Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76537
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉啟德(Chi-Te Liu)
dc.contributor.authorYen-Yu Liuen
dc.contributor.author劉彥妤zh_TW
dc.date.accessioned2021-07-09T15:53:59Z-
dc.date.available2024-02-19
dc.date.copyright2019-02-19
dc.date.issued2018
dc.date.submitted2019-02-13
dc.identifier.citation石佳平。2008。枯草桿菌 Bacillus subtilis Y1336 及放線菌 Streptomyces candidus Y21007 菌種之分子鑑定技術及其抑菌效果之研究。碩士論文。高雄:國立高雄師範大學生物科技系。
胡正榮。2017。甜瓜種苗產業發展現況與展望。種苗科技專訊 99: 24-28.
唐致仁。1997。西瓜細菌性果斑病之研究。碩士論文。台中:國立中興大學。
陳鈺楨。2014。瓜類細菌性果斑病菌新選擇性培養基之研發。碩士論文。台中:國立中興大學。
趙佳鴻。2007。瓜類病毒病害防治策略與展望。臺中區農業改良場特刊,88:101-109。
謝奉家、李美珍、高穗生。2003。枯草桿菌菌體及其代謝產物對病原真菌之抑菌效果評估。植物保護學會會刊,45:155-162。
關政平、張凱為、吳明哲。2015。日本西瓜種子檢驗方法在果斑病之應用概況—佐藤仁敏博士專題演講心得與整理。技術服務,101:19-22。
Acuña-Fontecilla, A., Silva-Moreno, E., Ganga, M. A., and Godoy, L. 2017. Evaluation of antimicrobial activity from native wine yeast against food industry pathogenic microorganisms. CYTA J. Food 15:457-465.
Agrios, G. N. 2005. Plant Pathology. 5th eds., Department of Plant Pathology, University of Florida, United States of America.
Ambrus, A., Hamilton, D., Kuiper, H., and Racke, K. 2003. Significance of impurities in the safety evaluation of crop protection products (IUPAC technical report). Pure Appl. Chem. 75:937-973.
Armenta, S., Quintas, G., Garrigues, S., and De la Guardia, M. 2005. Mid-infrared and Raman spectrometry for quality control of pesticide formulations. Trac Trend Anal. Chem. 24:772-781.
Bacon, C. W., and Hinton, D. M. 2002. Endophytic and biological control potential of Bacillus mojavensis and related species. Biol. Control 23:274-284.
Bahar, O., and Burdman, S. 2010. Bacterial fruit blotch: a threat to the cucurbit industry. Isr. J. Plant Sci. 58:19-31.
Bai, U., Mandic-Mulec, I., and Smith, I. 1993. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. Genes Dev. 7:139-148.
Bais, H. P., Fall, R., and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134:307-319.
Baker, K. F. 1987. Evolving concepts of biological control of plant pathogens. Annu. Rev. Phytopathol. 25:67-85.
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., and Prjibelski, A. D. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19:455-477.
Bargabus, R., Zidack, N., Sherwood, J., and Jacobsen, B. 2002. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol. Mol. Plant Pathol. 61:289-298.
Bargabus, R., Zidack, N., Sherwood, J., and Jacobsen, B. 2004. Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biol. Control 30:342-350.
Bargabus, R. L., Zidack, N. K., Sherwood, J. E., and Jacobsen, B. J. 2003. Oxidative burst elicited by Bacillus mycoides isolate Bac J, a biological control agent, occurs independently of hypersensitive cell death in sugar beet. Mol. Plant Microbe Interact. 16:1145-1153.
Bartolome, A. P., Villaseñor, I. M., and Yang, W. C. 2013. Bidens pilosa L. (Asteraceae): botanical properties, traditional uses, phytochemistry, and pharmacology. Evid. Based Complement. Alternat. Med. 2013:1-51.
Benson, D. A., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Sayers, E. W. 2015. GenBank. Nucleic Acids Res. 43:D25-D30.
Borriss, R. 2011. Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. Springer, Berlin, Heidelberg.
Borriss, R., Chen, X. H., Rueckert, C., Blom, J., Becker, A., Baumgarth, B., Fan, B., Pukall, R., Schumann, P., and Spröer, C. 2011. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int. J. Syst. Evol. Microbiol. 61:1786-1801.
Borriss, R. 2015. Bacillus, a plant-beneficial bacterium. Pages 379-391 in: Principles of plant-microbe interactions. Springer, Cham.
Breed, R. S., and Dotterrer, W. 1916. The number of colonies allowable on satisfactory agar plates. J. Bacteriol. 1:321-331.
Broadbent, P., Baker, K., and Waterworth, Y. 1971. Bacteria and actinomycetes antogonistic to fungal root pathogens in Australian soils. Aust. J. Biol. Sci. 24:925-944.
Bull, C., Shetty, K., and Subbarao, K. 2002. Interactions between myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis. 86:889-896.
Burdman, S., and Walcott, R. 2012. Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Mol. Plant Pathol. 13:805-815.
Cai, J., Liu, F., Liao, X., and Zhang, R. 2014. Complete genome sequence of Bacillus amyloliquefaciens LFB112 isolated from Chinese herbs, a strain of a broad inhibitory spectrum against domestic animal pathogens. J. Biotechnol. 175:63-64.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. L. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421.
Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., and Reva, O. 2007. Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25:1007-1014.
Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., and Guo, J. h. 2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol. 15:848-864.
Cheng, A., Hsu, Y., Huang, T., and Wang, H. 2000. Susceptibility of cucurbits to Acidovorax avenae subsp. citrulli and control of fruit blotch on melon. Plant pathology bulletin 9:151-156.
Chiang, Y. M., Chuang, D. Y., Wang, S. Y., Kuo, Y. H., Tsai, P. W., and Shyur, L. F. 2004. Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. J. Ethnopharmacol. 95:409-419.
Choi, J. Y., Shin, J. S., Chung, Y. S., and Hyung, N.-I. 2012. An efficient selection and regeneration protocol for Agrobacterium-mediated transformation of oriental melon (Cucumis melo L. var. makuwa). Plant Cell Tiss. Organ Cult. 110:133-140.
Choudhary, D. K., and Johri, B. N. 2009. Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol. Res. 164:493-513.
Chowdhury, S. P., Hartmann, A., Gao, X., and Borriss, R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Front. Microbiol. 6:780.
Chu, F., Kearns, D. B., Branda, S. S., Kolter, R., and Losick, R. 2006. Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol. Microbiol. 59:1216-1228.
Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80.
Costerton, J. 1995. Overview of microbial biofilms. J. Ind. Microbiol. 15:137-140.
Das, T., Sehar, S., and Manefield, M. 2013. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ. Microbiol. Rep. 5:778-786.
Deba, F., Xuan, T. D., Yasuda, M., and Tawata, S. 2007. Herbicidal and fungicidal activities and identification of potential phytotoxins from Bidens pilosa L. var. radiata Scherff. Weed Biol. Manag. 7:77-83.
Doornbos, R. F., van Loon, L. C., and Bakker, P. A. 2012. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron. Sustain. Dev. 32:227-243.
Dulbecco, R., and Vogt, M. 1954. Plaque formation and isolation of pure lines with poliomyelitis viruses. J. Exp. Med. 99:167-182.
Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797.
Elliott, M. L., Des Jardin, E. A., Batson, W. E., Caceres, J., Brannen, P. M., Howell, C. R., Benson, D. M., Conway, K. E., Rothrock, C. S., and Schneider, R. W. 2001. Viability and stability of biological control agents on cotton and snap bean seeds. Pest Manag. Sci. 57:695-706.
Essghaier, B., Fardeau, M. L., Cayol, J. L., Hajlaoui, M., Boudabous, A., Jijakli, H., and Sadfi‐Zouaoui, N. 2009. Biological control of grey mould in strawberry fruits by halophilic bacteria. J. Appl. Microbiol. 106:833-846.
Fan, H., Zhang, Z., Li, Y., Zhang, X., Duan, Y., and Wang, Q. 2017. Biocontrol of bacterial fruit blotch by Bacillus subtilis 9407 via surfactin-mediated antibacterial activity and colonization. Front. Microbiol. 8:1973.
Felsenstein, J. 1989. PHYLIP–Phylogeny Interference Package (Version 3.2). Cladistics 5:164-166.
Fessehaie, A., and Walcott, R. 2005. Biological control to protect watermelon blossoms and seed from infection by Acidovorax avenae subsp. citrulli. Phytopathology 95:413-419.
Govindaraj, M., Masilamani, P., Albert, V. A., and Bhaskaran, M. 2017. Effect of physical seed treatment on yield and quality of crops: A review. Agric. Rev. 38:1-14.
Guzman, V., Burdine, H., Forsee, W., Harris, E., and Orsenigo, J. 1991. Chemical control of bacterial fruit blotch of watermelon. Proc. Fla. State Hort. Soc. 104:270-272.
Harman, G., Jin, X., Stasz, T., Peruzzotti, G., Leopold, A., and Taylor, A. 1991. Production of conidial biomass of Trichoderma harzianum for biological control. Biol. Control 1:23-28.
Her, J. Y., Kim, M. S., Kim, M. K., and Lee, K. G. 2015. Development of a spray freeze‐drying method for preparation of volatile shiitake mushroom (Lentinus edodes) powder. Int. J. Food. Sci. Technol. 50:2222-2228.
Hopkins, D. 1995. The Hypothetical Exam Question Becomes Reality. Plant Dis. 79:761-765.
Hopkins, D., Cucuzza, J., and Watterson, J. 1996. Wet seed treatments for the control of bacterial fruit blotch of watermelon. Plant Dis. 80:529-532.
Hopkins, D. L., Thompson, C. M., Hilgren, J., and Lovic, B. 2003. Wet seed treatment with peroxyacetic acid for the control of bacterial fruit blotch and other seedborne diseases of watermelon. Plant Dis. 87:1495-1499.
Horuz, S., and Aysan, Y. 2018. Biological control of watermelon seedling blight caused by Acidovorax citrulli using antagonistic bacteria from the genera curtobacterium, microbacterium and pseudomonas. Plant Prot. Sci. 54:138-146.
Huang, C. N., Lin, C. P., Hsieh, F. C., Lee, S. K., Cheng, K. C., and Liu, C. T. 2016. Characterization and evaluation of Bacillus amyloliquefaciens strain WF02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars. World J. Microbiol. Biotechnol. 32:183.
Hyatt, D., Chen, G. L., LoCascio, P. F., Land, M. L., Larimer, F. W., and Hauser, L. J. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119.
Isakeit, T., Black, M., Barnes, L., and Jones, J. 1997. First report of infection of honeydew with Acidovorax avenae subsp. citrulli. Plant Dis. 81:694-694.
Islam, M. T., Hashidoko, Y., Deora, A., Ito, T., and Tahara, S. 2005. Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl. Environ. Microbiol. 71:3786-3796.
Jayakumar, V., Bhaskaran, R., and Tsushima, S. 2007. Potential of plant extracts in combination with bacterial antagonist treatment as biocontrol agent of red rot of sugarcane. Can. J. Microbiol. 53:196-206.
Jiang, C. H., Wu, F., Yu, Z. Y., Xie, P., Ke, H. J., Li, H. W., Yu, Y. Y., and Guo, J. H. 2015. Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli. Microbiol. Res. 170:95-104.
Kadaikunnan, S., Rejiniemon, T. S., Khaled, J. M., Alharbi, N. S., and Mothana, R. 2015. In vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Ann. Clin. Microbiol. Antimicrob. 14:9.
Kanehisa, M., Sato, Y., and Morishima, K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428:726-731.
Kearns, D. B., Chu, F., Branda, S. S., Kolter, R., and Losick, R. 2005. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55:739-749.
Keel, C., Wirthner, P., Oberhänsli, T., Voisard, C., Haas, D., and Défago, G. 1990. Pseudomonads as antagonists of plant pathogens in the rhizosphere: role of the antibiotic 2, 4-diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis 9:327-341.
Khan, M., Kihara, M., and Omoloso, A. 2001. Anti-microbial activity of Bidens pilosa, Bischofia javanica, Elmerillia papuana and Sigesbekia orientalis. Fitoterapia 72:662-665.
Krzywinski, M. I., Schein, J. E., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J., and Marra, M. A. 2009. Circos: an information aesthetic for comparative genomics. Genome Res. 19:1639-1645.
Lagesen, K., Hallin, P., Rødland, E. A., Stærfeldt, H.-H., Rognes, T., and Ussery, D. W. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35:3100-3108.
Langston Jr, D., Walcott, R., Gitaitis, R., and Sanders Jr, F. 1999. First report of a fruit rot of pumpkin caused by Acidivorax avenae subsp. citrulli in Georgia. Plant Dis. 83:199-199.
Lanteigne, C., Gadkar, V. J., Wallon, T., Novinscak, A., and Filion, M. 2012. Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102:967-973.
Latin, R. 1996. Bacterial fruit blotch. Compendium of cucurbit diseases. APS Press, St. Paul, Minn:34-35.
Lee, S. K., Lur, H. S., Lo, K. J., Cheng, K. C., Chuang, C. C., Tang, S. J., Yang, Z. W., and Liu, C. T. 2016. Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3. Appl. Microbiol. Biotechnol. 100:7977-7987.
Leeman, M., Van Pelt, J., Den Ouden, F., Heinsbroek, M., Bakker, P., and Schippers, B. 1995. Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur. J. Plant Pathol. 101:655-664.
Leggett, M., Leland, J., Kellar, K., and Epp, B. 2011. Formulation of microbial biocontrol agents–an industrial perspective. Can. J. Plant Pathol. 33:101-107.
Li, L., Stoeckert, C. J., and Roos, D. S. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13:2178-2189.
Lightbown, J. 1954. An antagonist of streptomycin and dihydrostreptomycin produced by Pseudomonas aeruginosa. Microbiology 11:477-492.
Lima Silva, F., Fischer, D. C. H., Fechine Tavares, J., Sobral Silva, M., Filgueiras de Athayde-Filho, P., and Barbosa-Filho, J. M. 2011. Compilation of secondary metabolites from Bidens pilosa L. Molecules 16:1070-1102.
Lopez‐Reyes, J. G., Gilardi, G., Garibaldi, A., and Gullino, M. L. 2016. In vivo evaluation of essential oils and biocontrol agents combined with hot water treatments on carrot seeds against Alternaria radicina. J. Phytopathol. 164:131-135.
Lowe, T. M., and Eddy, S. R. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955-964.
Martin, H., O'Brien, R., and Abbott, D. 1999. First report of Acidovorax avenae subsp. citrulli as a pathogen of cucumber. Plant Dis. 83:965-965.
Merriman, P., Price, R., Kollmorgen, J., Piggott, T., and Ridge, E. 1974. Effect of seed inoculation with Bacillus subtilis and Streptomyces griseus on the growth of cereals and carrots. Aust. J. Agric. Res. 25:219-226.
Merritt, J. H., Kadouri, D. E., and O'Toole, G. A. 2011. Growing and analyzing static biofilms. Curr. Protoc. Microbiol. 22:1B.1.1-1B.1.18.
Michael, M., Phebus, R. K., and Schmidt, K. A. 2010. Impact of a plant extract on the viability of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus in nonfat yogurt. Int. Dairy J. 20:665-672.
Miles, A. A., Misra, S., and Irwin, J. 1938. The estimation of the bactericidal power of the blood. Epidemiol. Infect. 38:732-749.
Milner, J. L., Silo-Suh, L., Lee, J. C., He, H., Clardy, J., and Handelsman, J. 1996. Production of kanosamine by Bacillus cereus UW85. Appl. Environ. Microbiol. 62:3061-3065.
Mutka, A. M., Fawley, S., Tsao, T., and Kunkel, B. N. 2013. Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid‐mediated defenses. Plant J. 74:746-754.
Newman, J. A., Rodrigues, C., and Lewis, R. J. 2013. Molecular basis of the activity of SinR, the master regulator of biofilm formation in Bacillus subtilis. J. Biol. Chem. 288:10766-10778.
Nicholson, W. L. 2008. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl. Environ. Microbiol. 74:6832-6838.
O’Callaghan, M. 2016. Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl. Microbiol. Biotechnol. 100:5729-5746.
O'Toole, G., Kaplan, H. B., and Kolter, R. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54:49-79.
Ongena, M., and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125.
Palumbo, J. D., Yuen, G. Y., Jochum, C. C., Tatum, K., and Kobayashi, D. Y. 2005. Mutagenesis of β-1, 3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95:701-707.
Pozharitskaya, O., Shikov, A., Makarova, M., Kosman, V., Faustova, N., Tesakova, S., Makarov, V., and Galambosi, B. 2010. Anti-inflammatory activity of a HPLC-fingerprinted aqueous infusion of aerial part of Bidens tripartita L. Phytomedicine 17:463-468.
Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., and Bakker, P. A. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347-375.
Priest, F., Goodfellow, M., Shute, L., and Berkeley, R. 1987. Bacillus amyloliquefaciens sp. nov., nom. rev. Int. J. Syst. Evol. Microbiol. 37:69-71.
Rane, K. K., and Latin, R. X. 1992. Bacterial fruit blotch of watermelon: Association of the pathogen with seed. Plant Dis. 76:509-512.
Renna, M. C., Najimudin, N., Winik, L., and Zahler, S. 1993. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J. Bacteriol. 175:3863-3875.
Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J.-W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M., and Pérez-García, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe Interact. 20:430-440.
Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., and Paré, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026.
Sandasi, M., Leonard, C., and Viljoen, A. 2008. The effect of five common essential oil components on Listeria monocytogenes biofilms. Food Control 19:1070-1075.
Sandasi, M., Leonard, C., and Viljoen, A. 2010. The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett. Appl. Microbiol. 50:30-35.
Sansinenea, E., and Ortiz, A. 2011. Secondary metabolites of soil Bacillus spp. Biotechnol. Lett. 33:1523-1538.
Santos, E. R., Gouveia, E. R., Mariano, R. L. R., and Souto-Maior, A. M. 2006. Controle biológico da mancha-aquosa do melão por compostos bioativos produzidos por Bacillus spp. Summa Phytopathol. 32:376-378.
Shafi, J., Tian, H., and Ji, M. 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol. Biotechnol. Equip. 31:446-459.
Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H., Clardy, J., and Handelsman, J. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60:2023-2030.
Sinclair, J. B., and Dhingra, O. D. 1995. Basic plant pathology methods, 2nd Ed. CRC press, Boca Raton, FL, USA.
Somodi, G. C., Jones, J., Hopkins, D., Stall, R., Kucharek, T., Hodge, N., and Watterson, J. 1991. Occurrence of a bacterial watermelon fruit blotch in Florida. Plant Dis. 75:1053-1056.
Suzuki, S., Aono, T., Lee, K. B., Suzuki, T., Liu, C. T., Miwa, H., Wakao, S., Iki, T., and Oyaizu, H. 2007. Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata-Azorhizobium caulinodans ORS571 symbiosis. Appl. Environ. Microbiol. 73:6650-6659.
Szczech, M., and Maciorowski, R. 2016. Microencapsulation technique with organic additives for biocontrol agents. J. Hort. Res. 24:111-122.
Ting, A., Fang, M., and Tee, C. 2009. Assessment on the effect of formulative materials on the viability and efficacy of Serratia marcescens—a biocontrol agent against Fusarium oxysporum f. sp. cubense race 4. Am. J. Agric. Biol. Sci. 4:283-288.
Tjamos, E. C., Tsitsigiannis, D. I., Tjamos, S. E., Antoniou, P. P., and Katinakis, P. 2004. Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of Solanaceous hosts. Eur. J. Plant Pathol. 110:35-44.
Tjamos, S. E., Flemetakis, E., Paplomatas, E. J., and Katinakis, P. 2005. Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol. Plant Microbe Interact. 18:555-561.
Tobinaga, S., Sharma, M. K., Aalbersberg, W. G., Watanabe, K., Iguchi, K., Narui, K., Sasatsu, M., and Waki, S. 2009. Isolation and identification of a potent antimalarial and antibacterial polyacetylene from Bidens pilosa. Planta Med. 75:624-628.
Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:379-407.
Wu, L., Wu, H.-J., Qiao, J., Gao, X., and Borriss, R. 2015. Novel routes for improving biocontrol activity of Bacillus based bioinoculants. Front. Microbiol. 6:1395.
Xu, X.-M., Jeffries, P., Pautasso, M., and Jeger, M. J. 2011. Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 101:1024-1031.
Xue, J. J., Hou, J. G., Zhang, Y. A., Wang, C. Y., Wang, Z., Yu, J. J., Wang, Y. B., Wang, Y. Z., Wang, Q. H., and Sung, C. K. 2014. Optimization of storage condition for maintaining long-term viability of nematophagous fungus Esteya vermicola as biocontrol agent against pinewood nematode. World J. Microbiol. Biotechnol. 30:2805-2810.
Yang, W., Xu, Q., Liu, H. X., Wang, Y. P., Wang, Y. M., Yang, H. T., and Guo, J. H. 2012. Evaluation of biological control agents against Ralstonia wilt on ginger. Biol. Control 62:144-151.
Yi, H. S., Ahn, Y. R., Song, G. C., Ghim, S. Y., Lee, S., Lee, G., and Ryu, C. M. 2016. Impact of a bacterial volatile 2, 3-butanediol on Bacillus subtilis rhizosphere robustness. Front. Microbiol. 7:993.
Yoshihisa, H., Zenji, S., Fukushi, H., Katsuhiro, K., Haruhisa, S., and Takahito, S. 1989. Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol. Biochem. 21:723-728.
Yuan, J., Raza, W., Shen, Q., and Huang, Q. 2012. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl. Environ. Microbiol. 72:5942-5944.
Zhang, N., Yang, D., Wang, D., Miao, Y., Shao, J., Zhou, X., Xu, Z., Li, Q., Feng, H., and Li, S. 2015. Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genomics 16:685.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76537-
dc.description.abstract瓜類細菌性果斑病 (bacterial fruit blotch) 由細菌性果斑病菌(Acidovorax avenae subsp. citrulli, Aac) 所引起。種子為其初級感染源,高溫、下雨等因素會造成病原菌快速蔓延,導致嚴重的經濟損失。傳統法會將種子浸泡在低濃度鹽酸或是次氯酸鈉等化學藥劑藉以抑制果斑病原菌,但衍生出對環境非友善或是食品安全疑慮等問題。本研究的目的為評估一株具有防治植物病害的潛力菌株搭配菊科植物添加物後對於瓜類細菌性果斑病的防治效果。根據對峙培養的實驗結果,潛力菌株與菊科植物添加物之處理組可成功抑制果斑病原菌的生長,然而除去菌體的上清液則無抑制效果,顯示其拮抗效果來自於活菌。我們進一步探討菊科植物添加物對於潛力菌株的微生物生理影響,結果顯示菊科植物添加物不僅可促進潛力菌株的生物膜生成能力,也提高菌體活性。在盆栽試驗發現,預先接種潛力菌株或是接種潛力菌株搭配菊科植物添加物的美濃瓜種子其病徵較為輕微,而且植株內的Aac 的數量都較未接種組低。全基因解序結果顯示該潛力菌株基因體大小約為4.00 Mb,經過序列比對與功能註解分析,潛力菌株含有約3,900 條蛋白質編碼基因(protein-coding gene),包括數種抗生物質相關基因。此外,基因體中亦含有與生物膜形成相關的同源基因,這些基因與促進植物生長和生物防治有著密切關係。綜合上述結果,潛力菌株與菊科植物添加物的配方具有成為防治細菌性果斑病潛力的綜效型生物製劑。zh_TW
dc.description.abstractBacterial fruit blotch (BFB) of curcubits is caused by Acidovorax avenae subsp. citrulli (Aac) which is a seed-borne pathogen and cause serious threat in cucurbit industry worldwide. Although seed treatments with
hydrochloric acid or sodium hypochlorite can suppress Aac infection, they generally fail to eradicate the bacterium. The aim of this study was to evaluate the synergistic effects of an elite rhizobacterial strain and Asteraceae plant additive on inhibition of BFB. Under in vitro antagonistic test, both rhizobacterial strain and the combination of rhizobacterial strain with Asteraceae plant additive could inhibit Aac. We noted that the supernatant of rhizobacterial strain did not inhibit Aac, suggesting the biocontrol effectiveness derived from the living cells. We further investigated the effects of Asteraceae plant additive on physiological activities of rhizobacterial strain. We found the plant additive enhanced not only its biofilm formation, but also the cell vitality. In pot experiments, while pre-treating the melon seeds with either single-strain (rhizobacterial strain) inoculant or with the mixed treatment (rhizobacterial strain + plant additive) showed higher inhibitory effects against BFB than that without inoculation. The complete genome of rhizobacterial strain was analyzed by next generation sequencing. The results of whole genome sequencing indicated that rhizobacterial strain has one circular chromosome that is around 4.00Mb with 3,900 protein-coding genes, including several antibiotic-related genes. In addition, we also identified the homologous genes related to biofilm formation that is associated with the beneficial traits of growth promotion and biocontrol activities. Taken together, the rhizobacterial strain formulated with Asteraceae plant additive can act as a potential biocontrol agent against BFB.
en
dc.description.provenanceMade available in DSpace on 2021-07-09T15:53:59Z (GMT). No. of bitstreams: 1
ntu-107-R05642001-1.pdf: 2280260 bytes, checksum: e409d676fcbde09986fa2423d56c6ba3 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 II
誌謝 III
中文摘要 IV
Abstract V
Contents VII
List of Figures IX
List of Tables X
Introduction 1
Bacterial fruit blotch 1
Bacillus spp. are one of the most common biocontrol agents which is an excellent option to fight against plant pathogens 3
The bioactivities of Bidens pilosa (BP) 5
Objectives of the study 7
Materials and Methods 8
Bacterial strains, media and growth condition 8
Preparation of plant materials 9
In vitro antagonistic ability of biocontrol agents 10
Effects of BP on growth of strain WF02 cultivated on LB agar 11
Effects of BP on growth of strain WF02 cultivated in LB broth 11
Biofilm assay 12
Bacterial cell vitality test 13
Evaluation of the seed treatments with chemistry or biology for controlling BFB 14
Quantifying the population of Aac in leaves 16
Genomic DNA extraction 17
Whole genome sequencing and assembly 18
Genome annotation and average nucleotide identity (ANI) 18
Results 19
In vitro antagonistic assay against Aac by strain WF02 19
In vitro antagonistic assay against Aac by the BP extraction 20
Effects of BP extraction on the growth of strain WF02 in broth 21
Effects of BP on biofilm formation of strain WF02 23
Effects of BP on cell vitality of strain WF02 25
In vitro antagonistic ability of the supernatant of strain WF02 27
In vivo biocontrol efficacy of WF02+BP treatment 29
Reduction of Aac cell numbers by biocontrol treatments 34
General genome features of strain WF02 36
Genes encoding secondary metabolites of biocontrol function 38
Putative biofilm formation related genes were present in genome of strain WF02 41
Discussion 44
Conclusions and Future Prospects 49
References 50
dc.language.isoen
dc.subject細菌性果斑病zh_TW
dc.subject生物防治zh_TW
dc.subject果斑病原菌zh_TW
dc.subject菊科植物添加物zh_TW
dc.subject土壤根際潛力菌株zh_TW
dc.subjectbacterial fruit blotch (BFB)en
dc.subjectbiocontrolen
dc.subjectAsteraceae planten
dc.subjectrhizobacteriumen
dc.subjectAcidovorax avenae subsp. citrullien
dc.title評估土壤根際潛力菌株搭配菊科植物添加物之生物防治功效zh_TW
dc.titleEvaluation of the biocontrol effects exerted by an elite rhizobacterial strain formulated with Asteraceae plant additiveen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林詩舜(Shih-Shun Lin),劉?睿(Je-Ruei Liu),李昆達(Kung-Ta Lee),楊文欽(Wen-Chin Yang)
dc.subject.keyword細菌性果斑病,果斑病原菌,土壤根際潛力菌株,菊科植物添加物,生物防治,zh_TW
dc.subject.keywordbacterial fruit blotch (BFB),Acidovorax avenae subsp. citrulli,rhizobacterium,Asteraceae plant,biocontrol,en
dc.relation.page65
dc.identifier.doi10.6342/NTU201804077
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-02-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
dc.date.embargo-lift2024-02-19-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-107-R05642001-1.pdf2.23 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved