Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76568
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周俊廷(Chun-Ting Chou)
dc.contributor.authorYen-Tse Hsiehen
dc.contributor.author謝硯澤zh_TW
dc.date.accessioned2021-07-10T21:33:04Z-
dc.date.available2021-07-10T21:33:04Z-
dc.date.copyright2020-12-08
dc.date.issued2020
dc.date.submitted2020-10-21
dc.identifier.citation[1] Kuutti, Sampo, et al. 'A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications.' IEEE Internet of Things Journal 5.2 (2018): 829-846.
[2] Lategahn, Henning, Andreas Geiger, and Bernd Kitt. 'Visual SLAM for autonomous ground vehicles.' 2011 IEEE International Conference on Robotics and Automation. IEEE, 2011.
[3] Mei, Christopher, et al. 'RSLAM: A system for large-scale mapping in constant-time using stereo.' International journal of computer vision 94.2 (2011): 198-214.
[4] Harris, Christopher G., and Mike Stephens. 'A combined corner and edge detector.' Alvey vision conference. Vol. 15. No. 50. 1988.
[5] Nistér, David, and Henrik Stewénius. 'A minimal solution to the generalised 3-point pose problem.' Journal of Mathematical Imaging and Vision 27.1 (2007): 67-79.
[6] Newson, Paul, and John Krumm. 'Hidden Markov map matching through noise and sparseness.' Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems. 2009.
[7] Lou, Yin, et al. 'Map-matching for low-sampling-rate GPS trajectories. ' Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems. 2009.
[8] Yang, Can, and Gyozo Gidofalvi. 'Fast map matching, an algorithm integrating hidden Markov model with precomputation.' International Journal of Geographical Information Science 32.3 (2018): 547-570.
[9] Liu, Minshi, et al. 'Map Matching for Urban High-Sampling-Frequency GPS Trajectories.' ISPRS International Journal of Geo-Information 9.1 (2020): 31.
[10] Jeong, Jinyong, Younggun Cho, and Ayoung Kim. 'Road-SLAM: Road marking based SLAM with lane-level accuracy.' 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017.
[11] Cai, Hao, et al. 'Integration of GPS, monocular vision, and high definition (HD) map for accurate vehicle localization.' Sensors18.10 (2018): 3270.
[12] Bauer, Sven, Yasamin Alkhorshid, and Gerd Wanielik. 'Using high-definition maps for precise urban vehicle localization.' 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2016.
[13] Hata, Alberto Y., and Denis F. Wolf. 'Feature detection for vehicle localization in urban environments using a multilayer LIDAR.' IEEE Transactions on Intelligent Transportation Systems17.2 (2015): 420-429.
[14] Ghallabi, Farouk, et al. 'LIDAR-Based road signs detection For Vehicle Localization in an HD Map.' 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019.
[15] Hsu, Chih-Ming, and Chung-Wei Shiu. '3D LiDAR-Based Precision Vehicle Localization with Movable Region Constraints.' Sensors 19.4 (2019): 942.
[16] Haklay, Mordechai, and Patrick Weber. 'Openstreetmap: User-generated street maps.' IEEE Pervasive Computing 7.4 (2008): 12-18.
[17] Zhou, Xingyi, Dequan Wang, and Philipp Krähenbühl. 'Objects as points.' arXiv preprint arXiv:1904.07850 (2019).
[18] Yu, Fisher, et al. 'Deep layer aggregation.' Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
[19] Howard, Andrew G., et al. 'Mobilenets: Efficient convolutional neural networks for mobile vision applications.' arXiv preprint arXiv:1704.04861 (2017).
[20] Liu, Wei, et al. 'Ssd: Single shot multibox detector.' European conference on computer vision. Springer, Cham, 2016.
[21] Haralick, Robert M., Stanley R. Sternberg, and Xinhua Zhuang. 'Image analysis using mathematical morphology.' IEEE transactions on pattern analysis and machine intelligence 4 (1987): 532-550.
[22] Gather, Ursula, and Verena Schultze. 'Robust estimation of scale of an exponential distribution.' Statistica Neerlandica 53.3 (1999): 327-341.
[23] VanDiggelen, F., GNSS Accuracy: Lies, Damn Lies, and Statistics, in GPS World. 2007. p. 26-32.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76568-
dc.description.abstract車輛定位普遍應用在各式各樣的領域中,例如:行車導航、共享機車服務、街景圖資的收集或是自動駕駛,這些應用中,精確車輛定位都是不可或缺的技術。在目前商用解決方案中,全球導航衛星系統(global navigation satellite system, GNSS)是最為廣泛使用的技術,然而,衛星訊號容易受到環境的影響,可能會因衛星訊號被遮蔽或是多重路徑干擾近而影響定位的準確度,我們實驗發現,若僅採用全球定位系統(global positioning system, GPS),在都市地區誤差可能高達50公尺左右。為了彌補定位不準的問題,近年來基於融合各種感測器(如相機、雷達、光達)的技術被廣泛研究。這些方法透過偵測自身週遭的環境及特徵物,並結合已知的地圖資訊以修正GPS誤差。
本文提出一個基於視覺的定位方法,此方法使用單眼相機(monocular camera)及深度神經網路(deep neural network, DNN),其中DNN藉由基於AI的場景理解(context understanding),而非透過檢測和組合各種特徵物來辨識路口(如道路標記及商家招牌這類的特徵,需要透過移動測繪系統(mobile mapping system, MMS)來搜集其地理座標,而MMS成本高且耗時)。藉由降低對單一特徵的依賴,來減輕檢測錯誤造成的潛在問題(例如因為沒有識別到紅綠燈導致最後預測結果為沒有出現路口),此方法也可有效地避免因行車視角不同、道路標記模糊不清或是商家招牌被遮擋造成辨識不到等問題。透過本文所提出的演算法可以低成本且自動化的方法找到地圖上每個路口的地理座標,實驗結果顯示,在各種駕駛環境下,與原始行車接收到的GPS座標相比,我們方法的平均誤差降低了65%,與使用Snap-to-Road相比則降低了48%,所提出的解決方案可以實現小於5米的誤差。
zh_TW
dc.description.abstractVehicle localization is commonly used in a variety of fields, such as automotive navigation, scooter-sharing service, collection of street view images, or autonomous driving. To realize these applications, accurate vehicle positioning is an indispensable technology. Among the current commercial solutions, global navigation satellite system (GNSS) is most widely used. However, satellite signals are easily affected by the environment, and the accuracy may be affected due to the obscuration of satellite signals or multipath interference. Our experiments indicated that if only global positioning system (GPS) is used, the error may be as high as 50 meters in urban areas. To improve the inaccurate GPS measurements, sensor fusion-based methods (such as cameras, radars, and LIDAR) have been extensively studied in recent years. These solutions reduce GPS errors by detecting the surrounding features and comparing them with the known map information.
In this thesis, we propose a visual-based positioning approach based on a monocular camera and deep neural networks (DNN). When searching and combining various features, such as store signboards and road markers to identify an intersection, geo-coordinates of these features need to be collected through the mobile mapping system (MMS), which is costly and time-consuming. Our DNN uses a context understanding approach to detect intersections. Our approach does not rely on individual features, thus mitigating the potential propagation of a feature-level detection error. For example, instead of using the existence of traffic lights to detect the intersection, we view the entire intersection as an object and detect it directly. In addition, our method can effectively avoid miss detection problems caused by different driving conditions, unclear road markers, or obstruction of store signboards. The method in this paper is evaluated in various driving scenarios. Experimental results show that the average geo-coordinate errors of our proposed method is reduced by 65%, compared to the usage of only GPS, and reduced by 48%, compared to Snap-to-Road. Moreover, the geo-coordinate errors of the proposed low-cost solution can be reduced to less than five meters.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:33:04Z (GMT). No. of bitstreams: 1
U0001-2708202011035000.pdf: 6051664 bytes, checksum: 05f6596c0f3e554fbe597482b73f1138 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Related Work 1
1.2.1 Non-map-based Method: Visual Odometry 2
1.2.2 Non-visual-assisted Method: Snap-to-Road 3
1.2.3 Visual-assisted Method: Camera or LIDAR + High Definition Map 5
1.2.4 Summary of Related Work 5
1.3 Problem Formulation 6
1.4 Contributions 6
1.5 Thesis Organization 7
CHAPTER 2 SYSTEM SETTINGS 8
2.1 Description of Input Data 8
2.2 Key Idea of the Proposed Solution 10
CHAPTER 3 PROPOSED SOLUTIONS 12
3.1 Definition of Notation 12
3.2 Pipeline of the proposed solutions 15
3.3 Step 1: Intersection Recognition 16
3.3.1 Step 1-1: Intersection Detection 17
3.3.2 Step 1-2: Traffic Light Detection 19
3.3.3 Step 1-3: Leaving Frame Identification 21
3.4 Step 2: Intersection Matching 24
3.4.1 Step 2-1: Pre-selection via HMM 25
3.4.1.1 Optimal Combination For The Hidden States 28
3.4.1.2 Traffic Light Probabilities 31
3.4.1.3 Measurement Probabilities 32
3.4.1.4 Transition Probabilities 33
3.4.2 Step 2-2: Intersection Boundary Matching 35
3.4.2.1 Intersection Database 35
3.4.2.2 Intersection Boundary Matching 36
3.5 Step 3: Geo-coordinates Calibration 37
CHAPTER 4 PERFORMANCE EVALUATION 44
4.1 Experimental Datasets Settings 44
4.1.1 Experimental Datasets Performance Metric 44
4.1.2 Ground Truth Dataset 45
4.2 Experimental Results 47
4.2.1 Average Precision of the Intersection Detection Model 47
4.2.2 Intersection Recognition Rate 48
4.2.3 Geo-coordinate Errors of The Raw Data, Snap-to-Road, and Our Proposed Method 49
CHAPTER 5 CONCLUSIONS AND FUTURE WORK 51
REFERENCES 52
dc.language.isoen
dc.subject單眼視覺zh_TW
dc.subject車輛定位zh_TW
dc.subject地圖匹配zh_TW
dc.subjectvisual-based positioningen
dc.subjectmap matchingen
dc.subjectmonocular visionen
dc.title基於影像辨識路口校正地理座標與行車路徑zh_TW
dc.titleGeo-coordinates and Routes Calibration Using Visual-Based Intersection Recognitionen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林守德(Shou-De Lin),李宏毅(Hung-Yi Lee),魏宏宇(Hung-Yu Wei)
dc.subject.keyword單眼視覺,地圖匹配,車輛定位,zh_TW
dc.subject.keywordmonocular vision,map matching,visual-based positioning,en
dc.relation.page54
dc.identifier.doi10.6342/NTU202004178
dc.rights.note未授權
dc.date.accepted2020-10-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2708202011035000.pdf
  未授權公開取用
5.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved