請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76601
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉建豪(Chien-Hao Liu) | |
dc.contributor.author | Chia-Yu Chang | en |
dc.contributor.author | 張嘉祐 | zh_TW |
dc.date.accessioned | 2021-07-10T21:33:40Z | - |
dc.date.available | 2021-07-10T21:33:40Z | - |
dc.date.copyright | 2020-10-23 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-09-29 | |
dc.identifier.citation | 1. Meek, K.M. and C. Knupp, Corneal structure and transparency. Progress in Retinal and Eye Research, 2015. 49: p. 1-16. 2. Lagali, N., J. Germundsson, and P. Fagerholm, The Role of Bowman's Layer in Corneal Regeneration after Phototherapeutic Keratectomy: A Prospective Study Using In Vivo Confocal Microscopy. Investigative Ophthalmology Visual Science, 2009. 50(9): p. 4192-4198. 3. Fini, M.E., Keratocyte and fibroblast phenotypes in the repairing cornea. Progress in Retinal and Eye Research, 1999. 18(4): p. 529-551. 4. Espana, E.M., et al., Human keratocytes cultured on amniotic membrane stroma preserve morphology and express keratocan. Investigative Ophthalmology Visual Science, 2003. 44(12): p. 5136-5141. 5. Wilson, S.A. and A. Last, Management of corneal abrasions. American Family Physician, 2004. 70(1): p. 123-128. 6. Pegoraro, A.F., P. Janmey, and D.A. Weitz, Mechanical Properties of the Cytoskeleton and Cells. Cold Spring Harbor Perspectives in Biology, 2017. 9(11). 7. Kadir, S., et al., Microtubule remodelling is required for the front-rear polarity switch during contact inhibition of locomotion. Journal of Cell Science, 2011. 124(15): p. 2642-2653. 8. Watanabe, T., J. Noritake, and K. Kaibuchi, Regulation of microtubules in cell migration. Trends in Cell Biology, 2005. 15(2): p. 76-83. 9. Etienne-Manneville, S., Actin and microtubules in cell motility: Which one is in control? Traffic, 2004. 5(7): p. 470-477. 10. Fletcher, D.A. and D. Mullins, Cell mechanics and the cytoskeleton. Nature, 2010. 463(7280): p. 485-492. 11. Pellegrin, S. and H. Mellor, Actin stress fibres. Journal of Cell Science, 2007. 120(20): p. 3491-3499. 12. Tojkander, S., G. Gateva, and P. Lappalainen, Actin stress fibers - assembly, dynamics and biological roles. Journal of Cell Science, 2012. 125(8): p. 1855-1864. 13. Xu, G.K., et al., A Tensegrity Model of Cell Reorientation on Cyclically Stretched Substrates. Biophysical Journal, 2016. 111(7): p. 1478-1486. 14. Kozlov, M.M. and A. Mogilner, Model of polarization and bistability of cell fragments. Biophysical Journal, 2007. 93(11): p. 3811-3819. 15. Craig, E.M., et al., Membrane Tension, Myosin Force, and Actin Turnover Maintain Actin Treadmill in the Nerve Growth Cone. Biophysical Journal, 2012. 102(7): p. 1503-1513. 16. Lieber, A.D., et al., Membrane Tension in Rapidly Moving Cells Is Determined by Cytoskeletal Forces. Current Biology, 2013. 23(15): p. 1409-1417. 17. Batchelder, E.L., et al., Membrane tension regulates motility by controlling lamellipodium organization. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(28): p. 11429-11434. 18. Groves, J.T., Membrane Mechanics in Living Cells. Developmental Cell, 2019. 48(1): p. 15-16. 19. Prahl, L.S. and D.J. Odde, Modeling Cell Migration Mechanics. Biomechanics in Oncology, 2018. 1092: p. 159-187. 20. Houk, A.R., et al., Membrane Tension Maintains Cell Polarity by Confining Signals to the Leading Edge during Neutrophil Migration. Cell, 2012. 148(1-2): p. 175-188. 21. Keren, K., et al., Mechanism of shape determination in motile cells. Nature, 2008. 453(7194): p. 475-U1. 22. Abercrombie, M. and J.E.M. Heaysman, Observations on the Social Behaviour of Cells in Tissue Culture .1. Speed of Movement of Chick Heart Fibroblasts in Relation to Their Mutual Contacts. Experimental Cell Research, 1953. 5(1): p. 111-131. 23. Roycroft, A. and R. Mayor, Forcing contact inhibition of locomotion. Trends in Cell Biology, 2015. 25(7): p. 373-375. 24. Mayor, R. and C. Carmona-Fontaine, Keeping in touch with contact inhibition of locomotion. Trends in Cell Biology, 2010. 20(6): p. 319-328. 25. Schnyder, S.K., et al., Collective motion of cells crawling on a substrate: roles of cell shape and contact inhibition. Scientific Reports, 2017. 7. 26. Lim, C.T., E.H. Zhou, and S.T. Quek, Mechanical models for living cells - A review. Journal of Biomechanics, 2006. 39(2): p. 195-216. 27. Vaziri, A. and A. Gopinath, Cell and biomolecular mechanics in silico. Nature Materials, 2008. 7(1): p. 15-23. 28. Stamenovic, D., et al., A microstructural approach to cytoskeletal mechanics based on tensegrity. Journal of Theoretical Biology, 1996. 181(2): p. 125-136. 29. Ingber, D.E., Cellular Tensegrity - Defining New Rules of Biological Design That Govern the Cytoskeleton. Journal of Cell Science, 1993. 104: p. 613-627. 30. Wang, N., J.P. Butler, and D.E. Ingber, Mechanotransduction across the Cell-Surface and through the Cytoskeleton. Science, 1993. 260(5111): p. 1124-1127. 31. Canadas, P., S. Wendling-Mansuy, and D. Isabey, Frequency response of a viscoelastic tensegrity model: Structural rearrangement contribution to cell dynamics. Journal of Biomechanical Engineering-Transactions of the Asme, 2006. 128(4): p. 487-495. 32. Coughlin, M.F. and D. Stamenovic, A prestressed cable network model of the adherent cell cytoskeleton. Biophysical Journal, 2003. 84(2): p. 1328-1336. 33. Satcher, R.L. and C.F. Dewey, Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophysical Journal, 1996. 71(1): p. 109-118. 34. Nava, M.M., M.T. Raimondi, and R. Pietrabissa, Bio-chemo-mechanical models for nuclear deformation in adherent eukaryotic cells. Biomechanics and Modeling in Mechanobiology, 2014. 13(5): p. 929-943. 35. Stamenovic, D. and D.E. Ingber, Tensegrity-guided self assembly: from molecules to living cells. Soft Matter, 2009. 5(6): p. 1137-1145. 36. Coughlin, M.F. and D. Stamenovic, A tensegrity structure with buckling compression elements: Application to cell mechanics. Journal of Applied Mechanics-Transactions of the Asme, 1997. 64(3): p. 480-486. 37. Xu, G.K., X.Q. Feng, and H.J. Gao, Orientations of Cells on Compliant Substrates under Biaxial Stretches: A Theoretical Study. Biophysical Journal, 2018. 114(3): p. 701-710. 38. Chan, C.E. and D.J. Odde, Traction Dynamics of Filopodia on Compliant Substrates. Science, 2008. 322(5908): p. 1687-1691. 39. Rodriguez, M.L., P.J. McGarry, and N.J. Sniadecki, Review on Cell Mechanics: Experimental and Modeling Approaches. Applied Mechanics Reviews, 2013. 65(6). 40. Gardel, M.L., et al., Mechanical Response of Cytoskeletal Networks. Biophysical Tools for Biologists, Vol 2: In Vivo Techniques, 2008. 89: p. 487-+. 41. Sultan, C., D. Stamenovic, and D.E. Ingber, A computational tensegrity model predicts dynamic rheological behaviors in living cells. Annals of Biomedical Engineering, 2004. 32(4): p. 520-530. 42. Ingber, D.E., Tensegrity I. Cell structure and hierarchical systems biology. Journal of Cell Science, 2003. 116(7): p. 1157-1173. 43. Ingber, D.E., Tensegrity II. How structural networks influence cellular information processing networks. Journal of Cell Science, 2003. 116(8): p. 1397-1408. 44. Bangasser, B.L., et al., Shifting the optimal stiffness for cell migration. Nature Communications, 2017. 8. 45. Dong, C., N. Zahir, and K. Konstantopoulos, Biomechanics in Oncology Preface. Biomechanics in Oncology, 2018. 1092: p. V-Vi. 46. Mogilner, A. and G. Oster, Cell motility driven by actin polymerization. Biophysical Journal, 1996. 71(6): p. 3030-3045. 47. Schweitzer, Y., et al., Theoretical Analysis of Membrane Tension in Moving Cells. Biophysical Journal, 2014. 106(1): p. 84-92. 48. Gillespie, D.T., Exact Stochastic Simulation of Coupled Chemical-Reactions. Journal of Physical Chemistry, 1977. 81(25): p. 2340-2361. 49. Bell, G.I., Theoretical-Models for the Specific Adhesion of Cells to Cells or to Surfaces. Advances in Applied Probability, 1980. 12(3): p. 566-567. 50. Kaisai, M., Asakura, S. Oosawa, F. , The cooperative nature of G-F transformation of actin. Acta, 1962. 57(Biophys): p. 22-31. 51. Tobacman, L.S. and E.D. Korn, The Kinetics of Actin Nucleation and Polymerization. Journal of Biological Chemistry, 1983. 258(5): p. 3207-3214. 52. Small, J.V., et al., The lamellipodium: where motility begins. Trends in Cell Biology, 2002. 12(3): p. 112-120. 53. Mattila, P.K. and P. Lappalainen, Filopodia: molecular architecture and cellular functions. Nature Reviews Molecular Cell Biology, 2008. 9(6): p. 446-454. 54. Wang, C.Y. and L.T. Watson, The Elastic Catenary. International Journal of Mechanical Sciences, 1982. 24(6): p. 349-357. 55. Abell, M.L. and J.P. Braselton, Advancing the study of differential equations with technology. Mathematics and Computers in Simulation, 1996. 42(4-6): p. 493-508. 56. Behroozi, F., A fresh look at the catenary. European Journal of Physics, 2014. 35(5). 57. Barry, D.J., et al., Open source software for quantification of cell migration, protrusions, and fluorescence intensities. Journal of Cell Biology, 2015. 209(1): p. 163-180. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76601 | - |
dc.description.abstract | 人工角膜被用於填補角膜捐贈的短缺,但人工角膜以聚合物作為材料仍有疑慮,故藉由組織工程,以自體細胞作為材料能解決移植排斥問題,是人工角膜移植的最佳解。然而,欲解決細胞於人工材料培養的不確定性,需先深入了解角膜細胞的基本力學行為。因此,我們研究角膜細胞,並設計細胞遷移模型。現今的細胞模型理論多著重於探討基底剛度對單顆細胞行為的影響,模型僅模擬單個細胞的參數及運動機制。針對解決多顆細胞於環境中生長及排列的情形,我們改良Odde學者之細胞遷移理論模型,加入Gillespie隨機演算法和Keren學者提出的膜力理論,建構新細胞模型以分析細胞外基質和機械力對細胞刺激與影響。模擬結果指出不只基底剛度,來自細胞外界的力、肌動蛋白單體等參數都對細胞爬行動態有重要影響。此外,我們為比對人類角膜細胞和上述細胞模型之異同,設計兩種實驗裝置,以提供合適細胞生長的環境。我們藉由Bradley開發的細胞影像分析軟體ADAPT量化觀測的遷移與形態改變過程。我們紀錄細胞遷移的軌跡模式、傷口癒合、細胞接觸抑制運動、細胞分裂、細胞貼附、以及絲狀偽足的生長等等的細胞行為。我們在實驗中發現細胞培養的過程,仍有許多影響細胞遷移的重要因素,譬如:細胞增生、細胞貼附。這些因素會影響模型中力學以及聚合速度的計算。本論文之研究貢獻在於提出一個模擬可模擬多個細胞的的遷移模型,以及分析其交互作用,從而將能夠以此細胞模型進一步研究合適的角膜細胞培養環境。未來,擬收集更多實驗數據與分析結果,以優化提出的模型參數。 | zh_TW |
dc.description.abstract | Artificial corneas have been widely adopted to alleviate the lack of donor tissues, and using tissue engineering with autologous cells can overcome issue rejection in clinics. To solve the uncertainty of cell culture on the development artificial materials, we developed and designed a cell migration model after we investigated recently cell model developments. Most theories developed for cell model focused on the influence of substrate stiffness related to cell behaviors, and thus they simulated a single cell at a time and studied its details. Our model was modified from Odde’s cell migration model and applied Gillespie’s stochastic algorithm and Keren’s membrane forces theory, so cellular interactions and environmental cues could be considered and analyzed in many cells. Simulation results point out that substrate stiffness, cell mechanics and actin monomers all show important influences on the migration process. Two experiment setups were designed to conduct experiments on corneal cells and compare the results with simulation. ADAPT, a cell analysis software developed by Bradley, was employed to quantify the migration process and obtain morphodynamics of the experiment. The outcomes demonstrated cell behaviors of cell migration patterns, wound healing, cell inhibition locomotion, cell division, cell attachment, and the growth of filopodia. We found that cell behaviors such as cell division and attachment also affect migration, so it might be essential to add them to modify our model. The main achievement of this thesis is that we propose a novel cell migration model capable of simulating multiple cells and their interactions, and hence enable further investigation of suitable corneal cells culturing environments. In the future, more experimental data and analysis results could be collected to fine-tune model parameters. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:33:40Z (GMT). No. of bitstreams: 1 U0001-1708202016441200.pdf: 7401431 bytes, checksum: 05786270db056bc8fd3ed331c84a88a9 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝…………………………………………………………………….... i 中文摘要…………………………………………………………….... ii ABSTRACT………………………………………………………….... iii CONTENTS………………………………………………………….... iv LIST OF FIGURES vi LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Corneal physiology 2 1.3 Cell mechanical Structure 3 1.4 Cell migration motion 8 1.5 Cell biomechanical model 12 1.5.1 Computational approaches in cell mechanics 12 1.5.2 Tensegrity model 14 1.5.3 Keren’s actin network model 16 1.5.4 Odde’s Cell Migration Simulation (CMS) model 17 Chapter 2 Material and Method for Cell Migration Simulation 19 2.1 Cell Structure and Motion 19 2.2 The Forces imposed on this model 29 2.3 Determining factors of leading edge shape 38 2.3.1 Cellular Roles of filopodia and lamellipodia 38 2.3.2 Membrane force controls shape around the filopodia: catenary simulation 39 2.4 Simulation Process 41 Chapter 3 Simulation Results 53 3.1 Cell migration trajectories 54 3.2 Comparison with Odde’s Model under varying substrate stiffness 61 3.3 Forces distribution along the membrane 65 3.4 Correlations among important variables 68 Chapter 4 Experimental Results and Discussion 71 4.1 Cell preparation 71 4.2 Experiment setup 71 4.2.1 Experiment conducted in incubator 72 4.2.2 Experiment conducted on microscope 73 4.3 Image preprocessing 75 4.4 Cell tracking using ADAPT 77 4.5 Results and comparisons 78 Chapter 5 Conclusion Future works 89 5.1 Conclusion 89 5.2 Future works 90 REFERENCE | |
dc.language.iso | en | |
dc.title | 細胞遷移模型與適性參數設計 | zh_TW |
dc.title | Cell Migration Model and Design of Reliable Parameters | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 施博仁(Po-Jen Shih),何威廷(Wei-Ting Ho),許聿翔(Yu-Hsiang Hsu) | |
dc.subject.keyword | 細胞遷移模型,細胞力學,細胞動態模擬,人工眼角膜, | zh_TW |
dc.subject.keyword | Cell migration model,cell mechanics,cell motion simulator,artificial corneas, | en |
dc.relation.page | 96 | |
dc.identifier.doi | 10.6342/NTU202003800 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-09-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1708202016441200.pdf 目前未授權公開取用 | 7.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。