is employed to demonstrate polarization-dependent amplitude/polarization shift keying (ASK and PolSK) “AND” logic gate. Such a polarization dependent spectral notch can be utilized to perform the polarization-dependent all-optical AND gating. Only when the pump is set at ON state and the polarization of the pump is parallel to the corresponding notch of the ring waveguide throughput, the output of probe can be cross-wavelength modulated to provide the “AND” gating between the ASK and PolSK streams exactly. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:34:32Z (GMT). No. of bitstreams: 1 ntu-105-R02941061-1.pdf: 3771212 bytes, checksum: 3c6f4f85757ec14576606813c7863005 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
中文摘要 1 ABSTRACT 2 CONTENTS 4 LIST OF FIGURES 7 Chapter 1 Introduction 14 1.1 Historical review of Si Photonics 14 1.2 Motivation 17 1.3 Organization of thesis 18 Chapter 2 Optimized C-rich SixC1-x micro-ring with different waveguide cross-section 20 2.1 Introduction 20 2.2 Experimental Setup 20 2.2.1 Fabrication of C-rich SixC1-x based micro-ring 20 2.2.2 Pump-probe system for nonlinear Kerr switching 21 2.3 Results and discussions 22 2.3.1 Effect of size and symmetry on performance optimization of C-rich SixC1-x micro-ring waveguide 22 2.3.2 Birefringent property of the asymmetric micro-ring 26 2.3.3 Trade-off between quality factor and modal extinction ratio of the micro-ring with different gap spacings 29 2.3.4 Modulation depth of the micro-ring with different gap spacings 33 2.4 Summary 37 Chapter 3 C-C bond enriched SiC add-drop micro-ring based TE/TM polarized data decoder, simultaneously dull-port Kerr switching and all-optical logic gate 39 3.1 Introduction 39 3.2 Experimental setup 40 3.2.1 Fabrication of SiC based add-drop micro-ring. 40 3.2.2 Analytic setup of TE/TM polarized decoder, all-optical Kerr switching and all-optical logic in the C-C bond enriched SiC based add-drop micro-ring 40 3.3 Result and Discussion 43 3.3.1 Characteristic analysis and structural design of C-C bond enriched SiC based add-drop micro-ring 43 3.3.2 TE- and TM-mode related transmission spectra of the add-drop micro-ring 45 3.3.3 Add-drop micro-ring based TE/TM polarized decoder 48 3.3.4 Cross-wavelength 10-Gbit/s Data Conversion and Inversion with Kerr Effect 53 3.3.5 All-optical logic gate application 58 3.4 Summary 61 Chapter 4 Amplitude/Polarization shift Keying Based AND Logic Gate in Polarization Dependent C-rich SiC Ring Waveguide 63 4.1 Introduction 63 4.2 Experimental setup 64 4.2.1 Fabrication of C-rich SiC based ring waveguide 64 4.2.2 Dull-format modulated pump and CW probe system 64 4.3 Result and Discussion 66 4.3.1 Design and analysis of C-rich SiC film and ring waveguide 66 4.3.2 Polarization dependent transmission spectra of C-rich SiC waveguide 69 4.3.3 All-optical “AND” logic gate set for decision between ASK and PolSK data streams 72 4.4 Summary 76 Chapter 5 Conclusion 78 REFERENCE 81 | |
| dc.language.iso | en | |
| dc.subject | 碳化矽 | zh_TW |
| dc.subject | 全光邏輯閘 | zh_TW |
| dc.subject | 克爾開關 | zh_TW |
| dc.subject | silicon carbide | en |
| dc.subject | Kerr switching | en |
| dc.subject | all-logic gate | en |
| dc.title | 以富碳碳化矽微共腔進行相位偏移鍵解調、克爾開關與全光邏輯閘 | zh_TW |
| dc.title | C-rich SixC1-x micro-ring based optical PolSK decoder, Kerr switch and all-optical logic gates | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 施天從,鄭木海,黃建璋 | |
| dc.subject.keyword | 克爾開關,全光邏輯閘,碳化矽, | zh_TW |
| dc.subject.keyword | Kerr switching,all-logic gate,silicon carbide, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU201603466 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-08-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-R02941061-1.pdf 未授權公開取用 | 3.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
