請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76574
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭石通(Shih-Tong Jeng) | |
dc.contributor.author | Yu-Fan Wu | en |
dc.contributor.author | 吳宇凡 | zh_TW |
dc.date.accessioned | 2021-07-10T21:33:11Z | - |
dc.date.available | 2021-07-10T21:33:11Z | - |
dc.date.copyright | 2017-08-29 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-17 | |
dc.identifier.citation | 魏皓宇 (2015). 利用生物資訊軟體在甘藷中探索傷害逆境相關之嶄新miRNAs。國立台灣大學植物科學研究所碩士論文。
朱敏瑤 (2014). Identification and functional characterization of wounding-responsive miRNAs in sweet potato (Ipomoea batatas cv. Tainung57)。國立台灣大學植物科學研究所碩士論文。 Abraham, N.G., and Kappas, A. (2008). Pharmacological and clinical aspects of heme oxygenase. Pharmacol. Rev. 60: 79-127. Allen, E., Xie, Z., Gustafson, A.M., and Carrington, J.C. (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207-221. Allen, E., Xie, Z., Gustafson, A.M., Sung, G.H., Spatafora, J.W., and Carrington, J.C. (2004). Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat. Genet. 36: 1282-1290. Ando, Y., Maida, Y., Morinaga, A., Burroughs, A.M., Kimura, R., Chiba, J., Suzuki, H., Masutomi, K., and Hayashizaki, Y. (2011). Two-step cleavage of hairpin RNA with 5' overhangs by human DICER. BMC molecular biology 12: 6. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297. Borges, F., and Martienssen, R.A. (2015). The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 16: 727-741. Bose, J., Xie, Y., Shen, W., and Shabala, S. (2013). Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K(+) retention via regulation of the plasma membrane H(+)-ATPase and by altering SOS1 transcript levels in roots. J. Exp. Bot. 64: 471-481. Brauer, E.K., Ahsan, N., Dale, R., Kato, N., Coluccio, A.E., Pineros, M.A., Kochian, L.V., Thelen, J.J., and Popescu, S.C. (2016). The Raf-like Kinase ILK1 and the High Affinity K+ Transporter HAK5 Are Required for Innate Immunity and Abiotic Stress Response. Plant Physiol. 171: 1470-1484. Brodersen, P., Petersen, M., Bjorn Nielsen, H., Zhu, S., Newman, M.A., Shokat, K.M., Rietz, S., Parker, J., and Mundy, J. (2006). Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J. 47: 532-546. Chen, H.M., Chen, L.T., Patel, K., Li, Y.H., Baulcombe, D.C., and Wu, S.H. (2010). 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc. Natl. Acad. Sci. U. S. A. 107: 15269-15274. Chen, J., Fujii, K., Zhang, L., Roberts, T., and Fu, H. (2001). Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc. Natl. Acad. Sci. U. S. A. 98: 7783-7788. Chen, X., Wang, J., Zhu, M., Jia, H., Liu, D., Hao, L., and Guo, X. (2015). A cotton Raf-like MAP3K gene, GhMAP3K40, mediates reduced tolerance to biotic and abiotic stress in Nicotiana benthamiana by negatively regulating growth and development. Plant Sci. 240: 10-24. Chen, Y.C., Lin, H.H., and Jeng, S.T. (2008). Calcium influxes and mitogen-activated protein kinase kinase activation mediate ethylene inducing ipomoelin gene expression in sweet potato. Plant Cell Environ. 31: 62-72. Chen, Y.C., Chang, H.S., Lai, H.M., and Jeng, S.T. (2005). Characterization of the wound-inducible protein ipomoelin from sweet potato. Plant, Cell & Environment 28: 251-259. Chen, Y.C., Tseng, B.W., Huang, Y.L., Liu, Y.C., and Jeng, S.T. (2003). Expression of the ipomoelin gene from sweet potato is regulated by dephosphorylated proteins, calcium ion and ethylene. Plant, Cell & Environment 26: 1373-1383. Colcombet, J., and Hirt, H. (2008). Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem. J. 413: 217-226. Fei, Q., Xia, R., and Meyers, B.C. (2013). Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25: 2400-2415. Felippes, F.F., Schneeberger, K., Dezulian, T., Huson, D.H., and Weigel, D. (2008). Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA 14: 2455-2459. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811. Frye, C.A., Tang, D., and Innes, R.W. (2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. U. S. A. 98: 373-378. Galletti, R., Ferrari, S., and De Lorenzo, G. (2011). Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol. 157: 804-814. Gasciolli, V., Mallory, A.C., Bartel, D.P., and Vaucheret, H. (2005). Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr. Biol. 15: 1494-1500. Gibbons, S.J., and Farrugia, G. (2004). The role of carbon monoxide in the gastrointestinal tract. J. Physiol. 556: 325-336. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., and Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology 29: 644-652. Guo, K., Kong, W.W., and Yang, Z.M. (2009). Carbon monoxide promotes root hair development in tomato. Plant Cell Environ. 32: 1033-1045. Hackenberg, M., Shi, B.J., Gustafson, P., and Langridge, P. (2013). Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC plant biology 13: 214. Hamilton, A.J., and Baulcombe, D.C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950-952. Han, Y., Xuan, W., Yu, T., Fang, W.-B., Lou, T.-L., Gao, Y., Chen, X.-Y., Xiao, X., and Shen, W.-B. (2007). Exogenous Hematin Alleviates Mercury-induced Oxidative Damage in the Roots ofMedicago sativa. Journal of Integrative Plant Biology 49: 1703-1713. Jones-Rhoades, M.W., and Bartel, D.P. (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular cell 14: 787-799. Khraiwesh, B., Zhu, J.K., and Zhu, J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et biophysica acta 1819, 137-148. Kieber, J.J., Rothenberg, M., Roman, G., Feldmann, K.A., and Ecker, J.R. (1993). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72: 427-441. Kim, H.P., Ryter, S.W., and Choi, A.M. (2006). CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 46: 411-449. Kondo, M., Osada, H., Uchida, K., Yanagisawa, K., Masuda, A., Takagi, K., Takahashi, T., and Takahashi, T. (1998). Molecular cloning of human TAK1 and its mutational analysis in human lung cancer. International journal of cancer 75: 559-563. Kong, W.W., Zhang, L.P., Guo, K., Liu, Z.P., and Yang, Z.M. (2010). Carbon monoxide improves adaptation of Arabidopsis to iron deficiency. Plant biotechnology journal 8: 88-99. Kozomara, A., and Griffiths-Jones, S. (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42: D68-73. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome biology 10: R25. Lin, J.S., Lin, H.H., Li, Y.C., King, Y.C., Sung, R.J., Kuo, Y.W., Lin, C.C., Shen, Y.H., and Jeng, S.T. (2014). Carbon monoxide regulates the expression of the wound-inducible gene ipomoelin through antioxidation and MAPK phosphorylation in sweet potato. J. Exp. Bot. 65: 5279-5290. Lorenz, R., Bernhart, S.H., Honer Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., and Hofacker, I.L. (2011). ViennaRNA Package 2.0. Algorithms for molecular biology : AMB 6: 26. Mallory, A., and Vaucheret, H. (2010). Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22: 3879-3889. Manavella, P.A., Koenig, D., and Weigel, D. (2012). Plant secondary siRNA production determined by microRNA-duplex structure. Proc. Natl. Acad. Sci. U. S. A. 109: 2461-2466. Meyers, B.C., Axtell, M.J., Bartel, B., Bartel, D.P., Baulcombe, D., Bowman, J.L., Cao, X., Carrington, J.C., Chen, X., Green, P.J., Griffiths-Jones, S., Jacobsen, S.E., Mallory, A.C., Martienssen, R.A., Poethig, R.S., Qi, Y., Vaucheret, H., Voinnet, O., Watanabe, Y., Weigel, D., and Zhu, J.K. (2008). Criteria for annotation of plant MicroRNAs. Plant Cell 20: 3186-3190. Morin, R.D., Aksay, G., Dolgosheina, E., Ebhardt, H.A., Magrini, V., Mardis, E.R., Sahinalp, S.C., and Unrau, P.J. (2008). Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome. Res. 18: 571-584. Napoli, C., Lemieux, C., and Jorgensen, R. (1990). Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 2: 279-289. Ning, J., Li, X., Hicks, L.M., and Xiong, L. (2010). A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol. 152: 876-890. Pedley, K.F., and Martin, G.B. (2005). Role of mitogen-activated protein kinases in plant immunity. Curr. Opin. Plant Biol. 8: 541-547. Rana, A., Rana, B., Mishra, R., Sondarva, G., Rangasamy, V., Das, S., Viswakarma, N., and Kanthasamy, A. (2013). Mixed Lineage Kinase-c-Jun N-Terminal Kinase Axis: A Potential Therapeutic Target in Cancer. Genes Cancer 4: 334-341. Reddy, U.R., and Pleasure, D. (1994). Cloning of a novel putative protein kinase having a leucine zipper domain from human brain. Biochemical and biophysical research communications 205: 1494-1495. Rey, C., Faustin, B., Mahouche, I., Ruggieri, R., Brulard, C., Ichas, F., Soubeyran, I., Lartigue, L., and De Giorgi, F. (2016). The MAP3K ZAK, a novel modulator of ERK-dependent migration, is upregulated in colorectal cancer. Oncogene 35: 3190-3200. Roberts, G.P., Kerby, R.L., Youn, H., and Conrad, M. (2005). CooA, a paradigm for gas sensing regulatory proteins. J. Inorg. Biochem. 99: 280-292. Rodriguez, M.C., Petersen, M., and Mundy, J. (2010). Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61: 621-649. Rumble, S.M., Lacroute, P., Dalca, A.V., Fiume, M., Sidow, A., and Brudno, M. (2009). SHRiMP: accurate mapping of short color-space reads. PLoS computational biology 5: e1000386. Ryter, S.W., and Otterbein, L.E. (2004). Carbon monoxide in biology and medicine. BioEssays 26: 270-280. Sablok, G., Srivastva, A.K., Suprasanna, P., Baev, V., and Ralph, P.J. (2015). isomiRs: Increasing Evidences of isomiRs Complexity in Plant Stress Functional Biology. Front Plant Sci. 6: 949. Saruhashi, M., Kumar Ghosh, T., Arai, K., Ishizaki, Y., Hagiwara, K., Komatsu, K., Shiwa, Y., Izumikawa, K., Yoshikawa, H., Umezawa, T., Sakata, Y., and Takezawa, D. (2015). Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proc. Natl. Acad. Sci. U. S. A. 112: E6388-6396. Sasayama, D., Matsuoka, D., Oka, M., Shitamichi, N., Furuya, T., Azuma, T., Itoh, K., and Nanmori, T. (2011). MAP3Kδ4, an Arabidopsis Raf-like MAP3K, regulates plant growth and shoot branching. Plant Biotechnology 28: 463-470. Schallner, N., Fuchs, M., Schwer, C.I., Loop, T., Buerkle, H., Lagreze, W.A., van Oterendorp, C., Biermann, J., and Goebel, U. (2012). Postconditioning with inhaled carbon monoxide counteracts apoptosis and neuroinflammation in the ischemic rat retina. PLoS One 7: e46479. Schauer, S.E., Jacobsen, S.E., Meinke, D.W., and Ray, A. (2002). DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci. 7: 487-491. Song, X.G., She, X.P., and Zhang, B. (2008). Carbon monoxide-induced stomatal closure in Vicia faba is dependent on nitric oxide synthesis. Physiol Plant 132, 514-525. Sunkar, R., and Zhu, J.-K. (2007). Micro RNAs and Short-interfering RNAs in Plants. Journal of Integrative Plant Biology 49: 817-826. Tippmann, H.F. (2004). Analysis for free: comparing programs for sequencing analysis. Brief Bioinform. 5: 82-87 Vaucheret, H. (2008). Plant ARGONAUTES. Trends Plant Sci. 13: 350-358. Verma, A., Hirsch, D., Glatt, C., Ronnett, G., and Snyder, S. (1993). Carbon monoxide: a putative neural messenger. Science 259: 381-384. Wyman, S.K., Knouf, E.C., Parkin, R.K., Fritz, B.R., Lin, D.W., Dennis, L.M., Krouse, M.A., Webster, P.J., and Tewari, M. (2011). Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res. 21: 1450-1461. Xie, M., Zhang, S., and Yu, B. (2015). microRNA biogenesis, degradation and activity in plants. Cellular and Molecular Life Sciences 72: 87-99. Xie, Y., Ling, T., Han, Y., Liu, K., Zheng, Q., Huang, L., Yuan, X., He, Z., Hu, B., Fang, L., Shen, Z., Yang, Q., and Shen, W. (2008). Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defence in wheat seedling roots. Plant Cell Environ. 31: 1864-1881. Xie, Z., Allen, E., Fahlgren, N., Calamar, A., Givan, S.A., and Carrington, J.C. (2005). Expression of Arabidopsis MIRNA genes. Plant Physiol. 138: 2145-2154. Xuan, W., Huang, L., Li, M., Huang, B., Xu, S., Liu, H., Gao, Y., and Shen, W. (2007). Induction of growth elongation in wheat root segments by heme molecules: a regulatory role of carbon monoxide in plants? Plant Growth Regulation 52: 41-51. Xuan, W., Zhu, F.Y., Xu, S., Huang, B.K., Ling, T.F., Qi, J.Y., Ye, M.B., and Shen, W.B. (2008). The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol. 148: 881-893. Yan, J., Gu, Y., Jia, X.,Kang, W., Pan, S., Tang, X., Chen, X., and Tang, G. (2012). Effective Small RNA Destruction by the Expression of a Short Tandem Target Mimic in Arabidopsis. Plant Cell 24: 415-427. Yang, X., and Li, L. (2011). miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27: 2614-2615. Yang, Z., Ebright, Y.W., Yu, B., and Chen, X. (2006). HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3' terminal nucleotide. Nucleic Acids Res. 34: 667-675. Ye, J., McGinnis, S., and Madden, T.L. (2006). BLAST: improvements for better sequence analysis. Nucleic Acids Res. 34: W6-9. Zhang, B., Pan, X., Cannon, C.H., Cobb, G.P., and Anderson, T.A. (2006). Conservation and divergence of plant microRNA genes. Plant J. 46: 243-259. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76574 | - |
dc.description.abstract | 一氧化碳是一種二次訊息傳遞氣體分子,在生物體的生長發育以及免疫反應中皆扮演著重要的角色。microRNA (miRNA)是一群21至24個核苷酸長、不轉譯出蛋白質的小分子核醣核酸,藉由降解mRNA或抑制mRNA轉譯的方式,來調控目標基因的表現量。然而,很少研究指出miRNA會受到一氧化碳的影響。本篇研究藉由次世代定序技術建構一氧化碳處理以及對照組的甘藷葉small RNA定序(small RNA sequencing)資料庫,和未經任何處理的甘藷葉轉錄體資料庫(transcriptome),交互比對分析資料庫後預測會受一氧化碳影響的一群miRNA candidates,以及這些miRNA candidates所調控的目標基因,並進行後續實驗的驗證。結果顯示,一條長度為22個核苷酸、暫名為tag202的新穎miRNA會受一氧化碳所誘導。在菸草中同時短暫表現precursor form tag202 (pre-tag202)與其預測目標基因的序列互補位置(Binding Site-GFP,BS-GFP),證實BS-GFP會被tag202所剪切。而在大量表現與降低表現tag202的甘藷轉殖株中,確認目標基因的mRNA累積量確實與tag202的表現量呈相反趨勢。除此之外,經由快速擴增cDNA末端(RACE)調取目標基因全長,推測此目標基因應為MAPKKK類似蛋白。因此,在甘藷中會受到一氧化碳誘導的新穎miRNA tag202,很可能在MAPK訊息傳遞路徑中,扮演著重要的角色。 | zh_TW |
dc.description.abstract | Carbon monoxide, a gaseous secondary messenger, plays an important role in growth and immunity responses. MicroRNAs (miRNA), a group of 21-24 nucleotides small noncoding RNA, direct messenger RNA cleavage or inhibit translation to regulate gene expression. However, few studies demonstrated miRNAs are affected by CO. In this study, next generation sequencing (NGS) was used to generate two small RNA sequence databases of sweet potato (Ipomoea batatas cv. Tainung 57) leaves with or without CO treatment, and one transcriptome of sweet potato leaf without any treatment. Those databases were comparatively analyzed to predict the small RNAs affected by CO, and the target genes regulated by small RNAs. Then, their interactions and physiological functions were further validated. Results showed that a CO-induced 22-nucleotide-long novel miRNA temporarily named tag202 was identified. The interaction between tag202 and potential target gene binding site fused GFP (BS-GFP) was confirmed by agro-infiltration. Sweet potatoes of tag202 overexpression line and knock-down line were created, and the expressions of predicted target gene showed the opposite trend of those of tag202’s in these transgenic plants. Moreover, the target gene was found that it may encode a MAPKKK-like protein by rapid amplification cDNA ends (RACE). Conclusively, tag202 affected by CO may function as a switch to regulate mitogen activated protein kinase (MAPK) pathway in plants. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:33:11Z (GMT). No. of bitstreams: 1 ntu-106-R03b42012-1.pdf: 2295890 bytes, checksum: 0d7f8818c97c39fef717f25ed7c023fb (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 中文摘要 III Abstract IV 第一章 前言 1 一、 一氧化碳做為二次訊息傳遞物質 1 二、 Mitogen activated protein kinase (MAPK)訊息傳遞路徑 1 三、 一氧化碳參與在甘藷的傷害防禦反應 2 四、 植物small RNA引起基因靜默 3 五、 植物中microRNA生合成路徑 3 六、 植物中miRNA的目標基因調節機制 4 七、 研究目的與方向 5 第二章 材料與方法 6 一、 植物材料 6 1. 甘藷 6 2. 菸草 6 二、 實驗處理方式 7 1. 一氧化碳處理 7 2. 一氧化碳與傷害共同處理 8 3. 藥劑處理 8 三、 RNA反轉錄DNA流程 9 1. Total RNA萃取 (Total RNA extraction) 9 2. DNase處理 (DNase treatment) 9 3. RNA膠體電泳 (RNA gel electrophoresis) 10 4. 反轉錄反應 (Reverse transcription,RT) 10 四、 表現量測定與釣取基因全長 13 1. 聚合酶連鎖反應 (Polymerase chain reaction,PCR) 13 2. 即時定量PCR (Real-Time RCR) 13 3. 快速擴增cDNA末端 (Rapid amplification cDNA ends,RACE) 13 4. DNA膠體電泳 (DNA gel electrophoresis) 14 五、 質體構築 15 1. 由膠體回收DNA片段 (Gel elution) 15 2. DNA黏合反應 (DNA ligation) 15 3. 大腸桿菌轉型作用與轉型菌株挑選 15 4. 質體DNA小量抽取 15 5. DNA定序 16 6. 限制酶酵素剪切作用與質體構築 16 六、 菸草基因短暫表達與甘藷轉殖 17 1. 農桿菌勝任細胞製備 17 2. 農桿菌轉型作用與轉型菌株挑選 17 3. 菸草基因短暫表達 (Transient expression assay by agro-infiltration) 18 4. 甘藷轉殖 (Agrobacterium-mediated plant transformation) 20 七、 次世代定序與定序資料分析 21 1. Small RNA深度定序 21 2. 次世代定序資料分析 21 第三章 結果 25 一、 Small RNA libraries與transcriptome資料整理 25 二、 以miRNA生合成特徵進行miRNA candidates預測 25 三、 一氧化碳相關之putative miRNA的保守性分析與歸類分納 28 四、 precursor form tag202可產生novel miRNA tag202 29 五、 novel miRNA — tag202的表現量測定 29 六、 tag202的目標基因預測分析 30 七、 tag202的目標基因驗證 31 第四章 討論 34 找出甘藷中與一氧化碳相關的miRNA candidates 34 新穎miRNA — tag202可能由年輕MIR基因所產生 36 tag202調控MAPKKK-LIKE基因表現的機制 37 隸屬STKc subfamily之MAPKKK蛋白質的功能 38 推測tag202與MAPKKK-LIKE蛋白質在傷害逆境下所扮演的角色 39 結論 41 第五章 參考文獻 81 | |
dc.language.iso | zh-TW | |
dc.title | 甘藷中受一氧化碳調控之嶄新miRNA-tag202調控
MAPKKK-like protein | zh_TW |
dc.title | Carbon Monoxide-Affected Novel MicroRNA tag202
Regulates MAPKKK-like protein in Sweet Potato | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林讚標(Tsan-Piao Lin),林詩舜(Shih-Shun Lin),邱子珍(Tzyy-Jen, Chiou),黃浩仁(Hao-Jen, Huang) | |
dc.subject.keyword | 一氧化碳,新穎 miRNA,tag202,MAPKKK 類似蛋白,MAPK 訊息傳遞路徑, | zh_TW |
dc.subject.keyword | carbon monoxide,novel miRNA,tag202,MAPKKK-like protein,MAPK cascade, | en |
dc.relation.page | 89 | |
dc.identifier.doi | 10.6342/NTU201701546 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-07-17 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-R03b42012-1.pdf 目前未授權公開取用 | 2.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。